]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/upvar.rs
Rollup merge of #104587 - weihanglo:update-cargo, r=weihanglo
[rust.git] / compiler / rustc_hir_typeck / src / upvar.rs
1 //! ### Inferring borrow kinds for upvars
2 //!
3 //! Whenever there is a closure expression, we need to determine how each
4 //! upvar is used. We do this by initially assigning each upvar an
5 //! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6 //! "escalating" the kind as needed. The borrow kind proceeds according to
7 //! the following lattice:
8 //! ```ignore (not-rust)
9 //! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10 //! ```
11 //! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12 //! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13 //! we'll do the same. Naturally, this applies not just to the upvar, but
14 //! to everything owned by `x`, so the result is the same for something
15 //! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16 //! struct). These adjustments are performed in
17 //! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
18 //! from there).
19 //!
20 //! The fact that we are inferring borrow kinds as we go results in a
21 //! semi-hacky interaction with mem-categorization. In particular,
22 //! mem-categorization will query the current borrow kind as it
23 //! categorizes, and we'll return the *current* value, but this may get
24 //! adjusted later. Therefore, in this module, we generally ignore the
25 //! borrow kind (and derived mutabilities) that are returned from
26 //! mem-categorization, since they may be inaccurate. (Another option
27 //! would be to use a unification scheme, where instead of returning a
28 //! concrete borrow kind like `ty::ImmBorrow`, we return a
29 //! `ty::InferBorrow(upvar_id)` or something like that, but this would
30 //! then mean that all later passes would have to check for these figments
31 //! and report an error, and it just seems like more mess in the end.)
32
33 use super::FnCtxt;
34
35 use crate::expr_use_visitor as euv;
36 use rustc_errors::{Applicability, MultiSpan};
37 use rustc_hir as hir;
38 use rustc_hir::def_id::LocalDefId;
39 use rustc_hir::intravisit::{self, Visitor};
40 use rustc_infer::infer::UpvarRegion;
41 use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
42 use rustc_middle::mir::FakeReadCause;
43 use rustc_middle::ty::{
44     self, ClosureSizeProfileData, Ty, TyCtxt, TypeckResults, UpvarCapture, UpvarSubsts,
45 };
46 use rustc_session::lint;
47 use rustc_span::sym;
48 use rustc_span::{BytePos, Pos, Span, Symbol};
49 use rustc_trait_selection::infer::InferCtxtExt;
50
51 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
52 use rustc_index::vec::Idx;
53 use rustc_target::abi::VariantIdx;
54
55 use std::iter;
56
57 /// Describe the relationship between the paths of two places
58 /// eg:
59 /// - `foo` is ancestor of `foo.bar.baz`
60 /// - `foo.bar.baz` is an descendant of `foo.bar`
61 /// - `foo.bar` and `foo.baz` are divergent
62 enum PlaceAncestryRelation {
63     Ancestor,
64     Descendant,
65     SamePlace,
66     Divergent,
67 }
68
69 /// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
70 /// during capture analysis. Information in this map feeds into the minimum capture
71 /// analysis pass.
72 type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
73
74 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
75     pub fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
76         InferBorrowKindVisitor { fcx: self }.visit_body(body);
77
78         // it's our job to process these.
79         assert!(self.deferred_call_resolutions.borrow().is_empty());
80     }
81 }
82
83 /// Intermediate format to store the hir_id pointing to the use that resulted in the
84 /// corresponding place being captured and a String which contains the captured value's
85 /// name (i.e: a.b.c)
86 #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
87 enum UpvarMigrationInfo {
88     /// We previously captured all of `x`, but now we capture some sub-path.
89     CapturingPrecise { source_expr: Option<hir::HirId>, var_name: String },
90     CapturingNothing {
91         // where the variable appears in the closure (but is not captured)
92         use_span: Span,
93     },
94 }
95
96 /// Reasons that we might issue a migration warning.
97 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
98 struct MigrationWarningReason {
99     /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
100     /// in this vec, but now we don't.
101     auto_traits: Vec<&'static str>,
102
103     /// When we used to capture `x` in its entirety, we would execute some destructors
104     /// at a different time.
105     drop_order: bool,
106 }
107
108 impl MigrationWarningReason {
109     fn migration_message(&self) -> String {
110         let base = "changes to closure capture in Rust 2021 will affect";
111         if !self.auto_traits.is_empty() && self.drop_order {
112             format!("{} drop order and which traits the closure implements", base)
113         } else if self.drop_order {
114             format!("{} drop order", base)
115         } else {
116             format!("{} which traits the closure implements", base)
117         }
118     }
119 }
120
121 /// Intermediate format to store information needed to generate a note in the migration lint.
122 struct MigrationLintNote {
123     captures_info: UpvarMigrationInfo,
124
125     /// reasons why migration is needed for this capture
126     reason: MigrationWarningReason,
127 }
128
129 /// Intermediate format to store the hir id of the root variable and a HashSet containing
130 /// information on why the root variable should be fully captured
131 struct NeededMigration {
132     var_hir_id: hir::HirId,
133     diagnostics_info: Vec<MigrationLintNote>,
134 }
135
136 struct InferBorrowKindVisitor<'a, 'tcx> {
137     fcx: &'a FnCtxt<'a, 'tcx>,
138 }
139
140 impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
141     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
142         match expr.kind {
143             hir::ExprKind::Closure(&hir::Closure { capture_clause, body: body_id, .. }) => {
144                 let body = self.fcx.tcx.hir().body(body_id);
145                 self.visit_body(body);
146                 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, capture_clause);
147             }
148             hir::ExprKind::ConstBlock(anon_const) => {
149                 let body = self.fcx.tcx.hir().body(anon_const.body);
150                 self.visit_body(body);
151             }
152             _ => {}
153         }
154
155         intravisit::walk_expr(self, expr);
156     }
157 }
158
159 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
160     /// Analysis starting point.
161     #[instrument(skip(self, body), level = "debug")]
162     fn analyze_closure(
163         &self,
164         closure_hir_id: hir::HirId,
165         span: Span,
166         body_id: hir::BodyId,
167         body: &'tcx hir::Body<'tcx>,
168         capture_clause: hir::CaptureBy,
169     ) {
170         // Extract the type of the closure.
171         let ty = self.node_ty(closure_hir_id);
172         let (closure_def_id, substs) = match *ty.kind() {
173             ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs)),
174             ty::Generator(def_id, substs, _) => (def_id, UpvarSubsts::Generator(substs)),
175             ty::Error(_) => {
176                 // #51714: skip analysis when we have already encountered type errors
177                 return;
178             }
179             _ => {
180                 span_bug!(
181                     span,
182                     "type of closure expr {:?} is not a closure {:?}",
183                     closure_hir_id,
184                     ty
185                 );
186             }
187         };
188         let closure_def_id = closure_def_id.expect_local();
189
190         let infer_kind = if let UpvarSubsts::Closure(closure_substs) = substs {
191             self.closure_kind(closure_substs).is_none().then_some(closure_substs)
192         } else {
193             None
194         };
195
196         assert_eq!(self.tcx.hir().body_owner_def_id(body.id()), closure_def_id);
197         let mut delegate = InferBorrowKind {
198             fcx: self,
199             closure_def_id,
200             capture_information: Default::default(),
201             fake_reads: Default::default(),
202         };
203         euv::ExprUseVisitor::new(
204             &mut delegate,
205             &self.infcx,
206             closure_def_id,
207             self.param_env,
208             &self.typeck_results.borrow(),
209         )
210         .consume_body(body);
211
212         debug!(
213             "For closure={:?}, capture_information={:#?}",
214             closure_def_id, delegate.capture_information
215         );
216
217         self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
218
219         let (capture_information, closure_kind, origin) = self
220             .process_collected_capture_information(capture_clause, delegate.capture_information);
221
222         self.compute_min_captures(closure_def_id, capture_information, span);
223
224         let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(closure_def_id);
225
226         if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
227             self.perform_2229_migration_anaysis(closure_def_id, body_id, capture_clause, span);
228         }
229
230         let after_feature_tys = self.final_upvar_tys(closure_def_id);
231
232         // We now fake capture information for all variables that are mentioned within the closure
233         // We do this after handling migrations so that min_captures computes before
234         if !enable_precise_capture(self.tcx, span) {
235             let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
236
237             if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
238                 for var_hir_id in upvars.keys() {
239                     let place = self.place_for_root_variable(closure_def_id, *var_hir_id);
240
241                     debug!("seed place {:?}", place);
242
243                     let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
244                     let fake_info = ty::CaptureInfo {
245                         capture_kind_expr_id: None,
246                         path_expr_id: None,
247                         capture_kind,
248                     };
249
250                     capture_information.push((place, fake_info));
251                 }
252             }
253
254             // This will update the min captures based on this new fake information.
255             self.compute_min_captures(closure_def_id, capture_information, span);
256         }
257
258         let before_feature_tys = self.final_upvar_tys(closure_def_id);
259
260         if let Some(closure_substs) = infer_kind {
261             // Unify the (as yet unbound) type variable in the closure
262             // substs with the kind we inferred.
263             let closure_kind_ty = closure_substs.as_closure().kind_ty();
264             self.demand_eqtype(span, closure_kind.to_ty(self.tcx), closure_kind_ty);
265
266             // If we have an origin, store it.
267             if let Some(origin) = origin {
268                 let origin = if enable_precise_capture(self.tcx, span) {
269                     (origin.0, origin.1)
270                 } else {
271                     (origin.0, Place { projections: vec![], ..origin.1 })
272                 };
273
274                 self.typeck_results
275                     .borrow_mut()
276                     .closure_kind_origins_mut()
277                     .insert(closure_hir_id, origin);
278             }
279         }
280
281         self.log_closure_min_capture_info(closure_def_id, span);
282
283         // Now that we've analyzed the closure, we know how each
284         // variable is borrowed, and we know what traits the closure
285         // implements (Fn vs FnMut etc). We now have some updates to do
286         // with that information.
