]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/op.rs
Auto merge of #107642 - Dylan-DPC:rollup-edcqhm5, r=Dylan-DPC
[rust.git] / compiler / rustc_hir_typeck / src / op.rs
1 //! Code related to processing overloaded binary and unary operators.
2
3 use super::method::MethodCallee;
4 use super::{has_expected_num_generic_args, FnCtxt};
5 use crate::Expectation;
6 use rustc_ast as ast;
7 use rustc_errors::{self, struct_span_err, Applicability, Diagnostic};
8 use rustc_hir as hir;
9 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
10 use rustc_infer::traits::ObligationCauseCode;
11 use rustc_middle::ty::adjustment::{
12     Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
13 };
14 use rustc_middle::ty::print::with_no_trimmed_paths;
15 use rustc_middle::ty::{
16     self, DefIdTree, IsSuggestable, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeVisitable,
17 };
18 use rustc_session::errors::ExprParenthesesNeeded;
19 use rustc_span::source_map::Spanned;
20 use rustc_span::symbol::{sym, Ident};
21 use rustc_span::Span;
22 use rustc_trait_selection::infer::InferCtxtExt;
23 use rustc_trait_selection::traits::error_reporting::suggestions::TypeErrCtxtExt as _;
24 use rustc_trait_selection::traits::{self, FulfillmentError};
25 use rustc_type_ir::sty::TyKind::*;
26
27 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
28     /// Checks a `a <op>= b`
29     pub fn check_binop_assign(
30         &self,
31         expr: &'tcx hir::Expr<'tcx>,
32         op: hir::BinOp,
33         lhs: &'tcx hir::Expr<'tcx>,
34         rhs: &'tcx hir::Expr<'tcx>,
35         expected: Expectation<'tcx>,
36     ) -> Ty<'tcx> {
37         let (lhs_ty, rhs_ty, return_ty) =
38             self.check_overloaded_binop(expr, lhs, rhs, op, IsAssign::Yes, expected);
39
40         let ty =
41             if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
42                 self.enforce_builtin_binop_types(lhs.span, lhs_ty, rhs.span, rhs_ty, op);
43                 self.tcx.mk_unit()
44             } else {
45                 return_ty
46             };
47
48         self.check_lhs_assignable(lhs, "E0067", op.span, |err| {
49             if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
50                 if self
51                     .lookup_op_method(
52                         lhs_deref_ty,
53                         Some((rhs, rhs_ty)),
54                         Op::Binary(op, IsAssign::Yes),
55                         expected,
56                     )
57                     .is_ok()
58                 {
59                     // If LHS += RHS is an error, but *LHS += RHS is successful, then we will have
60                     // emitted a better suggestion during error handling in check_overloaded_binop.
61                     if self
62                         .lookup_op_method(
63                             lhs_ty,
64                             Some((rhs, rhs_ty)),
65                             Op::Binary(op, IsAssign::Yes),
66                             expected,
67                         )
68                         .is_err()
69                     {
70                         err.downgrade_to_delayed_bug();
71                     } else {
72                         // Otherwise, it's valid to suggest dereferencing the LHS here.
73                         err.span_suggestion_verbose(
74                             lhs.span.shrink_to_lo(),
75                             "consider dereferencing the left-hand side of this operation",
76                             "*",
77                             Applicability::MaybeIncorrect,
78                         );
79                     }
80                 }
81             }
82         });
83
84         ty
85     }
86
87     /// Checks a potentially overloaded binary operator.
88     pub fn check_binop(
89         &self,
90         expr: &'tcx hir::Expr<'tcx>,
91         op: hir::BinOp,
92         lhs_expr: &'tcx hir::Expr<'tcx>,
93         rhs_expr: &'tcx hir::Expr<'tcx>,
94         expected: Expectation<'tcx>,
95     ) -> Ty<'tcx> {
96         let tcx = self.tcx;
97
98         debug!(
99             "check_binop(expr.hir_id={}, expr={:?}, op={:?}, lhs_expr={:?}, rhs_expr={:?})",
100             expr.hir_id, expr, op, lhs_expr, rhs_expr
101         );
102
103         match BinOpCategory::from(op) {
104             BinOpCategory::Shortcircuit => {
105                 // && and || are a simple case.
106                 self.check_expr_coercable_to_type(lhs_expr, tcx.types.bool, None);
107                 let lhs_diverges = self.diverges.get();
108                 self.check_expr_coercable_to_type(rhs_expr, tcx.types.bool, None);
109
110                 // Depending on the LHS' value, the RHS can never execute.
111                 self.diverges.set(lhs_diverges);
112
113                 tcx.types.bool
114             }
115             _ => {
116                 // Otherwise, we always treat operators as if they are
117                 // overloaded. This is the way to be most flexible w/r/t
118                 // types that get inferred.
