]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_infer/src/infer/combine.rs
Rollup merge of #93613 - crlf0710:rename_to_async_iter, r=yaahc
[rust.git] / compiler / rustc_infer / src / infer / combine.rs
1 ///////////////////////////////////////////////////////////////////////////
2 // # Type combining
3 //
4 // There are four type combiners: equate, sub, lub, and glb.  Each
5 // implements the trait `Combine` and contains methods for combining
6 // two instances of various things and yielding a new instance.  These
7 // combiner methods always yield a `Result<T>`.  There is a lot of
8 // common code for these operations, implemented as default methods on
9 // the `Combine` trait.
10 //
11 // Each operation may have side-effects on the inference context,
12 // though these can be unrolled using snapshots. On success, the
13 // LUB/GLB operations return the appropriate bound. The Eq and Sub
14 // operations generally return the first operand.
15 //
16 // ## Contravariance
17 //
18 // When you are relating two things which have a contravariant
19 // relationship, you should use `contratys()` or `contraregions()`,
20 // rather than inversing the order of arguments!  This is necessary
21 // because the order of arguments is not relevant for LUB and GLB.  It
22 // is also useful to track which value is the "expected" value in
23 // terms of error reporting.
24
25 use super::equate::Equate;
26 use super::glb::Glb;
27 use super::lub::Lub;
28 use super::sub::Sub;
29 use super::type_variable::TypeVariableValue;
30 use super::unify_key::replace_if_possible;
31 use super::unify_key::{ConstVarValue, ConstVariableValue};
32 use super::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
33 use super::{InferCtxt, MiscVariable, TypeTrace};
34
35 use crate::traits::{Obligation, PredicateObligations};
36
37 use rustc_data_structures::sso::SsoHashMap;
38 use rustc_hir::def_id::DefId;
39 use rustc_middle::traits::ObligationCause;
40 use rustc_middle::ty::error::{ExpectedFound, TypeError};
41 use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
42 use rustc_middle::ty::subst::SubstsRef;
43 use rustc_middle::ty::{self, InferConst, ToPredicate, Ty, TyCtxt, TypeFoldable};
44 use rustc_middle::ty::{IntType, UintType};
45 use rustc_span::{Span, DUMMY_SP};
46
47 #[derive(Clone)]
48 pub struct CombineFields<'infcx, 'tcx> {
49     pub infcx: &'infcx InferCtxt<'infcx, 'tcx>,
50     pub trace: TypeTrace<'tcx>,
51     pub cause: Option<ty::relate::Cause>,
52     pub param_env: ty::ParamEnv<'tcx>,
53     pub obligations: PredicateObligations<'tcx>,
54 }
55
56 #[derive(Copy, Clone, Debug)]
57 pub enum RelationDir {
58     SubtypeOf,
59     SupertypeOf,
60     EqTo,
61 }
62
63 impl<'infcx, 'tcx> InferCtxt<'infcx, 'tcx> {
64     pub fn super_combine_tys<R>(
65         &self,
66         relation: &mut R,
67         a: Ty<'tcx>,
68         b: Ty<'tcx>,
69     ) -> RelateResult<'tcx, Ty<'tcx>>
70     where
71         R: TypeRelation<'tcx>,
72     {
73         let a_is_expected = relation.a_is_expected();
74
75         match (a.kind(), b.kind()) {
76             // Relate integral variables to other types
77             (&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => {
78                 self.inner
79                     .borrow_mut()
80                     .int_unification_table()
81                     .unify_var_var(a_id, b_id)
82                     .map_err(|e| int_unification_error(a_is_expected, e))?;
83                 Ok(a)
84             }
85             (&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => {
86                 self.unify_integral_variable(a_is_expected, v_id, IntType(v))
87             }
88             (&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => {
89                 self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
90             }
91             (&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => {
92                 self.unify_integral_variable(a_is_expected, v_id, UintType(v))
93             }
94             (&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => {
95                 self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
96             }
97
98             // Relate floating-point variables to other types
99             (&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => {
100                 self.inner
101                     .borrow_mut()
102                     .float_unification_table()
103                     .unify_var_var(a_id, b_id)
104                     .map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
105                 Ok(a)
106             }
107             (&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => {
108                 self.unify_float_variable(a_is_expected, v_id, v)
109             }
110             (&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => {
111                 self.unify_float_variable(!a_is_expected, v_id, v)
112             }
113
114             // All other cases of inference are errors
115             (&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
116                 Err(TypeError::Sorts(ty::relate::expected_found(relation, a, b)))
117             }
118
119             _ => ty::relate::super_relate_tys(relation, a, b),
120         }
121     }
122
123     pub fn super_combine_consts<R>(
124         &self,
125         relation: &mut R,
126         a: ty::Const<'tcx>,
127         b: ty::Const<'tcx>,
128     ) -> RelateResult<'tcx, ty::Const<'tcx>>
129     where
130         R: ConstEquateRelation<'tcx>,
131     {
132         debug!("{}.consts({:?}, {:?})", relation.tag(), a, b);
133         if a == b {
134             return Ok(a);
135         }
136
137         let a = replace_if_possible(&mut self.inner.borrow_mut().const_unification_table(), a);
138         let b = replace_if_possible(&mut self.inner.borrow_mut().const_unification_table(), b);
139
140         let a_is_expected = relation.a_is_expected();
141
142         match (a.val(), b.val()) {
143             (
144                 ty::ConstKind::Infer(InferConst::Var(a_vid)),
145                 ty::ConstKind::Infer(InferConst::Var(b_vid)),
146             ) => {
147                 self.inner
148                     .borrow_mut()
149                     .const_unification_table()
150                     .unify_var_var(a_vid, b_vid)
151                     .map_err(|e| const_unification_error(a_is_expected, e))?;
152                 return Ok(a);
153             }
154
155             // All other cases of inference with other variables are errors.