287         //
288         // Note that no closure type C may have an upvar of type C
289         // (though it may reference itself via a trait object). This
290         // results from the desugaring of closures to a struct like
291         // `Foo<..., UV0...UVn>`. If one of those upvars referenced
292         // C, then the type would have infinite size (and the
293         // inference algorithm will reject it).
294
295         // Equate the type variables for the upvars with the actual types.
296         let final_upvar_tys = self.final_upvar_tys(closure_def_id);
297         debug!(
298             "analyze_closure: id={:?} substs={:?} final_upvar_tys={:?}",
299             closure_hir_id, substs, final_upvar_tys
300         );
301
302         // Build a tuple (U0..Un) of the final upvar types U0..Un
303         // and unify the upvar tuple type in the closure with it:
304         let final_tupled_upvars_type = self.tcx.mk_tup(final_upvar_tys.iter());
305         self.demand_suptype(span, substs.tupled_upvars_ty(), final_tupled_upvars_type);
306
307         let fake_reads = delegate
308             .fake_reads
309             .into_iter()
310             .map(|(place, cause, hir_id)| (place, cause, hir_id))
311             .collect();
312         self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
313
314         if self.tcx.sess.opts.unstable_opts.profile_closures {
315             self.typeck_results.borrow_mut().closure_size_eval.insert(
316                 closure_def_id,
317                 ClosureSizeProfileData {
318                     before_feature_tys: self.tcx.mk_tup(before_feature_tys.into_iter()),
319                     after_feature_tys: self.tcx.mk_tup(after_feature_tys.into_iter()),
320                 },
321             );
322         }
323
324         // If we are also inferred the closure kind here,
325         // process any deferred resolutions.
326         let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
327         for deferred_call_resolution in deferred_call_resolutions {
328             deferred_call_resolution.resolve(self);
329         }
330     }
331
332     // Returns a list of `Ty`s for each upvar.
333     fn final_upvar_tys(&self, closure_id: LocalDefId) -> Vec<Ty<'tcx>> {
334         self.typeck_results
335             .borrow()
336             .closure_min_captures_flattened(closure_id)
337             .map(|captured_place| {
338                 let upvar_ty = captured_place.place.ty();
339                 let capture = captured_place.info.capture_kind;
340
341                 debug!(
342                     "final_upvar_tys: place={:?} upvar_ty={:?} capture={:?}, mutability={:?}",
343                     captured_place.place, upvar_ty, capture, captured_place.mutability,
344                 );
345
346                 apply_capture_kind_on_capture_ty(self.tcx, upvar_ty, capture, captured_place.region)
347             })
348             .collect()
349     }
350
351     /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
352     /// and that the path can be captured with required capture kind (depending on use in closure,
353     /// move closure etc.)
354     ///
355     /// Returns the set of adjusted information along with the inferred closure kind and span
356     /// associated with the closure kind inference.
357     ///
358     /// Note that we *always* infer a minimal kind, even if
359     /// we don't always *use* that in the final result (i.e., sometimes
360     /// we've taken the closure kind from the expectations instead, and
361     /// for generators we don't even implement the closure traits
362     /// really).
363     ///
364     /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
365     /// contains a `Some()` with the `Place` that caused us to do so.
366     fn process_collected_capture_information(
367         &self,
368         capture_clause: hir::CaptureBy,
369         capture_information: InferredCaptureInformation<'tcx>,
370     ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
371         let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
372         let mut origin: Option<(Span, Place<'tcx>)> = None;
373
374         let processed = capture_information
375             .into_iter()
376             .map(|(place, mut capture_info)| {
377                 // Apply rules for safety before inferring closure kind
378                 let (place, capture_kind) =
379                     restrict_capture_precision(place, capture_info.capture_kind);
380
381                 let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
382
383                 let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
384                     self.tcx.hir().span(usage_expr)
385                 } else {
386                     unreachable!()
387                 };
388
389                 let updated = match capture_kind {
390                     ty::UpvarCapture::ByValue => match closure_kind {
391                         ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
392                             (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
393                         }
394                         // If closure is already FnOnce, don't update
395                         ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
396                     },
397
398                     ty::UpvarCapture::ByRef(
399                         ty::BorrowKind::MutBorrow | ty::BorrowKind::UniqueImmBorrow,
400                     ) => {
401                         match closure_kind {
402                             ty::ClosureKind::Fn => {
403                                 (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
404                             }
405                             // Don't update the origin
406                             ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
407                                 (closure_kind, origin.take())
408                             }
409                         }
410                     }
411
412                     _ => (closure_kind, origin.take()),
413                 };
414
415                 closure_kind = updated.0;
416                 origin = updated.1;
417
418                 let (place, capture_kind) = match capture_clause {
419                     hir::CaptureBy::Value => adjust_for_move_closure(place, capture_kind),
420                     hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
421                 };
422
423                 // This restriction needs to be applied after we have handled adjustments for `move`
424                 // closures. We want to make sure any adjustment that might make us move the place into
425                 // the closure gets handled.
426                 let (place, capture_kind) =
427                     restrict_precision_for_drop_types(self, place, capture_kind, usage_span);
428
429                 capture_info.capture_kind = capture_kind;
430                 (place, capture_info)
431             })
432             .collect();
433
434         (processed, closure_kind, origin)
435     }
436
437     /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
438     /// Places (and corresponding capture kind) that we need to keep track of to support all
439     /// the required captured paths.
440     ///
441     ///
442     /// Note: If this function is called multiple times for the same closure, it will update
443     ///       the existing min_capture map that is stored in TypeckResults.
444     ///
445     /// Eg:
446     /// ```
447     /// #[derive(Debug)]
448     /// struct Point { x: i32, y: i32 }
449     ///
450     /// let s = String::from("s");  // hir_id_s
451     /// let mut p = Point { x: 2, y: -2 }; // his_id_p
452     /// let c = || {
453     ///        println!("{s:?}");  // L1
454     ///        p.x += 10;  // L2
455     ///        println!("{}" , p.y); // L3
456     ///        println!("{p:?}"); // L4
457     ///        drop(s);   // L5
458     /// };
459     /// ```
460     /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
461     /// the lines L1..5 respectively.
462     ///
463     /// InferBorrowKind results in a structure like this:
464     ///
465     /// ```ignore (illustrative)
466     /// {
467     ///       Place(base: hir_id_s, projections: [], ....) -> {
468     ///                                                            capture_kind_expr: hir_id_L5,
469     ///                                                            path_expr_id: hir_id_L5,
470     ///                                                            capture_kind: ByValue
471     ///                                                       },
472     ///       Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
473     ///                                                                     capture_kind_expr: hir_id_L2,
474     ///                                                                     path_expr_id: hir_id_L2,
475     ///                                                                     capture_kind: ByValue
476     ///                                                                 },
477     ///       Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
478     ///                                                                     capture_kind_expr: hir_id_L3,
479     ///                                                                     path_expr_id: hir_id_L3,
480     ///                                                                     capture_kind: ByValue
481     ///                                                                 },
482     ///       Place(base: hir_id_p, projections: [], ...) -> {
483     ///                                                          capture_kind_expr: hir_id_L4,
484     ///                                                          path_expr_id: hir_id_L4,
485     ///                                                          capture_kind: ByValue
486     ///                                                      },
487     /// }
488     /// ```
489     ///
490     /// After the min capture analysis, we get:
491     /// ```ignore (illustrative)
492     /// {
493     ///       hir_id_s -> [
494     ///            Place(base: hir_id_s, projections: [], ....) -> {
495     ///                                                                capture_kind_expr: hir_id_L5,
496     ///                                                                path_expr_id: hir_id_L5,
497     ///                                                                capture_kind: ByValue
498     ///                                                            },
499     ///       ],
500     ///       hir_id_p -> [
501     ///            Place(base: hir_id_p, projections: [], ...) -> {
502     ///                                                               capture_kind_expr: hir_id_L2,
503     ///                                                               path_expr_id: hir_id_L4,
504     ///                                                               capture_kind: ByValue
505     ///                                                           },
506     ///       ],
507     /// }
508     /// ```
509     fn compute_min_captures(
510         &self,
511         closure_def_id: LocalDefId,
512         capture_information: InferredCaptureInformation<'tcx>,
513         closure_span: Span,
514     ) {
515         if capture_information.is_empty() {
516             return;
517         }
518
519         let mut typeck_results = self.typeck_results.borrow_mut();
520
521         let mut root_var_min_capture_list =
522             typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
523
524         for (mut place, capture_info) in capture_information.into_iter() {
525             let var_hir_id = match place.base {
526                 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
527                 base => bug!("Expected upvar, found={:?}", base),
528             };
529
530             let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
531                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
532                 let min_cap_list = vec![ty::CapturedPlace {
533                     place,
534                     info: capture_info,
535                     mutability,
536                     region: None,
537                 }];
538                 root_var_min_capture_list.insert(var_hir_id, min_cap_list);
539                 continue;
540             };
541
542             // Go through each entry in the current list of min_captures
543             // - if ancestor is found, update it's capture kind to account for current place's
544             // capture information.
545             //
546             // - if descendant is found, remove it from the list, and update the current place's
547             // capture information to account for the descendant's capture kind.
548             //
549             // We can never be in a case where the list contains both an ancestor and a descendant
550             // Also there can only be ancestor but in case of descendants there might be
551             // multiple.