119                 let (lhs_ty, rhs_ty, return_ty) = self.check_overloaded_binop(
120                     expr,
121                     lhs_expr,
122                     rhs_expr,
123                     op,
124                     IsAssign::No,
125                     expected,
126                 );
127
128                 // Supply type inference hints if relevant. Probably these
129                 // hints should be enforced during select as part of the
130                 // `consider_unification_despite_ambiguity` routine, but this
131                 // more convenient for now.
132                 //
133                 // The basic idea is to help type inference by taking
134                 // advantage of things we know about how the impls for
135                 // scalar types are arranged. This is important in a
136                 // scenario like `1_u32 << 2`, because it lets us quickly
137                 // deduce that the result type should be `u32`, even
138                 // though we don't know yet what type 2 has and hence
139                 // can't pin this down to a specific impl.
140                 if !lhs_ty.is_ty_var()
141                     && !rhs_ty.is_ty_var()
142                     && is_builtin_binop(lhs_ty, rhs_ty, op)
143                 {
144                     let builtin_return_ty = self.enforce_builtin_binop_types(
145                         lhs_expr.span,
146                         lhs_ty,
147                         rhs_expr.span,
148                         rhs_ty,
149                         op,
150                     );
151                     self.demand_suptype(expr.span, builtin_return_ty, return_ty);
152                 }
153
154                 return_ty
155             }
156         }
157     }
158
159     fn enforce_builtin_binop_types(
160         &self,
161         lhs_span: Span,
162         lhs_ty: Ty<'tcx>,
163         rhs_span: Span,
164         rhs_ty: Ty<'tcx>,
165         op: hir::BinOp,
166     ) -> Ty<'tcx> {
167         debug_assert!(is_builtin_binop(lhs_ty, rhs_ty, op));
168
169         // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
170         // (See https://github.com/rust-lang/rust/issues/57447.)
171         let (lhs_ty, rhs_ty) = (deref_ty_if_possible(lhs_ty), deref_ty_if_possible(rhs_ty));
172
173         let tcx = self.tcx;
174         match BinOpCategory::from(op) {
175             BinOpCategory::Shortcircuit => {
176                 self.demand_suptype(lhs_span, tcx.types.bool, lhs_ty);
177                 self.demand_suptype(rhs_span, tcx.types.bool, rhs_ty);
178                 tcx.types.bool
179             }
180
181             BinOpCategory::Shift => {
182                 // result type is same as LHS always
183                 lhs_ty
184             }
185
186             BinOpCategory::Math | BinOpCategory::Bitwise => {
187                 // both LHS and RHS and result will have the same type
188                 self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
189                 lhs_ty
190             }
191
192             BinOpCategory::Comparison => {
193                 // both LHS and RHS and result will have the same type
194                 self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
195                 tcx.types.bool
196             }
197         }
198     }
199
200     fn check_overloaded_binop(
201         &self,
202         expr: &'tcx hir::Expr<'tcx>,
203         lhs_expr: &'tcx hir::Expr<'tcx>,
204         rhs_expr: &'tcx hir::Expr<'tcx>,
205         op: hir::BinOp,
206         is_assign: IsAssign,
207         expected: Expectation<'tcx>,
208     ) -> (Ty<'tcx>, Ty<'tcx>, Ty<'tcx>) {
209         debug!(
210             "check_overloaded_binop(expr.hir_id={}, op={:?}, is_assign={:?})",
211             expr.hir_id, op, is_assign
212         );
213
214         let lhs_ty = match is_assign {
215             IsAssign::No => {
216                 // Find a suitable supertype of the LHS expression's type, by coercing to
217                 // a type variable, to pass as the `Self` to the trait, avoiding invariant
218                 // trait matching creating lifetime constraints that are too strict.
219                 // e.g., adding `&'a T` and `&'b T`, given `&'x T: Add<&'x T>`, will result
220                 // in `&'a T <: &'x T` and `&'b T <: &'x T`, instead of `'a = 'b = 'x`.
221                 let lhs_ty = self.check_expr(lhs_expr);
222                 let fresh_var = self.next_ty_var(TypeVariableOrigin {
223                     kind: TypeVariableOriginKind::MiscVariable,
224                     span: lhs_expr.span,
225                 });
226                 self.demand_coerce(lhs_expr, lhs_ty, fresh_var, Some(rhs_expr), AllowTwoPhase::No)
227             }
228             IsAssign::Yes => {
229                 // rust-lang/rust#52126: We have to use strict
230                 // equivalence on the LHS of an assign-op like `+=`;
231                 // overwritten or mutably-borrowed places cannot be
232                 // coerced to a supertype.
233                 self.check_expr(lhs_expr)
234             }
235         };
236         let lhs_ty = self.resolve_vars_with_obligations(lhs_ty);
237
238         // N.B., as we have not yet type-checked the RHS, we don't have the
239         // type at hand. Make a variable to represent it. The whole reason
240         // for this indirection is so that, below, we can check the expr
241         // using this variable as the expected type, which sometimes lets
242         // us do better coercions than we would be able to do otherwise,
243         // particularly for things like `String + &String`.