156             (ty::ConstKind::Infer(InferConst::Var(_)), ty::ConstKind::Infer(_))
157             | (ty::ConstKind::Infer(_), ty::ConstKind::Infer(InferConst::Var(_))) => {
158                 bug!("tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var)")
159             }
160
161             (ty::ConstKind::Infer(InferConst::Var(vid)), _) => {
162                 return self.unify_const_variable(relation.param_env(), vid, b, a_is_expected);
163             }
164
165             (_, ty::ConstKind::Infer(InferConst::Var(vid))) => {
166                 return self.unify_const_variable(relation.param_env(), vid, a, !a_is_expected);
167             }
168             (ty::ConstKind::Unevaluated(..), _) if self.tcx.lazy_normalization() => {
169                 // FIXME(#59490): Need to remove the leak check to accommodate
170                 // escaping bound variables here.
171                 if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
172                     relation.const_equate_obligation(a, b);
173                 }
174                 return Ok(b);
175             }
176             (_, ty::ConstKind::Unevaluated(..)) if self.tcx.lazy_normalization() => {
177                 // FIXME(#59490): Need to remove the leak check to accommodate
178                 // escaping bound variables here.
179                 if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
180                     relation.const_equate_obligation(a, b);
181                 }
182                 return Ok(a);
183             }
184             _ => {}
185         }
186
187         ty::relate::super_relate_consts(relation, a, b)
188     }
189
190     /// Unifies the const variable `target_vid` with the given constant.
191     ///
192     /// This also tests if the given const `ct` contains an inference variable which was previously
193     /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
194     /// would result in an infinite type as we continuously replace an inference variable
195     /// in `ct` with `ct` itself.
196     ///
197     /// This is especially important as unevaluated consts use their parents generics.
198     /// They therefore often contain unused substs, making these errors far more likely.
199     ///
200     /// A good example of this is the following:
201     ///
202     /// ```rust
203     /// #![feature(generic_const_exprs)]
204     ///
205     /// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
206     ///     todo!()
207     /// }
208     ///
209     /// fn main() {
210     ///     let mut arr = Default::default();
211     ///     arr = bind(arr);
212     /// }
213     /// ```
214     ///
215     /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
216     /// of `fn bind` (meaning that its substs contain `N`).
217     ///
218     /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
219     /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
220     ///
221     /// As `3 + 4` contains `N` in its substs, this must not succeed.
222     ///
223     /// See `src/test/ui/const-generics/occurs-check/` for more examples where this is relevant.