552
553             let mut descendant_found = false;
554             let mut updated_capture_info = capture_info;
555             min_cap_list.retain(|possible_descendant| {
556                 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
557                     // current place is ancestor of possible_descendant
558                     PlaceAncestryRelation::Ancestor => {
559                         descendant_found = true;
560
561                         let mut possible_descendant = possible_descendant.clone();
562                         let backup_path_expr_id = updated_capture_info.path_expr_id;
563
564                         // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
565                         // possible change in capture mode.
566                         truncate_place_to_len_and_update_capture_kind(
567                             &mut possible_descendant.place,
568                             &mut possible_descendant.info.capture_kind,
569                             place.projections.len(),
570                         );
571
572                         updated_capture_info =
573                             determine_capture_info(updated_capture_info, possible_descendant.info);
574
575                         // we need to keep the ancestor's `path_expr_id`
576                         updated_capture_info.path_expr_id = backup_path_expr_id;
577                         false
578                     }
579
580                     _ => true,
581                 }
582             });
583
584             let mut ancestor_found = false;
585             if !descendant_found {
586                 for possible_ancestor in min_cap_list.iter_mut() {
587                     match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
588                         PlaceAncestryRelation::SamePlace => {
589                             ancestor_found = true;
590                             possible_ancestor.info = determine_capture_info(
591                                 possible_ancestor.info,
592                                 updated_capture_info,
593                             );
594
595                             // Only one related place will be in the list.
596                             break;
597                         }
598                         // current place is descendant of possible_ancestor
599                         PlaceAncestryRelation::Descendant => {
600                             ancestor_found = true;
601                             let backup_path_expr_id = possible_ancestor.info.path_expr_id;
602
603                             // Truncate the descendant (current place) to be same as the ancestor to handle any
604                             // possible change in capture mode.
605                             truncate_place_to_len_and_update_capture_kind(
606                                 &mut place,
607                                 &mut updated_capture_info.capture_kind,
608                                 possible_ancestor.place.projections.len(),
609                             );
610
611                             possible_ancestor.info = determine_capture_info(
612                                 possible_ancestor.info,
613                                 updated_capture_info,
614                             );
615
616                             // we need to keep the ancestor's `path_expr_id`
617                             possible_ancestor.info.path_expr_id = backup_path_expr_id;
618
619                             // Only one related place will be in the list.
620                             break;
621                         }
622                         _ => {}
623                     }
624                 }
625             }
626
627             // Only need to insert when we don't have an ancestor in the existing min capture list
628             if !ancestor_found {
629                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
630                 let captured_place = ty::CapturedPlace {
631                     place,
632                     info: updated_capture_info,
633                     mutability,
634                     region: None,
635                 };
636                 min_cap_list.push(captured_place);
637             }
638         }
639
640         // For each capture that is determined to be captured by ref, add region info.
641         for (_, captures) in &mut root_var_min_capture_list {
642             for capture in captures {
643                 match capture.info.capture_kind {
644                     ty::UpvarCapture::ByRef(_) => {
645                         let PlaceBase::Upvar(upvar_id) = capture.place.base else { bug!("expected upvar") };
646                         let origin = UpvarRegion(upvar_id, closure_span);
647                         let upvar_region = self.next_region_var(origin);
648                         capture.region = Some(upvar_region);
649                     }
650                     _ => (),
651                 }
652             }
653         }
654
655         debug!(
656             "For closure={:?}, min_captures before sorting={:?}",
657             closure_def_id, root_var_min_capture_list
658         );
659
660         // Now that we have the minimized list of captures, sort the captures by field id.
661         // This causes the closure to capture the upvars in the same order as the fields are
662         // declared which is also the drop order. Thus, in situations where we capture all the
663         // fields of some type, the observable drop order will remain the same as it previously
664         // was even though we're dropping each capture individually.
665         // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
666         // `src/test/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
667         for (_, captures) in &mut root_var_min_capture_list {
668             captures.sort_by(|capture1, capture2| {
669                 for (p1, p2) in capture1.place.projections.iter().zip(&capture2.place.projections) {
670                     // We do not need to look at the `Projection.ty` fields here because at each
671                     // step of the iteration, the projections will either be the same and therefore
672                     // the types must be as well or the current projection will be different and
673                     // we will return the result of comparing the field indexes.
674                     match (p1.kind, p2.kind) {
675                         // Paths are the same, continue to next loop.
676                         (ProjectionKind::Deref, ProjectionKind::Deref) => {}
677                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _))
678                             if i1 == i2 => {}
679
680                         // Fields are different, compare them.
681                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
682                             return i1.cmp(&i2);
683                         }
684
685                         // We should have either a pair of `Deref`s or a pair of `Field`s.
686                         // Anything else is a bug.
687                         (
688                             l @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
689                             r @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
690                         ) => bug!(
691                             "ProjectionKinds Deref and Field were mismatched: ({:?}, {:?})",
692                             l,
693                             r
694                         ),
695                         (
696                             l @ (ProjectionKind::Index
697                             | ProjectionKind::Subslice
698                             | ProjectionKind::Deref
699                             | ProjectionKind::Field(..)),
700                             r @ (ProjectionKind::Index
701                             | ProjectionKind::Subslice
702                             | ProjectionKind::Deref
703                             | ProjectionKind::Field(..)),
704                         ) => bug!(
705                             "ProjectionKinds Index or Subslice were unexpected: ({:?}, {:?})",
706                             l,
707                             r
708                         ),
709                     }
710                 }
711
712                 unreachable!(
713                     "we captured two identical projections: capture1 = {:?}, capture2 = {:?}",
714                     capture1, capture2
715                 );
716             });
717         }
718
719         debug!(
720             "For closure={:?}, min_captures after sorting={:#?}",
721             closure_def_id, root_var_min_capture_list
722         );
723         typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
724     }
725
726     /// Perform the migration analysis for RFC 2229, and emit lint
727     /// `disjoint_capture_drop_reorder` if needed.
728     fn perform_2229_migration_anaysis(
729         &self,
730         closure_def_id: LocalDefId,
731         body_id: hir::BodyId,
732         capture_clause: hir::CaptureBy,
733         span: Span,
734     ) {
735         let (need_migrations, reasons) = self.compute_2229_migrations(
736             closure_def_id,
737             span,
738             capture_clause,
739             self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
740         );
741
742         if !need_migrations.is_empty() {
743             let (migration_string, migrated_variables_concat) =
744                 migration_suggestion_for_2229(self.tcx, &need_migrations);
745
746             let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(closure_def_id);
747             let closure_head_span = self.tcx.def_span(closure_def_id);
748             self.tcx.struct_span_lint_hir(
749                 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
750                 closure_hir_id,
751                 closure_head_span,
752                 reasons.migration_message(),
753                 |lint| {
754                     for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
755                         // Labels all the usage of the captured variable and why they are responsible
756                         // for migration being needed
757                         for lint_note in diagnostics_info.iter() {
758                             match &lint_note.captures_info {
759                                 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
760                                     let cause_span = self.tcx.hir().span(*capture_expr_id);
761                                     lint.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
762                                         self.tcx.hir().name(*var_hir_id),
763                                         captured_name,
764                                     ));
765                                 }
766                                 UpvarMigrationInfo::CapturingNothing { use_span } => {
767                                     lint.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
768                                         self.tcx.hir().name(*var_hir_id),
769                                     ));
770                                 }
771
772                                 _ => { }
773                             }
774
775                             // Add a label pointing to where a captured variable affected by drop order
776                             // is dropped
777                             if lint_note.reason.drop_order {
778                                 let drop_location_span = drop_location_span(self.tcx, closure_hir_id);
779
780                                 match &lint_note.captures_info {
781                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
782                                         lint.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
783                                             self.tcx.hir().name(*var_hir_id),
784                                             captured_name,
785                                         ));
786                                     }
787                                     UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
788                                         lint.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
789                                             v = self.tcx.hir().name(*var_hir_id),
790                                         ));
791                                     }
792                                 }
793                             }
794
795                             // Add a label explaining why a closure no longer implements a trait
796                             for &missing_trait in &lint_note.reason.auto_traits {
797                                 // not capturing something anymore cannot cause a trait to fail to be implemented:
798                                 match &lint_note.captures_info {
799                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
800                                         let var_name = self.tcx.hir().name(*var_hir_id);
801                                         lint.span_label(closure_head_span, format!("\
802                                         in Rust 2018, this closure implements {missing_trait} \
803                                         as `{var_name}` implements {missing_trait}, but in Rust 2021, \
804                                         this closure will no longer implement {missing_trait} \
805                                         because `{var_name}` is not fully captured \
806                                         and `{captured_name}` does not implement {missing_trait}"));
807                                     }
808
809                                     // Cannot happen: if we don't capture a variable, we impl strictly more traits
810                                     UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
811                                 }
812                             }
813                         }
814                     }
815                     lint.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
816
817                     let diagnostic_msg = format!(
818                         "add a dummy let to cause {} to be fully captured",
819                         migrated_variables_concat
820                     );
821
822                     let closure_span = self.tcx.hir().span_with_body(closure_hir_id);
823                     let mut closure_body_span = {
824                         // If the body was entirely expanded from a macro
825                         // invocation, i.e. the body is not contained inside the
826                         // closure span, then we walk up the expansion until we
827                         // find the span before the expansion.
828                         let s = self.tcx.hir().span_with_body(body_id.hir_id);
829                         s.find_ancestor_inside(closure_span).unwrap_or(s)
830                     };
831
832                     if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
833                         if s.starts_with('$') {
834                             // Looks like a macro fragment. Try to find the real block.
835                             if let Some(hir::Node::Expr(&hir::Expr {
836                                 kind: hir::ExprKind::Block(block, ..), ..
837                             })) = self.tcx.hir().find(body_id.hir_id) {
838                                 // If the body is a block (with `{..}`), we use the span of that block.