244         let rhs_ty_var = self.next_ty_var(TypeVariableOrigin {
245             kind: TypeVariableOriginKind::MiscVariable,
246             span: rhs_expr.span,
247         });
248
249         let result = self.lookup_op_method(
250             lhs_ty,
251             Some((rhs_expr, rhs_ty_var)),
252             Op::Binary(op, is_assign),
253             expected,
254         );
255
256         // see `NB` above
257         let rhs_ty = self.check_expr_coercable_to_type(rhs_expr, rhs_ty_var, Some(lhs_expr));
258         let rhs_ty = self.resolve_vars_with_obligations(rhs_ty);
259
260         let return_ty = match result {
261             Ok(method) => {
262                 let by_ref_binop = !op.node.is_by_value();
263                 if is_assign == IsAssign::Yes || by_ref_binop {
264                     if let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() {
265                         let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);
266                         let autoref = Adjustment {
267                             kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
268                             target: method.sig.inputs()[0],
269                         };
270                         self.apply_adjustments(lhs_expr, vec![autoref]);
271                     }
272                 }
273                 if by_ref_binop {
274                     if let ty::Ref(region, _, mutbl) = method.sig.inputs()[1].kind() {
275                         // Allow two-phase borrows for binops in initial deployment
276                         // since they desugar to methods
277                         let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);
278
279                         let autoref = Adjustment {
280                             kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
281                             target: method.sig.inputs()[1],
282                         };
283                         // HACK(eddyb) Bypass checks due to reborrows being in
284                         // some cases applied on the RHS, on top of which we need
285                         // to autoref, which is not allowed by apply_adjustments.
286                         // self.apply_adjustments(rhs_expr, vec![autoref]);
287                         self.typeck_results
288                             .borrow_mut()
289                             .adjustments_mut()
290                             .entry(rhs_expr.hir_id)
291                             .or_default()
292                             .push(autoref);
293                     }
294                 }
295                 self.write_method_call(expr.hir_id, method);
296
297                 method.sig.output()
298             }
299             // error types are considered "builtin"
300             Err(_) if lhs_ty.references_error() || rhs_ty.references_error() => self.tcx.ty_error(),
301             Err(errors) => {
302                 let (_, trait_def_id) =
303                     lang_item_for_op(self.tcx, Op::Binary(op, is_assign), op.span);
304                 let missing_trait = trait_def_id
305                     .map(|def_id| with_no_trimmed_paths!(self.tcx.def_path_str(def_id)));
306                 let (mut err, output_def_id) = match is_assign {
307                     IsAssign::Yes => {
308                         let mut err = struct_span_err!(
309                             self.tcx.sess,
310                             expr.span,
311                             E0368,
312                             "binary assignment operation `{}=` cannot be applied to type `{}`",
313                             op.node.as_str(),
314                             lhs_ty,
315                         );
316                         err.span_label(
317                             lhs_expr.span,
318                             format!("cannot use `{}=` on type `{}`", op.node.as_str(), lhs_ty),
319                         );
320                         self.note_unmet_impls_on_type(&mut err, errors);
321                         (err, None)
322                     }
323                     IsAssign::No => {
324                         let message = match op.node {
325                             hir::BinOpKind::Add => {
326                                 format!("cannot add `{rhs_ty}` to `{lhs_ty}`")
327                             }
328                             hir::BinOpKind::Sub => {
329                                 format!("cannot subtract `{rhs_ty}` from `{lhs_ty}`")
330                             }
331                             hir::BinOpKind::Mul => {
332                                 format!("cannot multiply `{lhs_ty}` by `{rhs_ty}`")
333                             }
334                             hir::BinOpKind::Div => {
335                                 format!("cannot divide `{lhs_ty}` by `{rhs_ty}`")
336                             }
337                             hir::BinOpKind::Rem => {
338                                 format!(
339                                     "cannot calculate the remainder of `{lhs_ty}` divided by `{rhs_ty}`"
340                                 )
341                             }
342                             hir::BinOpKind::BitAnd => {
343                                 format!("no implementation for `{lhs_ty} & {rhs_ty}`")
344                             }
345                             hir::BinOpKind::BitXor => {
346                                 format!("no implementation for `{lhs_ty} ^ {rhs_ty}`")
347                             }
348                             hir::BinOpKind::BitOr => {
349                                 format!("no implementation for `{lhs_ty} | {rhs_ty}`")
350                             }
351                             hir::BinOpKind::Shl => {
352                                 format!("no implementation for `{lhs_ty} << {rhs_ty}`")
353                             }
354                             hir::BinOpKind::Shr => {
355                                 format!("no implementation for `{lhs_ty} >> {rhs_ty}`")
356                             }
357                             _ => format!(
358                                 "binary operation `{}` cannot be applied to type `{}`",
359                                 op.node.as_str(),
360                                 lhs_ty
361                             ),
362                         };
363                         let output_def_id = trait_def_id.and_then(|def_id| {