224     #[instrument(level = "debug", skip(self))]
225     fn unify_const_variable(
226         &self,
227         param_env: ty::ParamEnv<'tcx>,
228         target_vid: ty::ConstVid<'tcx>,
229         ct: ty::Const<'tcx>,
230         vid_is_expected: bool,
231     ) -> RelateResult<'tcx, ty::Const<'tcx>> {
232         let (for_universe, span) = {
233             let mut inner = self.inner.borrow_mut();
234             let variable_table = &mut inner.const_unification_table();
235             let var_value = variable_table.probe_value(target_vid);
236             match var_value.val {
237                 ConstVariableValue::Known { value } => {
238                     bug!("instantiating {:?} which has a known value {:?}", target_vid, value)
239                 }
240                 ConstVariableValue::Unknown { universe } => (universe, var_value.origin.span),
241             }
242         };
243         let value = ConstInferUnifier { infcx: self, span, param_env, for_universe, target_vid }
244             .relate(ct, ct)?;
245
246         self.inner
247             .borrow_mut()
248             .const_unification_table()
249             .unify_var_value(
250                 target_vid,
251                 ConstVarValue {
252                     origin: ConstVariableOrigin {
253                         kind: ConstVariableOriginKind::ConstInference,
254                         span: DUMMY_SP,
255                     },
256                     val: ConstVariableValue::Known { value },
257                 },
258             )
259             .map(|()| value)
260             .map_err(|e| const_unification_error(vid_is_expected, e))
261     }
262
263     fn unify_integral_variable(
264         &self,
265         vid_is_expected: bool,
266         vid: ty::IntVid,
267         val: ty::IntVarValue,
268     ) -> RelateResult<'tcx, Ty<'tcx>> {
269         self.inner
270             .borrow_mut()
271             .int_unification_table()
272             .unify_var_value(vid, Some(val))
273             .map_err(|e| int_unification_error(vid_is_expected, e))?;
274         match val {
275             IntType(v) => Ok(self.tcx.mk_mach_int(v)),
276             UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
277         }
278     }
279
280     fn unify_float_variable(
281         &self,
282         vid_is_expected: bool,
283         vid: ty::FloatVid,
284         val: ty::FloatTy,
285     ) -> RelateResult<'tcx, Ty<'tcx>> {
286         self.inner
287             .borrow_mut()
288             .float_unification_table()
289             .unify_var_value(vid, Some(ty::FloatVarValue(val)))
290             .map_err(|e| float_unification_error(vid_is_expected, e))?;
291         Ok(self.tcx.mk_mach_float(val))
292     }
293 }
294
295 impl<'infcx, 'tcx> CombineFields<'infcx, 'tcx> {
296     pub fn tcx(&self) -> TyCtxt<'tcx> {
297         self.infcx.tcx
298     }
299
300     pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> {
301         Equate::new(self, a_is_expected)
302     }
303
304     pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> {
305         Sub::new(self, a_is_expected)
306     }
307
308     pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'tcx> {
309         Lub::new(self, a_is_expected)
310     }
311
312     pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'tcx> {
313         Glb::new(self, a_is_expected)
314     }
315
316     /// Here, `dir` is either `EqTo`, `SubtypeOf`, or `SupertypeOf`.
317     /// The idea is that we should ensure that the type `a_ty` is equal
318     /// to, a subtype of, or a supertype of (respectively) the type
319     /// to which `b_vid` is bound.
320     ///
321     /// Since `b_vid` has not yet been instantiated with a type, we
322     /// will first instantiate `b_vid` with a *generalized* version
323     /// of `a_ty`. Generalization introduces other inference
324     /// variables wherever subtyping could occur.
325     pub fn instantiate(
326         &mut self,
327         a_ty: Ty<'tcx>,
328         dir: RelationDir,
329         b_vid: ty::TyVid,
330         a_is_expected: bool,
331     ) -> RelateResult<'tcx, ()> {
332         use self::RelationDir::*;
333
334         // Get the actual variable that b_vid has been inferred to
335         debug_assert!(self.infcx.inner.borrow_mut().type_variables().probe(b_vid).is_unknown());
336
337         debug!("instantiate(a_ty={:?} dir={:?} b_vid={:?})", a_ty, dir, b_vid);
338
339         // Generalize type of `a_ty` appropriately depending on the
340         // direction.  As an example, assume:
341         //
342         // - `a_ty == &'x ?1`, where `'x` is some free region and `?1` is an
343         //   inference variable,
344         // - and `dir` == `SubtypeOf`.
345         //
346         // Then the generalized form `b_ty` would be `&'?2 ?3`, where
347         // `'?2` and `?3` are fresh region/type inference
348         // variables. (Down below, we will relate `a_ty <: b_ty`,
349         // adding constraints like `'x: '?2` and `?1 <: ?3`.)
350         let Generalization { ty: b_ty, needs_wf } = self.generalize(a_ty, b_vid, dir)?;
351         debug!(
352             "instantiate(a_ty={:?}, dir={:?}, b_vid={:?}, generalized b_ty={:?})",
353             a_ty, dir, b_vid, b_ty
354         );
355         self.infcx.inner.borrow_mut().type_variables().instantiate(b_vid, b_ty);
356
357         if needs_wf {
358             self.obligations.push(Obligation::new(
359                 self.trace.cause.clone(),
360                 self.param_env,
361                 ty::Binder::dummy(ty::PredicateKind::WellFormed(b_ty.into()))
362                     .to_predicate(self.infcx.tcx),
363             ));
364         }
365
366         // Finally, relate `b_ty` to `a_ty`, as described in previous comment.