839                                 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
840                                 // Since we know it's a block, we know we can insert the `let _ = ..` without
841                                 // breaking the macro syntax.
842                                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
843                                     closure_body_span = block.span;
844                                     s = snippet;
845                                 }
846                             }
847                         }
848
849                         let mut lines = s.lines();
850                         let line1 = lines.next().unwrap_or_default();
851
852                         if line1.trim_end() == "{" {
853                             // This is a multi-line closure with just a `{` on the first line,
854                             // so we put the `let` on its own line.
855                             // We take the indentation from the next non-empty line.
856                             let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
857                             let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
858                             lint.span_suggestion(
859                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
860                                 &diagnostic_msg,
861                                 format!("\n{indent}{migration_string};"),
862                                 Applicability::MachineApplicable,
863                             );
864                         } else if line1.starts_with('{') {
865                             // This is a closure with its body wrapped in
866                             // braces, but with more than just the opening
867                             // brace on the first line. We put the `let`
868                             // directly after the `{`.
869                             lint.span_suggestion(
870                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
871                                 &diagnostic_msg,
872                                 format!(" {migration_string};"),
873                                 Applicability::MachineApplicable,
874                             );
875                         } else {
876                             // This is a closure without braces around the body.
877                             // We add braces to add the `let` before the body.
878                             lint.multipart_suggestion(
879                                 &diagnostic_msg,
880                                 vec![
881                                     (closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
882                                     (closure_body_span.shrink_to_hi(), " }".to_string()),
883                                 ],
884                                 Applicability::MachineApplicable
885                             );
886                         }
887                     } else {
888                         lint.span_suggestion(
889                             closure_span,
890                             &diagnostic_msg,
891                             migration_string,
892                             Applicability::HasPlaceholders
893                         );
894                     }
895
896                     lint
897                 },
898             );
899         }
900     }
901
902     /// Combines all the reasons for 2229 migrations
903     fn compute_2229_migrations_reasons(
904         &self,
905         auto_trait_reasons: FxHashSet<&'static str>,
906         drop_order: bool,
907     ) -> MigrationWarningReason {
908         let mut reasons = MigrationWarningReason::default();
909
910         reasons.auto_traits.extend(auto_trait_reasons);
911         reasons.drop_order = drop_order;
912
913         // `auto_trait_reasons` are in hashset order, so sort them to put the
914         // diagnostics we emit later in a cross-platform-consistent order.
915         reasons.auto_traits.sort_unstable();
916
917         reasons
918     }
919
920     /// Figures out the list of root variables (and their types) that aren't completely
921     /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
922     /// differ between the root variable and the captured paths.
923     ///
924     /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
925     /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
926     fn compute_2229_migrations_for_trait(
927         &self,
928         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
929         var_hir_id: hir::HirId,
930         closure_clause: hir::CaptureBy,
931     ) -> Option<FxHashMap<UpvarMigrationInfo, FxHashSet<&'static str>>> {
932         let auto_traits_def_id = vec![
933             self.tcx.lang_items().clone_trait(),
934             self.tcx.lang_items().sync_trait(),
935             self.tcx.get_diagnostic_item(sym::Send),
936             self.tcx.lang_items().unpin_trait(),
937             self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
938             self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
939         ];
940         const AUTO_TRAITS: [&str; 6] =
941             ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
942
943         let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
944
945         let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
946
947         let ty = match closure_clause {
948             hir::CaptureBy::Value => ty, // For move closure the capture kind should be by value
949             hir::CaptureBy::Ref => {
950                 // For non move closure the capture kind is the max capture kind of all captures
951                 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
952                 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
953                 for capture in root_var_min_capture_list.iter() {
954                     max_capture_info = determine_capture_info(max_capture_info, capture.info);
955                 }
956
957                 apply_capture_kind_on_capture_ty(
958                     self.tcx,
959                     ty,
960                     max_capture_info.capture_kind,
961                     Some(self.tcx.lifetimes.re_erased),
962                 )
963             }
964         };
965
966         let mut obligations_should_hold = Vec::new();
967         // Checks if a root variable implements any of the auto traits
968         for check_trait in auto_traits_def_id.iter() {
969             obligations_should_hold.push(
970                 check_trait
971                     .map(|check_trait| {
972                         self.infcx
973                             .type_implements_trait(
974                                 check_trait,
975                                 ty,
976                                 self.tcx.mk_substs_trait(ty, &[]),
977                                 self.param_env,
978                             )
979                             .must_apply_modulo_regions()
980                     })
981                     .unwrap_or(false),
982             );
983         }
984
985         let mut problematic_captures = FxHashMap::default();
986         // Check whether captured fields also implement the trait
987         for capture in root_var_min_capture_list.iter() {
988             let ty = apply_capture_kind_on_capture_ty(
989                 self.tcx,
990                 capture.place.ty(),
991                 capture.info.capture_kind,
992                 Some(self.tcx.lifetimes.re_erased),
993             );
994
995             // Checks if a capture implements any of the auto traits
996             let mut obligations_holds_for_capture = Vec::new();
997             for check_trait in auto_traits_def_id.iter() {
998                 obligations_holds_for_capture.push(
999                     check_trait
1000                         .map(|check_trait| {
1001                             self.infcx
1002                                 .type_implements_trait(
1003                                     check_trait,
1004                                     ty,
1005                                     self.tcx.mk_substs_trait(ty, &[]),
1006                                     self.param_env,
1007                                 )
1008                                 .must_apply_modulo_regions()
1009                         })
1010                         .unwrap_or(false),
1011                 );
1012             }
1013
1014             let mut capture_problems = FxHashSet::default();
1015
1016             // Checks if for any of the auto traits, one or more trait is implemented
1017             // by the root variable but not by the capture
1018             for (idx, _) in obligations_should_hold.iter().enumerate() {
1019                 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1020                     capture_problems.insert(AUTO_TRAITS[idx]);
1021                 }
1022             }
1023
1024             if !capture_problems.is_empty() {
1025                 problematic_captures.insert(
1026                     UpvarMigrationInfo::CapturingPrecise {
1027                         source_expr: capture.info.path_expr_id,
1028                         var_name: capture.to_string(self.tcx),
1029                     },
1030                     capture_problems,
1031                 );
1032             }
1033         }
1034         if !problematic_captures.is_empty() {
1035             return Some(problematic_captures);
1036         }
1037         None
1038     }
1039
1040     /// Figures out the list of root variables (and their types) that aren't completely
1041     /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1042     /// some path starting at that root variable **might** be affected.
1043     ///
1044     /// The output list would include a root variable if:
1045     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1046     ///   enabled, **and**
1047     /// - It wasn't completely captured by the closure, **and**
1048     /// - One of the paths starting at this root variable, that is not captured needs Drop.
1049     ///
1050     /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1051     /// are no significant drops than None is returned
1052     #[instrument(level = "debug", skip(self))]
1053     fn compute_2229_migrations_for_drop(
1054         &self,
1055         closure_def_id: LocalDefId,
1056         closure_span: Span,
1057         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1058         closure_clause: hir::CaptureBy,
1059         var_hir_id: hir::HirId,
1060     ) -> Option<FxHashSet<UpvarMigrationInfo>> {
1061         let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
1062
1063         if !ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id)) {
1064             debug!("does not have significant drop");
1065             return None;
1066         }
1067
1068         let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1069             // The upvar is mentioned within the closure but no path starting from it is
1070             // used. This occurs when you have (e.g.)
1071             //
1072             // ```
1073             // let x = move || {
1074             //     let _ = y;
1075             // });
1076             // ```
1077             debug!("no path starting from it is used");
1078
1079
1080             match closure_clause {
1081                 // Only migrate if closure is a move closure
1082                 hir::CaptureBy::Value => {
1083                     let mut diagnostics_info = FxHashSet::default();
1084                     let upvars = self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1085                     let upvar = upvars[&var_hir_id];
1086                     diagnostics_info.insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1087                     return Some(diagnostics_info);
1088                 }
1089                 hir::CaptureBy::Ref => {}
1090             }
1091
1092             return None;
1093         };
1094         debug!(?root_var_min_capture_list);
1095
1096         let mut projections_list = Vec::new();
1097         let mut diagnostics_info = FxHashSet::default();
1098
1099         for captured_place in root_var_min_capture_list.iter() {
1100             match captured_place.info.capture_kind {
1101                 // Only care about captures that are moved into the closure
1102                 ty::UpvarCapture::ByValue => {
1103                     projections_list.push(captured_place.place.projections.as_slice());
1104                     diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1105                         source_expr: captured_place.info.path_expr_id,
1106                         var_name: captured_place.to_string(self.tcx),
1107                     });
1108                 }
1109                 ty::UpvarCapture::ByRef(..) => {}
1110             }
1111         }
1112
1113         debug!(?projections_list);
1114         debug!(?diagnostics_info);
1115
1116         let is_moved = !projections_list.is_empty();
1117         debug!(?is_moved);
1118
1119         let is_not_completely_captured =
1120             root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1121         debug!(?is_not_completely_captured);
1122
1123         if is_moved
1124             && is_not_completely_captured
1125             && self.has_significant_drop_outside_of_captures(
1126                 closure_def_id,
1127                 closure_span,
1128                 ty,
1129                 projections_list,
1130             )
1131         {
1132             return Some(diagnostics_info);
1133         }
1134
1135         None
1136     }
1137
1138     /// Figures out the list of root variables (and their types) that aren't completely
1139     /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1140     /// order of some path starting at that root variable **might** be affected or auto-traits
1141     /// differ between the root variable and the captured paths.
1142     ///
1143     /// The output list would include a root variable if:
1144     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1145     ///   enabled, **and**
1146     /// - It wasn't completely captured by the closure, **and**
1147     /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1148     /// - One of the paths captured does not implement all the auto-traits its root variable
1149     ///   implements.