364                             self.tcx
365                                 .associated_item_def_ids(def_id)
366                                 .iter()
367                                 .find(|item_def_id| {
368                                     self.tcx.associated_item(*item_def_id).name == sym::Output
369                                 })
370                                 .cloned()
371                         });
372                         let mut err = struct_span_err!(self.tcx.sess, op.span, E0369, "{message}");
373                         if !lhs_expr.span.eq(&rhs_expr.span) {
374                             err.span_label(lhs_expr.span, lhs_ty.to_string());
375                             err.span_label(rhs_expr.span, rhs_ty.to_string());
376                         }
377                         self.note_unmet_impls_on_type(&mut err, errors);
378                         (err, output_def_id)
379                     }
380                 };
381
382                 let mut suggest_deref_binop = |lhs_deref_ty: Ty<'tcx>| {
383                     if self
384                         .lookup_op_method(
385                             lhs_deref_ty,
386                             Some((rhs_expr, rhs_ty)),
387                             Op::Binary(op, is_assign),
388                             expected,
389                         )
390                         .is_ok()
391                     {
392                         let msg = &format!(
393                             "`{}{}` can be used on `{}` if you dereference the left-hand side",
394                             op.node.as_str(),
395                             match is_assign {
396                                 IsAssign::Yes => "=",
397                                 IsAssign::No => "",
398                             },
399                             lhs_deref_ty,
400                         );
401                         err.span_suggestion_verbose(
402                             lhs_expr.span.shrink_to_lo(),
403                             msg,
404                             "*",
405                             rustc_errors::Applicability::MachineApplicable,
406                         );
407                     }
408                 };
409
410                 let is_compatible = |lhs_ty, rhs_ty| {
411                     self.lookup_op_method(
412                         lhs_ty,
413                         Some((rhs_expr, rhs_ty)),
414                         Op::Binary(op, is_assign),
415                         expected,
416                     )
417                     .is_ok()
418                 };
419
420                 // We should suggest `a + b` => `*a + b` if `a` is copy, and suggest
421                 // `a += b` => `*a += b` if a is a mut ref.
422                 if !op.span.can_be_used_for_suggestions() {
423                     // Suppress suggestions when lhs and rhs are not in the same span as the error
424                 } else if is_assign == IsAssign::Yes
425                     && let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty)
426                 {
427                     suggest_deref_binop(lhs_deref_ty);
428                 } else if is_assign == IsAssign::No
429                     && let Ref(_, lhs_deref_ty, _) = lhs_ty.kind()
430                 {
431                     if self.type_is_copy_modulo_regions(
432                         self.param_env,
433                         *lhs_deref_ty,
434                         lhs_expr.span,
435                     ) {
436                         suggest_deref_binop(*lhs_deref_ty);
437                     }
438                 } else if self.suggest_fn_call(&mut err, lhs_expr, lhs_ty, |lhs_ty| {
439                     is_compatible(lhs_ty, rhs_ty)
440                 }) || self.suggest_fn_call(&mut err, rhs_expr, rhs_ty, |rhs_ty| {
441                     is_compatible(lhs_ty, rhs_ty)
442                 }) || self.suggest_two_fn_call(
443                     &mut err,
444                     rhs_expr,
445                     rhs_ty,
446                     lhs_expr,
447                     lhs_ty,
448                     |lhs_ty, rhs_ty| is_compatible(lhs_ty, rhs_ty),
449                 ) {
450                     // Cool
451                 }
452
453                 if let Some(missing_trait) = missing_trait {
454                     if op.node == hir::BinOpKind::Add
455                         && self.check_str_addition(
456                             lhs_expr, rhs_expr, lhs_ty, rhs_ty, &mut err, is_assign, op,
457                         )
458                     {
459                         // This has nothing here because it means we did string
460                         // concatenation (e.g., "Hello " + "World!"). This means
461                         // we don't want the note in the else clause to be emitted
462                     } else if lhs_ty.has_non_region_param() {
463                         // Look for a TraitPredicate in the Fulfillment errors,
464                         // and use it to generate a suggestion.
465                         //
466                         // Note that lookup_op_method must be called again but
467                         // with a specific rhs_ty instead of a placeholder so
468                         // the resulting predicate generates a more specific
469                         // suggestion for the user.
470                         let errors = self
471                             .lookup_op_method(
472                                 lhs_ty,
473                                 Some((rhs_expr, rhs_ty)),
474                                 Op::Binary(op, is_assign),
475                                 expected,
476                             )
477                             .unwrap_err();
478                         if !errors.is_empty() {
479                             for error in errors {
480                                 if let Some(trait_pred) =
481                                     error.obligation.predicate.to_opt_poly_trait_pred()
482                                 {
483                                     let output_associated_item = match error.obligation.cause.code()
484                                     {
485                                         ObligationCauseCode::BinOp {
486                                             output_ty: Some(output_ty),
487                                             ..