367         //
368         // FIXME(#16847): This code is non-ideal because all these subtype
369         // relations wind up attributed to the same spans. We need
370         // to associate causes/spans with each of the relations in
371         // the stack to get this right.
372         match dir {
373             EqTo => self.equate(a_is_expected).relate(a_ty, b_ty),
374             SubtypeOf => self.sub(a_is_expected).relate(a_ty, b_ty),
375             SupertypeOf => self.sub(a_is_expected).relate_with_variance(
376                 ty::Contravariant,
377                 ty::VarianceDiagInfo::default(),
378                 a_ty,
379                 b_ty,
380             ),
381         }?;
382
383         Ok(())
384     }
385
386     /// Attempts to generalize `ty` for the type variable `for_vid`.
387     /// This checks for cycle -- that is, whether the type `ty`
388     /// references `for_vid`. The `dir` is the "direction" for which we
389     /// a performing the generalization (i.e., are we producing a type
390     /// that can be used as a supertype etc).
391     ///
392     /// Preconditions:
393     ///
394     /// - `for_vid` is a "root vid"
395     fn generalize(
396         &self,
397         ty: Ty<'tcx>,
398         for_vid: ty::TyVid,
399         dir: RelationDir,
400     ) -> RelateResult<'tcx, Generalization<'tcx>> {
401         debug!("generalize(ty={:?}, for_vid={:?}, dir={:?}", ty, for_vid, dir);
402         // Determine the ambient variance within which `ty` appears.
403         // The surrounding equation is:
404         //
405         //     ty [op] ty2
406         //
407         // where `op` is either `==`, `<:`, or `:>`. This maps quite
408         // naturally.
409         let ambient_variance = match dir {
410             RelationDir::EqTo => ty::Invariant,
411             RelationDir::SubtypeOf => ty::Covariant,
412             RelationDir::SupertypeOf => ty::Contravariant,
413         };
414
415         debug!("generalize: ambient_variance = {:?}", ambient_variance);
416
417         let for_universe = match self.infcx.inner.borrow_mut().type_variables().probe(for_vid) {
418             v @ TypeVariableValue::Known { .. } => {
419                 bug!("instantiating {:?} which has a known value {:?}", for_vid, v,)
420             }
421             TypeVariableValue::Unknown { universe } => universe,
422         };
423
424         debug!("generalize: for_universe = {:?}", for_universe);
425         debug!("generalize: trace = {:?}", self.trace);
426
427         let mut generalize = Generalizer {
428             infcx: self.infcx,
429             cause: &self.trace.cause,
430             for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
431             for_universe,
432             ambient_variance,
433             needs_wf: false,
434             root_ty: ty,
435             param_env: self.param_env,
436             cache: SsoHashMap::new(),
437         };
438
439         let ty = match generalize.relate(ty, ty) {
440             Ok(ty) => ty,
441             Err(e) => {
442                 debug!("generalize: failure {:?}", e);
443                 return Err(e);
444             }
445         };
446         let needs_wf = generalize.needs_wf;
447         debug!("generalize: success {{ {:?}, {:?} }}", ty, needs_wf);
448         Ok(Generalization { ty, needs_wf })
449     }
450
451     pub fn add_const_equate_obligation(
452         &mut self,
453         a_is_expected: bool,
454         a: ty::Const<'tcx>,
455         b: ty::Const<'tcx>,
456     ) {
457         let predicate = if a_is_expected {
458             ty::PredicateKind::ConstEquate(a, b)
459         } else {
460             ty::PredicateKind::ConstEquate(b, a)
461         };
462         self.obligations.push(Obligation::new(
463             self.trace.cause.clone(),
464             self.param_env,
465             ty::Binder::dummy(predicate).to_predicate(self.tcx()),
466         ));
467     }
468 }
469
470 struct Generalizer<'cx, 'tcx> {
471     infcx: &'cx InferCtxt<'cx, 'tcx>,
472
473     /// The span, used when creating new type variables and things.
474     cause: &'cx ObligationCause<'tcx>,
475
476     /// The vid of the type variable that is in the process of being
477     /// instantiated; if we find this within the type we are folding,
478     /// that means we would have created a cyclic type.
479     for_vid_sub_root: ty::TyVid,
480
481     /// The universe of the type variable that is in the process of
482     /// being instantiated. Any fresh variables that we create in this
483     /// process should be in that same universe.