1150     ///
1151     /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1152     /// containing the reason why root variables whose HirId is contained in the vector should
1153     /// be captured
1154     #[instrument(level = "debug", skip(self))]
1155     fn compute_2229_migrations(
1156         &self,
1157         closure_def_id: LocalDefId,
1158         closure_span: Span,
1159         closure_clause: hir::CaptureBy,
1160         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1161     ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1162         let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1163             return (Vec::new(), MigrationWarningReason::default());
1164         };
1165
1166         let mut need_migrations = Vec::new();
1167         let mut auto_trait_migration_reasons = FxHashSet::default();
1168         let mut drop_migration_needed = false;
1169
1170         // Perform auto-trait analysis
1171         for (&var_hir_id, _) in upvars.iter() {
1172             let mut diagnostics_info = Vec::new();
1173
1174             let auto_trait_diagnostic = if let Some(diagnostics_info) =
1175                 self.compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1176             {
1177                 diagnostics_info
1178             } else {
1179                 FxHashMap::default()
1180             };
1181
1182             let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1183                 .compute_2229_migrations_for_drop(
1184                     closure_def_id,
1185                     closure_span,
1186                     min_captures,
1187                     closure_clause,
1188                     var_hir_id,
1189                 ) {
1190                 drop_migration_needed = true;
1191                 diagnostics_info
1192             } else {
1193                 FxHashSet::default()
1194             };
1195
1196             // Combine all the captures responsible for needing migrations into one HashSet
1197             let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1198             for key in auto_trait_diagnostic.keys() {
1199                 capture_diagnostic.insert(key.clone());
1200             }
1201
1202             let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1203             capture_diagnostic.sort();
1204             for captures_info in capture_diagnostic {
1205                 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1206                 let capture_trait_reasons =
1207                     if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1208                         reasons.clone()
1209                     } else {
1210                         FxHashSet::default()
1211                     };
1212
1213                 // Check if migration is needed because of drop reorder as a result of that capture
1214                 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1215
1216                 // Combine all the reasons of why the root variable should be captured as a result of
1217                 // auto trait implementation issues
1218                 auto_trait_migration_reasons.extend(capture_trait_reasons.iter().copied());
1219
1220                 diagnostics_info.push(MigrationLintNote {
1221                     captures_info,
1222                     reason: self.compute_2229_migrations_reasons(
1223                         capture_trait_reasons,
1224                         capture_drop_reorder_reason,
1225                     ),
1226                 });
1227             }
1228
1229             if !diagnostics_info.is_empty() {
1230                 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1231             }
1232         }
1233         (
1234             need_migrations,
1235             self.compute_2229_migrations_reasons(
1236                 auto_trait_migration_reasons,
1237                 drop_migration_needed,
1238             ),
1239         )
1240     }
1241
1242     /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1243     /// of a root variable and a list of captured paths starting at this root variable (expressed
1244     /// using list of `Projection` slices), it returns true if there is a path that is not
1245     /// captured starting at this root variable that implements Drop.
1246     ///
1247     /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1248     /// path say P and then list of projection slices which represent the different captures moved
1249     /// into the closure starting off of P.
1250     ///
1251     /// This will make more sense with an example:
1252     ///
1253     /// ```rust
1254     /// #![feature(capture_disjoint_fields)]
1255     ///
1256     /// struct FancyInteger(i32); // This implements Drop
1257     ///
1258     /// struct Point { x: FancyInteger, y: FancyInteger }
1259     /// struct Color;
1260     ///
1261     /// struct Wrapper { p: Point, c: Color }
1262     ///
1263     /// fn f(w: Wrapper) {
1264     ///   let c = || {
1265     ///       // Closure captures w.p.x and w.c by move.
1266     ///   };
1267     ///
1268     ///   c();
1269     /// }
1270     /// ```
1271     ///
1272     /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1273     /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1274     /// therefore Drop ordering would change and we want this function to return true.
1275     ///
1276     /// Call stack to figure out if we need to migrate for `w` would look as follows:
1277     ///
1278     /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1279     /// `w[c]`.
1280     /// Notation:
1281     /// - Ty(place): Type of place
1282     /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1283     /// respectively.
1284     /// ```ignore (illustrative)
1285     ///                  (Ty(w), [ &[p, x], &[c] ])
1286     /// //                              |
1287     /// //                 ----------------------------
1288     /// //                 |                          |
1289     /// //                 v                          v
1290     ///        (Ty(w.p), [ &[x] ])          (Ty(w.c), [ &[] ]) // I(1)
1291     /// //                 |                          |
1292     /// //                 v                          v
1293     ///        (Ty(w.p), [ &[x] ])                 false
1294     /// //                 |
1295     /// //                 |
1296     /// //       -------------------------------
1297     /// //       |                             |
1298     /// //       v                             v
1299     ///     (Ty((w.p).x), [ &[] ])     (Ty((w.p).y), []) // IMP 2
1300     /// //       |                             |
1301     /// //       v                             v
1302     ///        false              NeedsSignificantDrop(Ty(w.p.y))
1303     /// //                                     |
1304     /// //                                     v
1305     ///                                      true
1306     /// ```
1307     ///
1308     /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1309     ///                             This implies that the `w.c` is completely captured by the closure.
1310     ///                             Since drop for this path will be called when the closure is
1311     ///                             dropped we don't need to migrate for it.
1312     ///
1313     /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1314     ///                             path wasn't captured by the closure. Also note that even
1315     ///                             though we didn't capture this path, the function visits it,
1316     ///                             which is kind of the point of this function. We then return
1317     ///                             if the type of `w.p.y` implements Drop, which in this case is
1318     ///                             true.
1319     ///
1320     /// Consider another example:
1321     ///
1322     /// ```ignore (pseudo-rust)
1323     /// struct X;
1324     /// impl Drop for X {}
1325     ///
1326     /// struct Y(X);
1327     /// impl Drop for Y {}
1328     ///
1329     /// fn foo() {
1330     ///     let y = Y(X);
1331     ///     let c = || move(y.0);
1332     /// }
1333     /// ```
1334     ///
1335     /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1336     /// return true, because even though all paths starting at `y` are captured, `y` itself
1337     /// implements Drop which will be affected since `y` isn't completely captured.
1338     fn has_significant_drop_outside_of_captures(
1339         &self,
1340         closure_def_id: LocalDefId,
1341         closure_span: Span,
1342         base_path_ty: Ty<'tcx>,
1343         captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1344     ) -> bool {
1345         let needs_drop =
1346             |ty: Ty<'tcx>| ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id));
1347
1348         let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1349             let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
1350             let ty_params = self.tcx.mk_substs_trait(base_path_ty, &[]);
1351             self.infcx
1352                 .type_implements_trait(
1353                     drop_trait,
1354                     ty,
1355                     ty_params,
1356                     self.tcx.param_env(closure_def_id),
1357                 )
1358                 .must_apply_modulo_regions()
1359         };
1360
1361         let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1362
1363         // If there is a case where no projection is applied on top of current place
1364         // then there must be exactly one capture corresponding to such a case. Note that this
1365         // represents the case of the path being completely captured by the variable.
1366         //
1367         // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1368         //     capture `a.b.c`, because that violates min capture.
1369         let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1370
1371         assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1372
1373         if is_completely_captured {
1374             // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1375             // when the closure is dropped.
1376             return false;
1377         }
1378
1379         if captured_by_move_projs.is_empty() {
1380             return needs_drop(base_path_ty);
1381         }
1382
1383         if is_drop_defined_for_ty {
1384             // If drop is implemented for this type then we need it to be fully captured,
1385             // and we know it is not completely captured because of the previous checks.
1386
1387             // Note that this is a bug in the user code that will be reported by the
1388             // borrow checker, since we can't move out of drop types.
1389
1390             // The bug exists in the user's code pre-migration, and we don't migrate here.
1391             return false;
1392         }
1393
1394         match base_path_ty.kind() {
1395             // Observations:
1396             // - `captured_by_move_projs` is not empty. Therefore we can call
1397             //   `captured_by_move_projs.first().unwrap()` safely.
1398             // - All entries in `captured_by_move_projs` have at least one projection.
1399             //   Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1400
1401             // We don't capture derefs in case of move captures, which would have be applied to
1402             // access any further paths.
1403             ty::Adt(def, _) if def.is_box() => unreachable!(),
1404             ty::Ref(..) => unreachable!(),
1405             ty::RawPtr(..) => unreachable!(),
1406
1407             ty::Adt(def, substs) => {
1408                 // Multi-variant enums are captured in entirety,
1409                 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1410                 assert_eq!(def.variants().len(), 1);
1411
1412                 // Only Field projections can be applied to a non-box Adt.
1413                 assert!(
1414                     captured_by_move_projs.iter().all(|projs| matches!(
1415                         projs.first().unwrap().kind,
1416                         ProjectionKind::Field(..)
1417                     ))
1418                 );
1419                 def.variants().get(VariantIdx::new(0)).unwrap().fields.iter().enumerate().any(
1420                     |(i, field)| {
1421                         let paths_using_field = captured_by_move_projs
1422                             .iter()
1423                             .filter_map(|projs| {
1424                                 if let ProjectionKind::Field(field_idx, _) =
1425                                     projs.first().unwrap().kind
1426                                 {
1427                                     if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1428                                 } else {
1429                                     unreachable!();
1430                                 }
1431                             })
1432                             .collect();
1433
1434                         let after_field_ty = field.ty(self.tcx, substs);
1435                         self.has_significant_drop_outside_of_captures(
1436                             closure_def_id,
1437                             closure_span,
1438                             after_field_ty,
1439                             paths_using_field,
1440                         )
1441                     },
1442                 )
1443             }
1444
1445             ty::Tuple(fields) => {
1446                 // Only Field projections can be applied to a tuple.