488                                         } => {
489                                             // Make sure that we're attaching `Output = ..` to the right trait predicate
490                                             if let Some(output_def_id) = output_def_id
491                                                 && let Some(trait_def_id) = trait_def_id
492                                                 && self.tcx.parent(output_def_id) == trait_def_id
493                                                 && output_ty.is_suggestable(self.tcx, false)
494                                             {
495                                                 Some(("Output", *output_ty))
496                                             } else {
497                                                 None
498                                             }
499                                         }
500                                         _ => None,
501                                     };
502
503                                     self.err_ctxt().suggest_restricting_param_bound(
504                                         &mut err,
505                                         trait_pred,
506                                         output_associated_item,
507                                         self.body_id,
508                                     );
509                                 }
510                             }
511                         } else {
512                             // When we know that a missing bound is responsible, we don't show
513                             // this note as it is redundant.
514                             err.note(&format!(
515                                 "the trait `{missing_trait}` is not implemented for `{lhs_ty}`"
516                             ));
517                         }
518                     }
519                 }
520                 let reported = err.emit();
521                 self.tcx.ty_error_with_guaranteed(reported)
522             }
523         };
524
525         (lhs_ty, rhs_ty, return_ty)
526     }
527
528     /// Provide actionable suggestions when trying to add two strings with incorrect types,
529     /// like `&str + &str`, `String + String` and `&str + &String`.
530     ///
531     /// If this function returns `true` it means a note was printed, so we don't need
532     /// to print the normal "implementation of `std::ops::Add` might be missing" note
533     fn check_str_addition(
534         &self,
535         lhs_expr: &'tcx hir::Expr<'tcx>,
536         rhs_expr: &'tcx hir::Expr<'tcx>,
537         lhs_ty: Ty<'tcx>,
538         rhs_ty: Ty<'tcx>,
539         err: &mut Diagnostic,
540         is_assign: IsAssign,
541         op: hir::BinOp,
542     ) -> bool {
543         let str_concat_note = "string concatenation requires an owned `String` on the left";
544         let rm_borrow_msg = "remove the borrow to obtain an owned `String`";
545         let to_owned_msg = "create an owned `String` from a string reference";
546
547         let string_type = self.tcx.lang_items().string();
548         let is_std_string = |ty: Ty<'tcx>| {
549             ty.ty_adt_def().map_or(false, |ty_def| Some(ty_def.did()) == string_type)
550         };
551
552         match (lhs_ty.kind(), rhs_ty.kind()) {
553             (&Ref(_, l_ty, _), &Ref(_, r_ty, _)) // &str or &String + &str, &String or &&str
554                 if (*l_ty.kind() == Str || is_std_string(l_ty))
555                     && (*r_ty.kind() == Str
556                         || is_std_string(r_ty)
557                         || matches!(
558                             r_ty.kind(), Ref(_, inner_ty, _) if *inner_ty.kind() == Str
559                         )) =>
560             {
561                 if let IsAssign::No = is_assign { // Do not supply this message if `&str += &str`
562                     err.span_label(op.span, "`+` cannot be used to concatenate two `&str` strings");
563                     err.note(str_concat_note);
564                     if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
565                         err.span_suggestion_verbose(
566                             lhs_expr.span.until(lhs_inner_expr.span),
567                             rm_borrow_msg,
568                             "",
569                             Applicability::MachineApplicable
570                         );
571                     } else {
572                         err.span_suggestion_verbose(
573                             lhs_expr.span.shrink_to_hi(),
574                             to_owned_msg,
575                             ".to_owned()",
576                             Applicability::MachineApplicable
577                         );
578                     }
579                 }
580                 true
581             }
582             (&Ref(_, l_ty, _), &Adt(..)) // Handle `&str` & `&String` + `String`
583                 if (*l_ty.kind() == Str || is_std_string(l_ty)) && is_std_string(rhs_ty) =>
584             {
585                 err.span_label(
586                     op.span,
587                     "`+` cannot be used to concatenate a `&str` with a `String`",
588                 );
589                 match is_assign {
590                     IsAssign::No => {
591                         let sugg_msg;
592                         let lhs_sugg = if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
593                             sugg_msg = "remove the borrow on the left and add one on the right";
594                             (lhs_expr.span.until(lhs_inner_expr.span), "".to_owned())
595                         } else {
596                             sugg_msg = "create an owned `String` on the left and add a borrow on the right";
597                             (lhs_expr.span.shrink_to_hi(), ".to_owned()".to_owned())
598                         };
599                         let suggestions = vec![
600                             lhs_sugg,
601                             (rhs_expr.span.shrink_to_lo(), "&".to_owned()),