484     for_universe: ty::UniverseIndex,
485
486     /// Track the variance as we descend into the type.
487     ambient_variance: ty::Variance,
488
489     /// See the field `needs_wf` in `Generalization`.
490     needs_wf: bool,
491
492     /// The root type that we are generalizing. Used when reporting cycles.
493     root_ty: Ty<'tcx>,
494
495     param_env: ty::ParamEnv<'tcx>,
496
497     cache: SsoHashMap<Ty<'tcx>, RelateResult<'tcx, Ty<'tcx>>>,
498 }
499
500 /// Result from a generalization operation. This includes
501 /// not only the generalized type, but also a bool flag
502 /// indicating whether further WF checks are needed.
503 struct Generalization<'tcx> {
504     ty: Ty<'tcx>,
505
506     /// If true, then the generalized type may not be well-formed,
507     /// even if the source type is well-formed, so we should add an
508     /// additional check to enforce that it is. This arises in
509     /// particular around 'bivariant' type parameters that are only
510     /// constrained by a where-clause. As an example, imagine a type:
511     ///
512     ///     struct Foo<A, B> where A: Iterator<Item = B> {
513     ///         data: A
514     ///     }
515     ///
516     /// here, `A` will be covariant, but `B` is
517     /// unconstrained. However, whatever it is, for `Foo` to be WF, it
518     /// must be equal to `A::Item`. If we have an input `Foo<?A, ?B>`,
519     /// then after generalization we will wind up with a type like
520     /// `Foo<?C, ?D>`. When we enforce that `Foo<?A, ?B> <: Foo<?C,
521     /// ?D>` (or `>:`), we will wind up with the requirement that `?A
522     /// <: ?C`, but no particular relationship between `?B` and `?D`
523     /// (after all, we do not know the variance of the normalized form
524     /// of `A::Item` with respect to `A`). If we do nothing else, this
525     /// may mean that `?D` goes unconstrained (as in #41677). So, in
526     /// this scenario where we create a new type variable in a
527     /// bivariant context, we set the `needs_wf` flag to true. This
528     /// will force the calling code to check that `WF(Foo<?C, ?D>)`
529     /// holds, which in turn implies that `?C::Item == ?D`. So once
530     /// `?C` is constrained, that should suffice to restrict `?D`.
531     needs_wf: bool,
532 }
533
534 impl<'tcx> TypeRelation<'tcx> for Generalizer<'_, 'tcx> {
535     fn tcx(&self) -> TyCtxt<'tcx> {
536         self.infcx.tcx
537     }
538     fn param_env(&self) -> ty::ParamEnv<'tcx> {
539         self.param_env
540     }
541
542     fn tag(&self) -> &'static str {
543         "Generalizer"
544     }
545
546     fn a_is_expected(&self) -> bool {
547         true
548     }
549
550     fn binders<T>(
551         &mut self,
552         a: ty::Binder<'tcx, T>,
553         b: ty::Binder<'tcx, T>,
554     ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
555     where
556         T: Relate<'tcx>,
557     {
558         Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
559     }
560
561     fn relate_item_substs(
562         &mut self,
563         item_def_id: DefId,
564         a_subst: SubstsRef<'tcx>,
565         b_subst: SubstsRef<'tcx>,
566     ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
567         if self.ambient_variance == ty::Variance::Invariant {
568             // Avoid fetching the variance if we are in an invariant
569             // context; no need, and it can induce dependency cycles
570             // (e.g., #41849).
571             relate::relate_substs(self, None, a_subst, b_subst)
572         } else {
573             let tcx = self.tcx();
574             let opt_variances = tcx.variances_of(item_def_id);
575             relate::relate_substs(self, Some((item_def_id, &opt_variances)), a_subst, b_subst)
576         }
577     }
578
579     fn relate_with_variance<T: Relate<'tcx>>(
580         &mut self,
581         variance: ty::Variance,
582         _info: ty::VarianceDiagInfo<'tcx>,
583         a: T,
584         b: T,
585     ) -> RelateResult<'tcx, T> {
586         let old_ambient_variance = self.ambient_variance;
587         self.ambient_variance = self.ambient_variance.xform(variance);
588
589         let result = self.relate(a, b);
590         self.ambient_variance = old_ambient_variance;
591         result
592     }
593
594     fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
595         assert_eq!(t, t2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
596
597         if let Some(result) = self.cache.get(&t) {
598             return result.clone();
599         }
600         debug!("generalize: t={:?}", t);
601
602         // Check to see whether the type we are generalizing references
603         // any other type variable related to `vid` via
604         // subtyping. This is basically our "occurs check", preventing
605         // us from creating infinitely sized types.