1447                 assert!(
1448                     captured_by_move_projs.iter().all(|projs| matches!(
1449                         projs.first().unwrap().kind,
1450                         ProjectionKind::Field(..)
1451                     ))
1452                 );
1453
1454                 fields.iter().enumerate().any(|(i, element_ty)| {
1455                     let paths_using_field = captured_by_move_projs
1456                         .iter()
1457                         .filter_map(|projs| {
1458                             if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1459                             {
1460                                 if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1461                             } else {
1462                                 unreachable!();
1463                             }
1464                         })
1465                         .collect();
1466
1467                     self.has_significant_drop_outside_of_captures(
1468                         closure_def_id,
1469                         closure_span,
1470                         element_ty,
1471                         paths_using_field,
1472                     )
1473                 })
1474             }
1475
1476             // Anything else would be completely captured and therefore handled already.
1477             _ => unreachable!(),
1478         }
1479     }
1480
1481     fn init_capture_kind_for_place(
1482         &self,
1483         place: &Place<'tcx>,
1484         capture_clause: hir::CaptureBy,
1485     ) -> ty::UpvarCapture {
1486         match capture_clause {
1487             // In case of a move closure if the data is accessed through a reference we
1488             // want to capture by ref to allow precise capture using reborrows.
1489             //
1490             // If the data will be moved out of this place, then the place will be truncated
1491             // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
1492             // the closure.
1493             hir::CaptureBy::Value if !place.deref_tys().any(Ty::is_ref) => {
1494                 ty::UpvarCapture::ByValue
1495             }
1496             hir::CaptureBy::Value | hir::CaptureBy::Ref => ty::UpvarCapture::ByRef(ty::ImmBorrow),
1497         }
1498     }
1499
1500     fn place_for_root_variable(
1501         &self,
1502         closure_def_id: LocalDefId,
1503         var_hir_id: hir::HirId,
1504     ) -> Place<'tcx> {
1505         let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1506
1507         Place {
1508             base_ty: self.node_ty(var_hir_id),
1509             base: PlaceBase::Upvar(upvar_id),
1510             projections: Default::default(),
1511         }
1512     }
1513
1514     fn should_log_capture_analysis(&self, closure_def_id: LocalDefId) -> bool {
1515         self.tcx.has_attr(closure_def_id.to_def_id(), sym::rustc_capture_analysis)
1516     }
1517
1518     fn log_capture_analysis_first_pass(
1519         &self,
1520         closure_def_id: LocalDefId,
1521         capture_information: &InferredCaptureInformation<'tcx>,
1522         closure_span: Span,
1523     ) {
1524         if self.should_log_capture_analysis(closure_def_id) {
1525             let mut diag =
1526                 self.tcx.sess.struct_span_err(closure_span, "First Pass analysis includes:");
1527             for (place, capture_info) in capture_information {
1528                 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1529                 let output_str = format!("Capturing {capture_str}");
1530
1531                 let span =
1532                     capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
1533                 diag.span_note(span, &output_str);
1534             }
1535             diag.emit();
1536         }
1537     }
1538
1539     fn log_closure_min_capture_info(&self, closure_def_id: LocalDefId, closure_span: Span) {
1540         if self.should_log_capture_analysis(closure_def_id) {
1541             if let Some(min_captures) =
1542                 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1543             {
1544                 let mut diag =
1545                     self.tcx.sess.struct_span_err(closure_span, "Min Capture analysis includes:");
1546
1547                 for (_, min_captures_for_var) in min_captures {
1548                     for capture in min_captures_for_var {
1549                         let place = &capture.place;
1550                         let capture_info = &capture.info;
1551
1552                         let capture_str =
1553                             construct_capture_info_string(self.tcx, place, capture_info);
1554                         let output_str = format!("Min Capture {capture_str}");
1555
1556                         if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1557                             let path_span = capture_info
1558                                 .path_expr_id
1559                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1560                             let capture_kind_span = capture_info
1561                                 .capture_kind_expr_id
1562                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1563
1564                             let mut multi_span: MultiSpan =
1565                                 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1566
1567                             let capture_kind_label =
1568                                 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1569                             let path_label = construct_path_string(self.tcx, place);
1570
1571                             multi_span.push_span_label(path_span, path_label);
1572                             multi_span.push_span_label(capture_kind_span, capture_kind_label);
1573
1574                             diag.span_note(multi_span, &output_str);
1575                         } else {
1576                             let span = capture_info
1577                                 .path_expr_id
1578                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1579
1580                             diag.span_note(span, &output_str);
1581                         };
1582                     }
1583                 }
1584                 diag.emit();
1585             }
1586         }
1587     }
1588
1589     /// A captured place is mutable if
1590     /// 1. Projections don't include a Deref of an immut-borrow, **and**
1591     /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1592     fn determine_capture_mutability(
1593         &self,
1594         typeck_results: &'a TypeckResults<'tcx>,
1595         place: &Place<'tcx>,
1596     ) -> hir::Mutability {
1597         let var_hir_id = match place.base {
1598             PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1599             _ => unreachable!(),
1600         };
1601
1602         let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1603
1604         let mut is_mutbl = match bm {
1605             ty::BindByValue(mutability) => mutability,
1606             ty::BindByReference(_) => hir::Mutability::Not,
1607         };
1608
1609         for pointer_ty in place.deref_tys() {
1610             match pointer_ty.kind() {
1611                 // We don't capture derefs of raw ptrs
1612                 ty::RawPtr(_) => unreachable!(),
1613
1614                 // Dereferencing a mut-ref allows us to mut the Place if we don't deref
1615                 // an immut-ref after on top of this.
1616                 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1617
1618                 // The place isn't mutable once we dereference an immutable reference.
1619                 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1620
1621                 // Dereferencing a box doesn't change mutability
1622                 ty::Adt(def, ..) if def.is_box() => {}
1623
1624                 unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
1625             }
1626         }
1627
1628         is_mutbl
1629     }
1630 }
1631
1632 /// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1633 /// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1634 fn restrict_repr_packed_field_ref_capture<'tcx>(
1635     tcx: TyCtxt<'tcx>,
1636     param_env: ty::ParamEnv<'tcx>,
1637     mut place: Place<'tcx>,
1638     mut curr_borrow_kind: ty::UpvarCapture,
1639 ) -> (Place<'tcx>, ty::UpvarCapture) {
1640     let pos = place.projections.iter().enumerate().position(|(i, p)| {
1641         let ty = place.ty_before_projection(i);
1642
1643         // Return true for fields of packed structs, unless those fields have alignment 1.
1644         match p.kind {
1645             ProjectionKind::Field(..) => match ty.kind() {
1646                 ty::Adt(def, _) if def.repr().packed() => {
1647                     // We erase regions here because they cannot be hashed
1648                     match tcx.layout_of(param_env.and(tcx.erase_regions(p.ty))) {
1649                         Ok(layout) if layout.align.abi.bytes() == 1 => {
1650                             // if the alignment is 1, the type can't be further
1651                             // disaligned.
1652                             debug!(
1653                                 "restrict_repr_packed_field_ref_capture: ({:?}) - align = 1",
1654                                 place
1655                             );
1656                             false
1657                         }
1658                         _ => {
1659                             debug!("restrict_repr_packed_field_ref_capture: ({:?}) - true", place);
1660                             true
1661                         }
1662                     }
1663                 }
1664
1665                 _ => false,
1666             },
1667             _ => false,
1668         }
1669     });
1670
1671     if let Some(pos) = pos {
1672         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1673     }
1674
1675     (place, curr_borrow_kind)
1676 }
1677
1678 /// Returns a Ty that applies the specified capture kind on the provided capture Ty
1679 fn apply_capture_kind_on_capture_ty<'tcx>(
1680     tcx: TyCtxt<'tcx>,
1681     ty: Ty<'tcx>,
1682     capture_kind: UpvarCapture,
1683     region: Option<ty::Region<'tcx>>,
1684 ) -> Ty<'tcx> {
1685     match capture_kind {
1686         ty::UpvarCapture::ByValue => ty,
1687         ty::UpvarCapture::ByRef(kind) => {
1688             tcx.mk_ref(region.unwrap(), ty::TypeAndMut { ty: ty, mutbl: kind.to_mutbl_lossy() })
1689         }
1690     }
1691 }
1692
1693 /// Returns the Span of where the value with the provided HirId would be dropped
1694 fn drop_location_span<'tcx>(tcx: TyCtxt<'tcx>, hir_id: hir::HirId) -> Span {
1695     let owner_id = tcx.hir().get_enclosing_scope(hir_id).unwrap();
1696
1697     let owner_node = tcx.hir().get(owner_id);
1698     let owner_span = match owner_node {
1699         hir::Node::Item(item) => match item.kind {
1700             hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
1701             _ => {
1702                 bug!("Drop location span error: need to handle more ItemKind '{:?}'", item.kind);
1703             }
1704         },
1705         hir::Node::Block(block) => tcx.hir().span(block.hir_id),
1706         hir::Node::TraitItem(item) => tcx.hir().span(item.hir_id()),
1707         hir::Node::ImplItem(item) => tcx.hir().span(item.hir_id()),
1708         _ => {
1709             bug!("Drop location span error: need to handle more Node '{:?}'", owner_node);
1710         }
1711     };
1712     tcx.sess.source_map().end_point(owner_span)
1713 }
1714
1715 struct InferBorrowKind<'a, 'tcx> {
1716     fcx: &'a FnCtxt<'a, 'tcx>,
1717
1718     // The def-id of the closure whose kind and upvar accesses are being inferred.