602                         ];
603                         err.multipart_suggestion_verbose(
604                             sugg_msg,
605                             suggestions,
606                             Applicability::MachineApplicable,
607                         );
608                     }
609                     IsAssign::Yes => {
610                         err.note(str_concat_note);
611                     }
612                 }
613                 true
614             }
615             _ => false,
616         }
617     }
618
619     pub fn check_user_unop(
620         &self,
621         ex: &'tcx hir::Expr<'tcx>,
622         operand_ty: Ty<'tcx>,
623         op: hir::UnOp,
624         expected: Expectation<'tcx>,
625     ) -> Ty<'tcx> {
626         assert!(op.is_by_value());
627         match self.lookup_op_method(operand_ty, None, Op::Unary(op, ex.span), expected) {
628             Ok(method) => {
629                 self.write_method_call(ex.hir_id, method);
630                 method.sig.output()
631             }
632             Err(errors) => {
633                 let actual = self.resolve_vars_if_possible(operand_ty);
634                 if !actual.references_error() {
635                     let mut err = struct_span_err!(
636                         self.tcx.sess,
637                         ex.span,
638                         E0600,
639                         "cannot apply unary operator `{}` to type `{}`",
640                         op.as_str(),
641                         actual
642                     );
643                     err.span_label(
644                         ex.span,
645                         format!("cannot apply unary operator `{}`", op.as_str()),
646                     );
647
648                     if operand_ty.has_non_region_param() {
649                         let predicates = errors.iter().filter_map(|error| {
650                             error.obligation.predicate.to_opt_poly_trait_pred()
651                         });
652                         for pred in predicates {
653                             self.err_ctxt().suggest_restricting_param_bound(
654                                 &mut err,
655                                 pred,
656                                 None,
657                                 self.body_id,
658                             );
659                         }
660                     }
661
662                     let sp = self.tcx.sess.source_map().start_point(ex.span).with_parent(None);
663                     if let Some(sp) =
664                         self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
665                     {
666                         // If the previous expression was a block expression, suggest parentheses
667                         // (turning this into a binary subtraction operation instead.)
668                         // for example, `{2} - 2` -> `({2}) - 2` (see src\test\ui\parser\expr-as-stmt.rs)
669                         err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
670                     } else {
671                         match actual.kind() {
672                             Uint(_) if op == hir::UnOp::Neg => {
673                                 err.note("unsigned values cannot be negated");
674
675                                 if let hir::ExprKind::Unary(
676                                     _,
677                                     hir::Expr {
678                                         kind:
679                                             hir::ExprKind::Lit(Spanned {
680                                                 node: ast::LitKind::Int(1, _),
681                                                 ..
682                                             }),
683                                         ..
684                                     },
685                                 ) = ex.kind
686                                 {
687                                     err.span_suggestion(
688                                         ex.span,
689                                         &format!(
690                                             "you may have meant the maximum value of `{actual}`",
691                                         ),
692                                         format!("{actual}::MAX"),
693                                         Applicability::MaybeIncorrect,
694                                     );
695                                 }
696                             }
697                             Str | Never | Char | Tuple(_) | Array(_, _) => {}
698                             Ref(_, lty, _) if *lty.kind() == Str => {}
699                             _ => {
700                                 self.note_unmet_impls_on_type(&mut err, errors);
701                             }
702                         }
703                     }
704                     err.emit();
705                 }
706                 self.tcx.ty_error()
707             }
708         }
709     }
710
711     fn lookup_op_method(
712         &self,
713         lhs_ty: Ty<'tcx>,
714         opt_rhs: Option<(&'tcx hir::Expr<'tcx>, Ty<'tcx>)>,
715         op: Op,
716         expected: Expectation<'tcx>,
717     ) -> Result<MethodCallee<'tcx>, Vec<FulfillmentError<'tcx>>> {
718         let span = match op {
719             Op::Binary(op, _) => op.span,
720             Op::Unary(_, span) => span,
721         };
722         let (opname, trait_did) = lang_item_for_op(self.tcx, op, span);
723
724         debug!(
725             "lookup_op_method(lhs_ty={:?}, op={:?}, opname={:?}, trait_did={:?})",
726             lhs_ty, op, opname, trait_did
727         );
728
729         // Catches cases like #83893, where a lang item is declared with the
730         // wrong number of generic arguments. Should have yielded an error
731         // elsewhere by now, but we have to catch it here so that we do not
732         // index `other_tys` out of bounds (if the lang item has too many
733         // generic arguments, `other_tys` is too short).