606         let result = match *t.kind() {
607             ty::Infer(ty::TyVar(vid)) => {
608                 let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
609                 let sub_vid = self.infcx.inner.borrow_mut().type_variables().sub_root_var(vid);
610                 if sub_vid == self.for_vid_sub_root {
611                     // If sub-roots are equal, then `for_vid` and
612                     // `vid` are related via subtyping.
613                     Err(TypeError::CyclicTy(self.root_ty))
614                 } else {
615                     let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
616                     match probe {
617                         TypeVariableValue::Known { value: u } => {
618                             debug!("generalize: known value {:?}", u);
619                             self.relate(u, u)
620                         }
621                         TypeVariableValue::Unknown { universe } => {
622                             match self.ambient_variance {
623                                 // Invariant: no need to make a fresh type variable.
624                                 ty::Invariant => {
625                                     if self.for_universe.can_name(universe) {
626                                         return Ok(t);
627                                     }
628                                 }
629
630                                 // Bivariant: make a fresh var, but we
631                                 // may need a WF predicate. See
632                                 // comment on `needs_wf` field for
633                                 // more info.
634                                 ty::Bivariant => self.needs_wf = true,
635
636                                 // Co/contravariant: this will be
637                                 // sufficiently constrained later on.
638                                 ty::Covariant | ty::Contravariant => (),
639                             }
640
641                             let origin =
642                                 *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
643                             let new_var_id = self
644                                 .infcx
645                                 .inner
646                                 .borrow_mut()
647                                 .type_variables()
648                                 .new_var(self.for_universe, origin);
649                             let u = self.tcx().mk_ty_var(new_var_id);
650
651                             // Record that we replaced `vid` with `new_var_id` as part of a generalization
652                             // operation. This is needed to detect cyclic types. To see why, see the
653                             // docs in the `type_variables` module.
654                             self.infcx.inner.borrow_mut().type_variables().sub(vid, new_var_id);
655                             debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
656                             Ok(u)
657                         }
658                     }
659                 }
660             }
661             ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
662                 // No matter what mode we are in,
663                 // integer/floating-point types must be equal to be
664                 // relatable.
665                 Ok(t)
666             }
667             _ => relate::super_relate_tys(self, t, t),
668         };
669
670         self.cache.insert(t, result.clone());
671         return result;
672     }
673
674     fn regions(
675         &mut self,
676         r: ty::Region<'tcx>,
677         r2: ty::Region<'tcx>,
678     ) -> RelateResult<'tcx, ty::Region<'tcx>> {
679         assert_eq!(r, r2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
680
681         debug!("generalize: regions r={:?}", r);
682
683         match *r {
684             // Never make variables for regions bound within the type itself,
685             // nor for erased regions.
686             ty::ReLateBound(..) | ty::ReErased => {
687                 return Ok(r);
688             }
689
690             ty::RePlaceholder(..)
691             | ty::ReVar(..)
692             | ty::ReEmpty(_)
693             | ty::ReStatic
694             | ty::ReEarlyBound(..)
695             | ty::ReFree(..) => {
696                 // see common code below
697             }
698         }
699
700         // If we are in an invariant context, we can re-use the region
701         // as is, unless it happens to be in some universe that we
702         // can't name. (In the case of a region *variable*, we could
703         // use it if we promoted it into our universe, but we don't
704         // bother.)
705         if let ty::Invariant = self.ambient_variance {
706             let r_universe = self.infcx.universe_of_region(r);
707             if self.for_universe.can_name(r_universe) {
708                 return Ok(r);
709             }
710         }
711
712         // FIXME: This is non-ideal because we don't give a
713         // very descriptive origin for this region variable.