1719     closure_def_id: LocalDefId,
1720
1721     /// For each Place that is captured by the closure, we track the minimal kind of
1722     /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
1723     ///
1724     /// Consider closure where s.str1 is captured via an ImmutableBorrow and
1725     /// s.str2 via a MutableBorrow
1726     ///
1727     /// ```rust,no_run
1728     /// struct SomeStruct { str1: String, str2: String };
1729     ///
1730     /// // Assume that the HirId for the variable definition is `V1`
1731     /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") };
1732     ///
1733     /// let fix_s = |new_s2| {
1734     ///     // Assume that the HirId for the expression `s.str1` is `E1`
1735     ///     println!("Updating SomeStruct with str1={0}", s.str1);
1736     ///     // Assume that the HirId for the expression `*s.str2` is `E2`
1737     ///     s.str2 = new_s2;
1738     /// };
1739     /// ```
1740     ///
1741     /// For closure `fix_s`, (at a high level) the map contains
1742     ///
1743     /// ```ignore (illustrative)
1744     /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
1745     /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
1746     /// ```
1747     capture_information: InferredCaptureInformation<'tcx>,
1748     fake_reads: Vec<(Place<'tcx>, FakeReadCause, hir::HirId)>,
1749 }
1750
1751 impl<'a, 'tcx> euv::Delegate<'tcx> for InferBorrowKind<'a, 'tcx> {
1752     fn fake_read(
1753         &mut self,
1754         place: &PlaceWithHirId<'tcx>,
1755         cause: FakeReadCause,
1756         diag_expr_id: hir::HirId,
1757     ) {
1758         let PlaceBase::Upvar(_) = place.place.base else { return };
1759
1760         // We need to restrict Fake Read precision to avoid fake reading unsafe code,
1761         // such as deref of a raw pointer.
1762         let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1763
1764         let (place, _) = restrict_capture_precision(place.place.clone(), dummy_capture_kind);
1765
1766         let (place, _) = restrict_repr_packed_field_ref_capture(
1767             self.fcx.tcx,
1768             self.fcx.param_env,
1769             place,
1770             dummy_capture_kind,
1771         );
1772         self.fake_reads.push((place, cause, diag_expr_id));
1773     }
1774
1775     #[instrument(skip(self), level = "debug")]
1776     fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1777         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1778         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1779
1780         self.capture_information.push((
1781             place_with_id.place.clone(),
1782             ty::CaptureInfo {
1783                 capture_kind_expr_id: Some(diag_expr_id),
1784                 path_expr_id: Some(diag_expr_id),
1785                 capture_kind: ty::UpvarCapture::ByValue,
1786             },
1787         ));
1788     }
1789
1790     #[instrument(skip(self), level = "debug")]
1791     fn borrow(
1792         &mut self,
1793         place_with_id: &PlaceWithHirId<'tcx>,
1794         diag_expr_id: hir::HirId,
1795         bk: ty::BorrowKind,
1796     ) {
1797         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1798         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1799
1800         // The region here will get discarded/ignored
1801         let capture_kind = ty::UpvarCapture::ByRef(bk);
1802
1803         // We only want repr packed restriction to be applied to reading references into a packed
1804         // struct, and not when the data is being moved. Therefore we call this method here instead
1805         // of in `restrict_capture_precision`.
1806         let (place, mut capture_kind) = restrict_repr_packed_field_ref_capture(
1807             self.fcx.tcx,
1808             self.fcx.param_env,
1809             place_with_id.place.clone(),
1810             capture_kind,
1811         );
1812
1813         // Raw pointers don't inherit mutability
1814         if place_with_id.place.deref_tys().any(Ty::is_unsafe_ptr) {
1815             capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1816         }
1817
1818         self.capture_information.push((
1819             place,
1820             ty::CaptureInfo {
1821                 capture_kind_expr_id: Some(diag_expr_id),
1822                 path_expr_id: Some(diag_expr_id),
1823                 capture_kind,
1824             },
1825         ));
1826     }
1827
1828     #[instrument(skip(self), level = "debug")]
1829     fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1830         self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::MutBorrow);
1831     }
1832 }
1833
1834 /// Rust doesn't permit moving fields out of a type that implements drop
1835 fn restrict_precision_for_drop_types<'a, 'tcx>(
1836     fcx: &'a FnCtxt<'a, 'tcx>,
1837     mut place: Place<'tcx>,
1838     mut curr_mode: ty::UpvarCapture,
1839     span: Span,
1840 ) -> (Place<'tcx>, ty::UpvarCapture) {
1841     let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty(), span);
1842
1843     if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
1844         for i in 0..place.projections.len() {
1845             match place.ty_before_projection(i).kind() {
1846                 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
1847                     truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1848                     break;
1849                 }
1850                 _ => {}
1851             }
1852         }
1853     }
1854
1855     (place, curr_mode)
1856 }
1857
1858 /// Truncate `place` so that an `unsafe` block isn't required to capture it.
1859 /// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
1860 ///   them completely.
1861 /// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
1862 fn restrict_precision_for_unsafe<'tcx>(
1863     mut place: Place<'tcx>,
1864     mut curr_mode: ty::UpvarCapture,
1865 ) -> (Place<'tcx>, ty::UpvarCapture) {
1866     if place.base_ty.is_unsafe_ptr() {
1867         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1868     }
1869
1870     if place.base_ty.is_union() {
1871         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1872     }
1873
1874     for (i, proj) in place.projections.iter().enumerate() {
1875         if proj.ty.is_unsafe_ptr() {
1876             // Don't apply any projections on top of an unsafe ptr.
1877             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1878             break;
1879         }
1880
1881         if proj.ty.is_union() {
1882             // Don't capture precise fields of a union.
1883             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1884             break;
1885         }
1886     }
1887
1888     (place, curr_mode)
1889 }
1890
1891 /// Truncate projections so that following rules are obeyed by the captured `place`:
1892 /// - No Index projections are captured, since arrays are captured completely.
1893 /// - No unsafe block is required to capture `place`
1894 /// Returns the truncated place and updated capture mode.
1895 fn restrict_capture_precision<'tcx>(
1896     place: Place<'tcx>,
1897     curr_mode: ty::UpvarCapture,
1898 ) -> (Place<'tcx>, ty::UpvarCapture) {
1899     let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
1900
1901     if place.projections.is_empty() {
1902         // Nothing to do here
1903         return (place, curr_mode);
1904     }
1905
1906     for (i, proj) in place.projections.iter().enumerate() {
1907         match proj.kind {
1908             ProjectionKind::Index => {
1909                 // Arrays are completely captured, so we drop Index projections
1910                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1911                 return (place, curr_mode);
1912             }
1913             ProjectionKind::Deref => {}
1914             ProjectionKind::Field(..) => {} // ignore
1915             ProjectionKind::Subslice => {}  // We never capture this
1916         }
1917     }
1918
1919     (place, curr_mode)
1920 }
1921
1922 /// Truncate deref of any reference.
1923 fn adjust_for_move_closure<'tcx>(
1924     mut place: Place<'tcx>,
1925     mut kind: ty::UpvarCapture,
1926 ) -> (Place<'tcx>, ty::UpvarCapture) {
1927     let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1928
1929     if let Some(idx) = first_deref {
1930         truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1931     }
1932
1933     (place, ty::UpvarCapture::ByValue)
1934 }
1935
1936 /// Adjust closure capture just that if taking ownership of data, only move data
1937 /// from enclosing stack frame.
1938 fn adjust_for_non_move_closure<'tcx>(
1939     mut place: Place<'tcx>,
1940     mut kind: ty::UpvarCapture,
1941 ) -> (Place<'tcx>, ty::UpvarCapture) {
1942     let contains_deref =
1943         place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1944
1945     match kind {
1946         ty::UpvarCapture::ByValue => {
1947             if let Some(idx) = contains_deref {
1948                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1949             }
1950         }
1951
1952         ty::UpvarCapture::ByRef(..) => {}
1953     }
1954
1955     (place, kind)
1956 }
1957
1958 fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1959     let variable_name = match place.base {
1960         PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
1961         _ => bug!("Capture_information should only contain upvars"),
1962     };
1963
1964     let mut projections_str = String::new();
1965     for (i, item) in place.projections.iter().enumerate() {
1966         let proj = match item.kind {
1967             ProjectionKind::Field(a, b) => format!("({:?}, {:?})", a, b),
1968             ProjectionKind::Deref => String::from("Deref"),
1969             ProjectionKind::Index => String::from("Index"),
1970             ProjectionKind::Subslice => String::from("Subslice"),
1971         };
1972         if i != 0 {
1973             projections_str.push(',');
1974         }
1975         projections_str.push_str(proj.as_str());
1976     }
1977
1978     format!("{variable_name}[{projections_str}]")
1979 }
1980
1981 fn construct_capture_kind_reason_string<'tcx>(
1982     tcx: TyCtxt<'_>,
1983     place: &Place<'tcx>,
1984     capture_info: &ty::CaptureInfo,
1985 ) -> String {
1986     let place_str = construct_place_string(tcx, place);
1987
1988     let capture_kind_str = match capture_info.capture_kind {
1989         ty::UpvarCapture::ByValue => "ByValue".into(),
1990         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
1991     };
1992
1993     format!("{place_str} captured as {capture_kind_str} here")
1994 }
1995
1996 fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1997     let place_str = construct_place_string(tcx, place);
1998
1999     format!("{place_str} used here")
2000 }
2001
2002 fn construct_capture_info_string<'tcx>(
2003     tcx: TyCtxt<'_>,
2004     place: &Place<'tcx>,
2005     capture_info: &ty::CaptureInfo,
2006 ) -> String {
2007     let place_str = construct_place_string(tcx, place);
2008
2009     let capture_kind_str = match capture_info.capture_kind {
2010         ty::UpvarCapture::ByValue => "ByValue".into(),
2011         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
2012     };
2013     format!("{place_str} -> {capture_kind_str}")
2014 }
2015
2016 fn var_name(tcx: TyCtxt<'_>, var_hir_id: hir::HirId) -> Symbol {
2017     tcx.hir().name(var_hir_id)
2018 }
2019
2020 #[instrument(level = "debug", skip(tcx))]
2021 fn should_do_rust_2021_incompatible_closure_captures_analysis(
2022     tcx: TyCtxt<'_>,
2023     closure_id: hir::HirId,
2024 ) -> bool {
2025     if tcx.sess.rust_2021() {
2026         return false;
2027     }
2028
2029     let (level, _) =
2030         tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
2031
2032     !matches!(level, lint::Level::Allow)
2033 }
2034
2035 /// Return a two string tuple (s1, s2)
2036 /// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2037 /// - s2: Comma separated names of the variables being migrated.