734         if !has_expected_num_generic_args(
735             self.tcx,
736             trait_did,
737             match op {
738                 // Binary ops have a generic right-hand side, unary ops don't
739                 Op::Binary(..) => 1,
740                 Op::Unary(..) => 0,
741             },
742         ) {
743             self.tcx
744                 .sess
745                 .delay_span_bug(span, "operator didn't have the right number of generic args");
746             return Err(vec![]);
747         }
748
749         let opname = Ident::with_dummy_span(opname);
750         let input_types =
751             opt_rhs.as_ref().map(|(_, ty)| std::slice::from_ref(ty)).unwrap_or_default();
752         let cause = self.cause(
753             span,
754             traits::BinOp {
755                 rhs_span: opt_rhs.map(|(expr, _)| expr.span),
756                 is_lit: opt_rhs
757                     .map_or(false, |(expr, _)| matches!(expr.kind, hir::ExprKind::Lit(_))),
758                 output_ty: expected.only_has_type(self),
759             },
760         );
761
762         let method = trait_did.and_then(|trait_did| {
763             self.lookup_method_in_trait(cause.clone(), opname, trait_did, lhs_ty, Some(input_types))
764         });
765
766         match (method, trait_did) {
767             (Some(ok), _) => {
768                 let method = self.register_infer_ok_obligations(ok);
769                 self.select_obligations_where_possible(|_| {});
770                 Ok(method)
771             }
772             (None, None) => Err(vec![]),
773             (None, Some(trait_did)) => {
774                 let (obligation, _) =
775                     self.obligation_for_method(cause, trait_did, lhs_ty, Some(input_types));
776                 Err(rustc_trait_selection::traits::fully_solve_obligation(self, obligation))
777             }
778         }
779     }
780 }
781
782 fn lang_item_for_op(
783     tcx: TyCtxt<'_>,
784     op: Op,
785     span: Span,
786 ) -> (rustc_span::Symbol, Option<hir::def_id::DefId>) {
787     let lang = tcx.lang_items();
788     if let Op::Binary(op, IsAssign::Yes) = op {
789         match op.node {
790             hir::BinOpKind::Add => (sym::add_assign, lang.add_assign_trait()),
791             hir::BinOpKind::Sub => (sym::sub_assign, lang.sub_assign_trait()),
792             hir::BinOpKind::Mul => (sym::mul_assign, lang.mul_assign_trait()),
793             hir::BinOpKind::Div => (sym::div_assign, lang.div_assign_trait()),
794             hir::BinOpKind::Rem => (sym::rem_assign, lang.rem_assign_trait()),
795             hir::BinOpKind::BitXor => (sym::bitxor_assign, lang.bitxor_assign_trait()),
796             hir::BinOpKind::BitAnd => (sym::bitand_assign, lang.bitand_assign_trait()),
797             hir::BinOpKind::BitOr => (sym::bitor_assign, lang.bitor_assign_trait()),
798             hir::BinOpKind::Shl => (sym::shl_assign, lang.shl_assign_trait()),
799             hir::BinOpKind::Shr => (sym::shr_assign, lang.shr_assign_trait()),
800             hir::BinOpKind::Lt
801             | hir::BinOpKind::Le
802             | hir::BinOpKind::Ge
803             | hir::BinOpKind::Gt
804             | hir::BinOpKind::Eq
805             | hir::BinOpKind::Ne
806             | hir::BinOpKind::And
807             | hir::BinOpKind::Or => {
808                 span_bug!(span, "impossible assignment operation: {}=", op.node.as_str())
809             }
810         }
811     } else if let Op::Binary(op, IsAssign::No) = op {
812         match op.node {
813             hir::BinOpKind::Add => (sym::add, lang.add_trait()),
814             hir::BinOpKind::Sub => (sym::sub, lang.sub_trait()),
815             hir::BinOpKind::Mul => (sym::mul, lang.mul_trait()),
816             hir::BinOpKind::Div => (sym::div, lang.div_trait()),
817             hir::BinOpKind::Rem => (sym::rem, lang.rem_trait()),
818             hir::BinOpKind::BitXor => (sym::bitxor, lang.bitxor_trait()),
819             hir::BinOpKind::BitAnd => (sym::bitand, lang.bitand_trait()),
820             hir::BinOpKind::BitOr => (sym::bitor, lang.bitor_trait()),
821             hir::BinOpKind::Shl => (sym::shl, lang.shl_trait()),
822             hir::BinOpKind::Shr => (sym::shr, lang.shr_trait()),
823             hir::BinOpKind::Lt => (sym::lt, lang.partial_ord_trait()),
824             hir::BinOpKind::Le => (sym::le, lang.partial_ord_trait()),
825             hir::BinOpKind::Ge => (sym::ge, lang.partial_ord_trait()),
826             hir::BinOpKind::Gt => (sym::gt, lang.partial_ord_trait()),
827             hir::BinOpKind::Eq => (sym::eq, lang.eq_trait()),
828             hir::BinOpKind::Ne => (sym::ne, lang.eq_trait()),
829             hir::BinOpKind::And | hir::BinOpKind::Or => {
830                 span_bug!(span, "&& and || are not overloadable")
831             }
832         }
833     } else if let Op::Unary(hir::UnOp::Not, _) = op {
834         (sym::not, lang.not_trait())
835     } else if let Op::Unary(hir::UnOp::Neg, _) = op {
836         (sym::neg, lang.neg_trait())
837     } else {
838         bug!("lookup_op_method: op not supported: {:?}", op)
839     }
840 }
841
842 // Binary operator categories. These categories summarize the behavior
843 // with respect to the builtin operations supported.
844 enum BinOpCategory {
845     /// &&, || -- cannot be overridden
846     Shortcircuit,
847
848     /// <<, >> -- when shifting a single integer, rhs can be any
849     /// integer type. For simd, types must match.