714         Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.cause.span), self.for_universe))
715     }
716
717     fn consts(
718         &mut self,
719         c: ty::Const<'tcx>,
720         c2: ty::Const<'tcx>,
721     ) -> RelateResult<'tcx, ty::Const<'tcx>> {
722         assert_eq!(c, c2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
723
724         match c.val() {
725             ty::ConstKind::Infer(InferConst::Var(vid)) => {
726                 let mut inner = self.infcx.inner.borrow_mut();
727                 let variable_table = &mut inner.const_unification_table();
728                 let var_value = variable_table.probe_value(vid);
729                 match var_value.val {
730                     ConstVariableValue::Known { value: u } => {
731                         drop(inner);
732                         self.relate(u, u)
733                     }
734                     ConstVariableValue::Unknown { universe } => {
735                         if self.for_universe.can_name(universe) {
736                             Ok(c)
737                         } else {
738                             let new_var_id = variable_table.new_key(ConstVarValue {
739                                 origin: var_value.origin,
740                                 val: ConstVariableValue::Unknown { universe: self.for_universe },
741                             });
742                             Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
743                         }
744                     }
745                 }
746             }
747             ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
748                 if self.tcx().lazy_normalization() =>
749             {
750                 assert_eq!(promoted, None);
751                 let substs = self.relate_with_variance(
752                     ty::Variance::Invariant,
753                     ty::VarianceDiagInfo::default(),
754                     substs,
755                     substs,
756                 )?;
757                 Ok(self.tcx().mk_const(ty::ConstS {
758                     ty: c.ty(),
759                     val: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
760                 }))
761             }
762             _ => relate::super_relate_consts(self, c, c),
763         }
764     }
765 }
766
767 pub trait ConstEquateRelation<'tcx>: TypeRelation<'tcx> {
768     /// Register an obligation that both constants must be equal to each other.
769     ///
770     /// If they aren't equal then the relation doesn't hold.
771     fn const_equate_obligation(&mut self, a: ty::Const<'tcx>, b: ty::Const<'tcx>);
772 }
773
774 pub trait RelateResultCompare<'tcx, T> {
775     fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T>
776     where
777         F: FnOnce() -> TypeError<'tcx>;
778 }
779
780 impl<'tcx, T: Clone + PartialEq> RelateResultCompare<'tcx, T> for RelateResult<'tcx, T> {
781     fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T>
782     where
783         F: FnOnce() -> TypeError<'tcx>,
784     {
785         self.clone().and_then(|s| if s == t { self.clone() } else { Err(f()) })
786     }
787 }
788
789 pub fn const_unification_error<'tcx>(
790     a_is_expected: bool,
791     (a, b): (ty::Const<'tcx>, ty::Const<'tcx>),
792 ) -> TypeError<'tcx> {
793     TypeError::ConstMismatch(ExpectedFound::new(a_is_expected, a, b))
794 }
795
796 fn int_unification_error<'tcx>(
797     a_is_expected: bool,
798     v: (ty::IntVarValue, ty::IntVarValue),
799 ) -> TypeError<'tcx> {
800     let (a, b) = v;
801     TypeError::IntMismatch(ExpectedFound::new(a_is_expected, a, b))
802 }
803
804 fn float_unification_error<'tcx>(
805     a_is_expected: bool,
806     v: (ty::FloatVarValue, ty::FloatVarValue),
807 ) -> TypeError<'tcx> {
808     let (ty::FloatVarValue(a), ty::FloatVarValue(b)) = v;
809     TypeError::FloatMismatch(ExpectedFound::new(a_is_expected, a, b))
810 }
811
812 struct ConstInferUnifier<'cx, 'tcx> {
813     infcx: &'cx InferCtxt<'cx, 'tcx>,
814
815     span: Span,
816
817     param_env: ty::ParamEnv<'tcx>,
818
819     for_universe: ty::UniverseIndex,
820
821     /// The vid of the const variable that is in the process of being
822     /// instantiated; if we find this within the const we are folding,
823     /// that means we would have created a cyclic const.
824     target_vid: ty::ConstVid<'tcx>,
825 }
826
827 // We use `TypeRelation` here to propagate `RelateResult` upwards.
828 //
829 // Both inputs are expected to be the same.
830 impl<'tcx> TypeRelation<'tcx> for ConstInferUnifier<'_, 'tcx> {
831     fn tcx(&self) -> TyCtxt<'tcx> {
832         self.infcx.tcx
833     }
834
835     fn param_env(&self) -> ty::ParamEnv<'tcx> {
836         self.param_env
837     }
838
839     fn tag(&self) -> &'static str {
840         "ConstInferUnifier"
841     }
842
843     fn a_is_expected(&self) -> bool {
844         true
845     }
846
847     fn relate_with_variance<T: Relate<'tcx>>(
848         &mut self,
849         _variance: ty::Variance,
850         _info: ty::VarianceDiagInfo<'tcx>,
851         a: T,
852         b: T,
853     ) -> RelateResult<'tcx, T> {
854         // We don't care about variance here.