2038 fn migration_suggestion_for_2229(
2039     tcx: TyCtxt<'_>,
2040     need_migrations: &[NeededMigration],
2041 ) -> (String, String) {
2042     let need_migrations_variables = need_migrations
2043         .iter()
2044         .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2045         .collect::<Vec<_>>();
2046
2047     let migration_ref_concat =
2048         need_migrations_variables.iter().map(|v| format!("&{v}")).collect::<Vec<_>>().join(", ");
2049
2050     let migration_string = if 1 == need_migrations.len() {
2051         format!("let _ = {migration_ref_concat}")
2052     } else {
2053         format!("let _ = ({migration_ref_concat})")
2054     };
2055
2056     let migrated_variables_concat =
2057         need_migrations_variables.iter().map(|v| format!("`{v}`")).collect::<Vec<_>>().join(", ");
2058
2059     (migration_string, migrated_variables_concat)
2060 }
2061
2062 /// Helper function to determine if we need to escalate CaptureKind from
2063 /// CaptureInfo A to B and returns the escalated CaptureInfo.
2064 /// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2065 ///
2066 /// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2067 /// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2068 ///
2069 /// It is the caller's duty to figure out which path_expr_id to use.
2070 ///
2071 /// If both the CaptureKind and Expression are considered to be equivalent,
2072 /// then `CaptureInfo` A is preferred. This can be useful in cases where we want to prioritize
2073 /// expressions reported back to the user as part of diagnostics based on which appears earlier
2074 /// in the closure. This can be achieved simply by calling
2075 /// `determine_capture_info(existing_info, current_info)`. This works out because the
2076 /// expressions that occur earlier in the closure body than the current expression are processed before.
2077 /// Consider the following example
2078 /// ```rust,no_run
2079 /// struct Point { x: i32, y: i32 }
2080 /// let mut p = Point { x: 10, y: 10 };
2081 ///
2082 /// let c = || {
2083 ///     p.x     += 10;
2084 /// // ^ E1 ^
2085 ///     // ...
2086 ///     // More code
2087 ///     // ...
2088 ///     p.x += 10; // E2
2089 /// // ^ E2 ^
2090 /// };
2091 /// ```
2092 /// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2093 /// and both have an expression associated, however for diagnostics we prefer reporting
2094 /// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2095 /// would've already handled `E1`, and have an existing capture_information for it.
2096 /// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2097 /// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2098 fn determine_capture_info(
2099     capture_info_a: ty::CaptureInfo,
2100     capture_info_b: ty::CaptureInfo,
2101 ) -> ty::CaptureInfo {
2102     // If the capture kind is equivalent then, we don't need to escalate and can compare the
2103     // expressions.
2104     let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2105         (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
2106         (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
2107         (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
2108     };
2109
2110     if eq_capture_kind {
2111         match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2112             (Some(_), _) | (None, None) => capture_info_a,
2113             (None, Some(_)) => capture_info_b,
2114         }
2115     } else {
2116         // We select the CaptureKind which ranks higher based the following priority order:
2117         // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
2118         match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2119             (ty::UpvarCapture::ByValue, _) => capture_info_a,
2120             (_, ty::UpvarCapture::ByValue) => capture_info_b,
2121             (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2122                 match (ref_a, ref_b) {
2123                     // Take LHS:
2124                     (ty::UniqueImmBorrow | ty::MutBorrow, ty::ImmBorrow)
2125                     | (ty::MutBorrow, ty::UniqueImmBorrow) => capture_info_a,
2126
2127                     // Take RHS:
2128                     (ty::ImmBorrow, ty::UniqueImmBorrow | ty::MutBorrow)
2129                     | (ty::UniqueImmBorrow, ty::MutBorrow) => capture_info_b,
2130
2131                     (ty::ImmBorrow, ty::ImmBorrow)
2132                     | (ty::UniqueImmBorrow, ty::UniqueImmBorrow)
2133                     | (ty::MutBorrow, ty::MutBorrow) => {
2134                         bug!("Expected unequal capture kinds");
2135                     }
2136                 }
2137             }
2138         }
2139     }
2140 }
2141
2142 /// Truncates `place` to have up to `len` projections.
2143 /// `curr_mode` is the current required capture kind for the place.
2144 /// Returns the truncated `place` and the updated required capture kind.
2145 ///
2146 /// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2147 /// contained `Deref` of `&mut`.
2148 fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2149     place: &mut Place<'tcx>,
2150     curr_mode: &mut ty::UpvarCapture,
2151     len: usize,
2152 ) {
2153     let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2154
2155     // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2156     // UniqueImmBorrow
2157     // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2158     // we don't need to worry about that case here.
2159     match curr_mode {
2160         ty::UpvarCapture::ByRef(ty::BorrowKind::MutBorrow) => {
2161             for i in len..place.projections.len() {
2162                 if place.projections[i].kind == ProjectionKind::Deref
2163                     && is_mut_ref(place.ty_before_projection(i))
2164                 {
2165                     *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmBorrow);
2166                     break;
2167                 }
2168             }
2169         }
2170
2171         ty::UpvarCapture::ByRef(..) => {}
2172         ty::UpvarCapture::ByValue => {}
2173     }
2174
2175     place.projections.truncate(len);
2176 }
2177
2178 /// Determines the Ancestry relationship of Place A relative to Place B
2179 ///
2180 /// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2181 /// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2182 /// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2183 fn determine_place_ancestry_relation<'tcx>(
2184     place_a: &Place<'tcx>,
2185     place_b: &Place<'tcx>,
2186 ) -> PlaceAncestryRelation {
2187     // If Place A and Place B, don't start off from the same root variable, they are divergent.
2188     if place_a.base != place_b.base {
2189         return PlaceAncestryRelation::Divergent;
2190     }
2191
2192     // Assume of length of projections_a = n
2193     let projections_a = &place_a.projections;
2194
2195     // Assume of length of projections_b = m
2196     let projections_b = &place_b.projections;
2197
2198     let same_initial_projections =
2199         iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2200
2201     if same_initial_projections {
2202         use std::cmp::Ordering;
2203
2204         // First min(n, m) projections are the same
2205         // Select Ancestor/Descendant
2206         match projections_b.len().cmp(&projections_a.len()) {
2207             Ordering::Greater => PlaceAncestryRelation::Ancestor,
2208             Ordering::Equal => PlaceAncestryRelation::SamePlace,
2209             Ordering::Less => PlaceAncestryRelation::Descendant,
2210         }
2211     } else {
2212         PlaceAncestryRelation::Divergent
2213     }
2214 }
2215
2216 /// Reduces the precision of the captured place when the precision doesn't yield any benefit from
2217 /// borrow checking perspective, allowing us to save us on the size of the capture.
2218 ///
2219 ///
2220 /// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2221 /// and therefore capturing precise paths yields no benefit. This optimization truncates the
2222 /// rightmost deref of the capture if the deref is applied to a shared ref.
2223 ///
2224 /// Reason we only drop the last deref is because of the following edge case:
2225 ///
2226 /// ```
2227 /// # struct A { field_of_a: Box<i32> }
2228 /// # struct B {}
2229 /// # struct C<'a>(&'a i32);
2230 /// struct MyStruct<'a> {
2231 ///    a: &'static A,
2232 ///    b: B,
2233 ///    c: C<'a>,
2234 /// }
2235 ///
2236 /// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2237 ///     || drop(&*m.a.field_of_a)
2238 ///     // Here we really do want to capture `*m.a` because that outlives `'static`
2239 ///
2240 ///     // If we capture `m`, then the closure no longer outlives `'static'
2241 ///     // it is constrained to `'a`
2242 /// }
2243 /// ```
2244 fn truncate_capture_for_optimization<'tcx>(
2245     mut place: Place<'tcx>,
2246     mut curr_mode: ty::UpvarCapture,
2247 ) -> (Place<'tcx>, ty::UpvarCapture) {
2248     let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2249
2250     // Find the right-most deref (if any). All the projections that come after this
2251     // are fields or other "in-place pointer adjustments"; these refer therefore to
2252     // data owned by whatever pointer is being dereferenced here.
2253     let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2254
2255     match idx {
2256         // If that pointer is a shared reference, then we don't need those fields.
2257         Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2258             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2259         }
2260         None | Some(_) => {}
2261     }
2262
2263     (place, curr_mode)
2264 }
2265
2266 /// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if
2267 /// user is using Rust Edition 2021 or higher.
2268 ///
2269 /// `span` is the span of the closure.
2270 fn enable_precise_capture(tcx: TyCtxt<'_>, span: Span) -> bool {
2271     // We use span here to ensure that if the closure was generated by a macro with a different
2272     // edition.
2273     tcx.features().capture_disjoint_fields || span.rust_2021()
2274 }