850     Shift,
851
852     /// +, -, etc -- takes equal types, produces same type as input,
853     /// applicable to ints/floats/simd
854     Math,
855
856     /// &, |, ^ -- takes equal types, produces same type as input,
857     /// applicable to ints/floats/simd/bool
858     Bitwise,
859
860     /// ==, !=, etc -- takes equal types, produces bools, except for simd,
861     /// which produce the input type
862     Comparison,
863 }
864
865 impl BinOpCategory {
866     fn from(op: hir::BinOp) -> BinOpCategory {
867         match op.node {
868             hir::BinOpKind::Shl | hir::BinOpKind::Shr => BinOpCategory::Shift,
869
870             hir::BinOpKind::Add
871             | hir::BinOpKind::Sub
872             | hir::BinOpKind::Mul
873             | hir::BinOpKind::Div
874             | hir::BinOpKind::Rem => BinOpCategory::Math,
875
876             hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => {
877                 BinOpCategory::Bitwise
878             }
879
880             hir::BinOpKind::Eq
881             | hir::BinOpKind::Ne
882             | hir::BinOpKind::Lt
883             | hir::BinOpKind::Le
884             | hir::BinOpKind::Ge
885             | hir::BinOpKind::Gt => BinOpCategory::Comparison,
886
887             hir::BinOpKind::And | hir::BinOpKind::Or => BinOpCategory::Shortcircuit,
888         }
889     }
890 }
891
892 /// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
893 #[derive(Clone, Copy, Debug, PartialEq)]
894 enum IsAssign {
895     No,
896     Yes,
897 }
898
899 #[derive(Clone, Copy, Debug)]
900 enum Op {
901     Binary(hir::BinOp, IsAssign),
902     Unary(hir::UnOp, Span),
903 }
904
905 /// Dereferences a single level of immutable referencing.
906 fn deref_ty_if_possible(ty: Ty<'_>) -> Ty<'_> {
907     match ty.kind() {
908         ty::Ref(_, ty, hir::Mutability::Not) => *ty,
909         _ => ty,
910     }
911 }
912
913 /// Returns `true` if this is a built-in arithmetic operation (e.g., u32
914 /// + u32, i16x4 == i16x4) and false if these types would have to be
915 /// overloaded to be legal. There are two reasons that we distinguish
916 /// builtin operations from overloaded ones (vs trying to drive
917 /// everything uniformly through the trait system and intrinsics or
918 /// something like that):
919 ///
920 /// 1. Builtin operations can trivially be evaluated in constants.
921 /// 2. For comparison operators applied to SIMD types the result is
922 ///    not of type `bool`. For example, `i16x4 == i16x4` yields a
923 ///    type like `i16x4`. This means that the overloaded trait
924 ///    `PartialEq` is not applicable.
925 ///
926 /// Reason #2 is the killer. I tried for a while to always use
927 /// overloaded logic and just check the types in constants/codegen after
928 /// the fact, and it worked fine, except for SIMD types. -nmatsakis
929 fn is_builtin_binop<'tcx>(lhs: Ty<'tcx>, rhs: Ty<'tcx>, op: hir::BinOp) -> bool {
930     // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
931     // (See https://github.com/rust-lang/rust/issues/57447.)
932     let (lhs, rhs) = (deref_ty_if_possible(lhs), deref_ty_if_possible(rhs));
933
934     match BinOpCategory::from(op) {
935         BinOpCategory::Shortcircuit => true,
936
937         BinOpCategory::Shift => {
938             lhs.references_error()
939                 || rhs.references_error()
940                 || lhs.is_integral() && rhs.is_integral()
941         }
942
943         BinOpCategory::Math => {
944             lhs.references_error()
945                 || rhs.references_error()
946                 || lhs.is_integral() && rhs.is_integral()
947                 || lhs.is_floating_point() && rhs.is_floating_point()
948         }
949
950         BinOpCategory::Bitwise => {
951             lhs.references_error()
952                 || rhs.references_error()
953                 || lhs.is_integral() && rhs.is_integral()
954                 || lhs.is_floating_point() && rhs.is_floating_point()
955                 || lhs.is_bool() && rhs.is_bool()
956         }
957
958         BinOpCategory::Comparison => {
959             lhs.references_error() || rhs.references_error() || lhs.is_scalar() && rhs.is_scalar()
960         }
961     }
962 }
963
964 struct TypeParamEraser<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, Span);
965
966 impl<'tcx> TypeFolder<'tcx> for TypeParamEraser<'_, 'tcx> {
967     fn tcx(&self) -> TyCtxt<'tcx> {
968         self.0.tcx
969     }
970
971     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
972         match ty.kind() {
973             ty::Param(_) => self.0.next_ty_var(TypeVariableOrigin {
974                 kind: TypeVariableOriginKind::MiscVariable,
975                 span: self.1,
976             }),
977             _ => ty.super_fold_with(self),
978         }
979     }
980 }