855         self.relate(a, b)
856     }
857
858     fn binders<T>(
859         &mut self,
860         a: ty::Binder<'tcx, T>,
861         b: ty::Binder<'tcx, T>,
862     ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
863     where
864         T: Relate<'tcx>,
865     {
866         Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
867     }
868
869     #[tracing::instrument(level = "debug", skip(self))]
870     fn tys(&mut self, t: Ty<'tcx>, _t: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
871         debug_assert_eq!(t, _t);
872         debug!("ConstInferUnifier: t={:?}", t);
873
874         match t.kind() {
875             &ty::Infer(ty::TyVar(vid)) => {
876                 let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
877                 let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
878                 match probe {
879                     TypeVariableValue::Known { value: u } => {
880                         debug!("ConstOccursChecker: known value {:?}", u);
881                         self.tys(u, u)
882                     }
883                     TypeVariableValue::Unknown { universe } => {
884                         if self.for_universe.can_name(universe) {
885                             return Ok(t);
886                         }
887
888                         let origin =
889                             *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
890                         let new_var_id = self
891                             .infcx
892                             .inner
893                             .borrow_mut()
894                             .type_variables()
895                             .new_var(self.for_universe, origin);
896                         let u = self.tcx().mk_ty_var(new_var_id);
897                         debug!(
898                             "ConstInferUnifier: replacing original vid={:?} with new={:?}",
899                             vid, u
900                         );
901                         Ok(u)
902                     }
903                 }
904             }
905             ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => Ok(t),
906             _ => relate::super_relate_tys(self, t, t),
907         }
908     }
909
910     fn regions(
911         &mut self,
912         r: ty::Region<'tcx>,
913         _r: ty::Region<'tcx>,
914     ) -> RelateResult<'tcx, ty::Region<'tcx>> {
915         debug_assert_eq!(r, _r);
916         debug!("ConstInferUnifier: r={:?}", r);
917
918         match *r {
919             // Never make variables for regions bound within the type itself,
920             // nor for erased regions.
921             ty::ReLateBound(..) | ty::ReErased => {
922                 return Ok(r);
923             }
924
925             ty::RePlaceholder(..)
926             | ty::ReVar(..)
927             | ty::ReEmpty(_)
928             | ty::ReStatic
929             | ty::ReEarlyBound(..)
930             | ty::ReFree(..) => {
931                 // see common code below
932             }
933         }
934
935         let r_universe = self.infcx.universe_of_region(r);
936         if self.for_universe.can_name(r_universe) {
937             return Ok(r);
938         } else {
939             // FIXME: This is non-ideal because we don't give a
940             // very descriptive origin for this region variable.
941             Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.span), self.for_universe))
942         }
943     }
944
945     #[tracing::instrument(level = "debug", skip(self))]
946     fn consts(
947         &mut self,
948         c: ty::Const<'tcx>,
949         _c: ty::Const<'tcx>,
950     ) -> RelateResult<'tcx, ty::Const<'tcx>> {
951         debug_assert_eq!(c, _c);
952         debug!("ConstInferUnifier: c={:?}", c);
953
954         match c.val() {
955             ty::ConstKind::Infer(InferConst::Var(vid)) => {
956                 // Check if the current unification would end up
957                 // unifying `target_vid` with a const which contains
958                 // an inference variable which is unioned with `target_vid`.
959                 //
960                 // Not doing so can easily result in stack overflows.
961                 if self
962                     .infcx
963                     .inner
964                     .borrow_mut()
965                     .const_unification_table()
966                     .unioned(self.target_vid, vid)
967                 {
968                     return Err(TypeError::CyclicConst(c));
969                 }
970
971                 let var_value =
972                     self.infcx.inner.borrow_mut().const_unification_table().probe_value(vid);
973                 match var_value.val {
974                     ConstVariableValue::Known { value: u } => self.consts(u, u),
975                     ConstVariableValue::Unknown { universe } => {
976                         if self.for_universe.can_name(universe) {
977                             Ok(c)
978                         } else {
979                             let new_var_id =
980                                 self.infcx.inner.borrow_mut().const_unification_table().new_key(
981                                     ConstVarValue {
982                                         origin: var_value.origin,
983                                         val: ConstVariableValue::Unknown {
984                                             universe: self.for_universe,
985                                         },
986                                     },
987                                 );
988                             Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
989                         }
990                     }
991                 }
992             }
993             ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
994                 if self.tcx().lazy_normalization() =>
995             {
996                 assert_eq!(promoted, None);
997                 let substs = self.relate_with_variance(
998                     ty::Variance::Invariant,
999                     ty::VarianceDiagInfo::default(),
1000                     substs,
1001                     substs,
1002                 )?;
1003                 Ok(self.tcx().mk_const(ty::ConstS {
1004                     ty: c.ty(),
1005                     val: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
1006                 }))
1007             }
1008             _ => relate::super_relate_consts(self, c, c),
1009         }
1010     }
1011 }