]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/op.rs
Deduplicate more op-flavored methods
[rust.git] / compiler / rustc_hir_typeck / src / op.rs
1 //! Code related to processing overloaded binary and unary operators.
2
3 use super::method::MethodCallee;
4 use super::{has_expected_num_generic_args, FnCtxt};
5 use crate::Expectation;
6 use rustc_ast as ast;
7 use rustc_errors::{self, struct_span_err, Applicability, Diagnostic};
8 use rustc_hir as hir;
9 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
10 use rustc_infer::traits::ObligationCauseCode;
11 use rustc_middle::ty::adjustment::{
12     Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
13 };
14 use rustc_middle::ty::print::with_no_trimmed_paths;
15 use rustc_middle::ty::{
16     self, DefIdTree, IsSuggestable, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeVisitable,
17 };
18 use rustc_session::errors::ExprParenthesesNeeded;
19 use rustc_span::source_map::Spanned;
20 use rustc_span::symbol::{sym, Ident};
21 use rustc_span::Span;
22 use rustc_trait_selection::infer::InferCtxtExt;
23 use rustc_trait_selection::traits::error_reporting::suggestions::TypeErrCtxtExt as _;
24 use rustc_trait_selection::traits::{self, FulfillmentError};
25 use rustc_type_ir::sty::TyKind::*;
26
27 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
28     /// Checks a `a <op>= b`
29     pub fn check_binop_assign(
30         &self,
31         expr: &'tcx hir::Expr<'tcx>,
32         op: hir::BinOp,
33         lhs: &'tcx hir::Expr<'tcx>,
34         rhs: &'tcx hir::Expr<'tcx>,
35         expected: Expectation<'tcx>,
36     ) -> Ty<'tcx> {
37         let (lhs_ty, rhs_ty, return_ty) =
38             self.check_overloaded_binop(expr, lhs, rhs, op, IsAssign::Yes, expected);
39
40         let ty =
41             if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
42                 self.enforce_builtin_binop_types(lhs.span, lhs_ty, rhs.span, rhs_ty, op);
43                 self.tcx.mk_unit()
44             } else {
45                 return_ty
46             };
47
48         self.check_lhs_assignable(lhs, "E0067", op.span, |err| {
49             if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
50                 if self
51                     .lookup_op_method(
52                         lhs_deref_ty,
53                         Some((rhs, rhs_ty)),
54                         Op::Binary(op, IsAssign::Yes),
55                         expected,
56                     )
57                     .is_ok()
58                 {
59                     // If LHS += RHS is an error, but *LHS += RHS is successful, then we will have
60                     // emitted a better suggestion during error handling in check_overloaded_binop.
61                     if self
62                         .lookup_op_method(
63                             lhs_ty,
64                             Some((rhs, rhs_ty)),
65                             Op::Binary(op, IsAssign::Yes),
66                             expected,
67                         )
68                         .is_err()
69                     {
70                         err.downgrade_to_delayed_bug();
71                     } else {
72                         // Otherwise, it's valid to suggest dereferencing the LHS here.
73                         err.span_suggestion_verbose(
74                             lhs.span.shrink_to_lo(),
75                             "consider dereferencing the left-hand side of this operation",
76                             "*",
77                             Applicability::MaybeIncorrect,
78                         );
79                     }
80                 }
81             }
82         });
83
84         ty
85     }
86
87     /// Checks a potentially overloaded binary operator.
88     pub fn check_binop(
89         &self,
90         expr: &'tcx hir::Expr<'tcx>,
91         op: hir::BinOp,
92         lhs_expr: &'tcx hir::Expr<'tcx>,
93         rhs_expr: &'tcx hir::Expr<'tcx>,
94         expected: Expectation<'tcx>,
95     ) -> Ty<'tcx> {
96         let tcx = self.tcx;
97
98         debug!(
99             "check_binop(expr.hir_id={}, expr={:?}, op={:?}, lhs_expr={:?}, rhs_expr={:?})",
100             expr.hir_id, expr, op, lhs_expr, rhs_expr
101         );
102
103         match BinOpCategory::from(op) {
104             BinOpCategory::Shortcircuit => {
105                 // && and || are a simple case.
106                 self.check_expr_coercable_to_type(lhs_expr, tcx.types.bool, None);
107                 let lhs_diverges = self.diverges.get();
108                 self.check_expr_coercable_to_type(rhs_expr, tcx.types.bool, None);
109
110                 // Depending on the LHS' value, the RHS can never execute.
111                 self.diverges.set(lhs_diverges);
112
113                 tcx.types.bool
114             }
115             _ => {
116                 // Otherwise, we always treat operators as if they are
117                 // overloaded. This is the way to be most flexible w/r/t
118                 // types that get inferred.
119                 let (lhs_ty, rhs_ty, return_ty) = self.check_overloaded_binop(
120                     expr,
121                     lhs_expr,
122                     rhs_expr,
123                     op,
124                     IsAssign::No,
125                     expected,
126                 );
127
128                 // Supply type inference hints if relevant. Probably these
129                 // hints should be enforced during select as part of the
130                 // `consider_unification_despite_ambiguity` routine, but this
131                 // more convenient for now.
132                 //
133                 // The basic idea is to help type inference by taking
134                 // advantage of things we know about how the impls for
135                 // scalar types are arranged. This is important in a
136                 // scenario like `1_u32 << 2`, because it lets us quickly
137                 // deduce that the result type should be `u32`, even
138                 // though we don't know yet what type 2 has and hence
139                 // can't pin this down to a specific impl.
140                 if !lhs_ty.is_ty_var()
141                     && !rhs_ty.is_ty_var()
142                     && is_builtin_binop(lhs_ty, rhs_ty, op)
143                 {
144                     let builtin_return_ty = self.enforce_builtin_binop_types(
145                         lhs_expr.span,
146                         lhs_ty,
147                         rhs_expr.span,
148                         rhs_ty,
149                         op,
150                     );
151                     self.demand_suptype(expr.span, builtin_return_ty, return_ty);
152                 }
153
154                 return_ty
155             }
156         }
157     }
158
159     fn enforce_builtin_binop_types(
160         &self,
161         lhs_span: Span,
162         lhs_ty: Ty<'tcx>,
163         rhs_span: Span,
164         rhs_ty: Ty<'tcx>,
165         op: hir::BinOp,
166     ) -> Ty<'tcx> {
167         debug_assert!(is_builtin_binop(lhs_ty, rhs_ty, op));
168
169         // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
170         // (See https://github.com/rust-lang/rust/issues/57447.)
171         let (lhs_ty, rhs_ty) = (deref_ty_if_possible(lhs_ty), deref_ty_if_possible(rhs_ty));
172
173         let tcx = self.tcx;
174         match BinOpCategory::from(op) {
175             BinOpCategory::Shortcircuit => {
176                 self.demand_suptype(lhs_span, tcx.types.bool, lhs_ty);
177                 self.demand_suptype(rhs_span, tcx.types.bool, rhs_ty);
178                 tcx.types.bool
179             }
180
181             BinOpCategory::Shift => {
182                 // result type is same as LHS always
183                 lhs_ty
184             }
185
186             BinOpCategory::Math | BinOpCategory::Bitwise => {
187                 // both LHS and RHS and result will have the same type
188                 self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
189                 lhs_ty
190             }
191
192             BinOpCategory::Comparison => {
193                 // both LHS and RHS and result will have the same type
194                 self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
195                 tcx.types.bool
196             }
197         }
198     }
199
200     fn check_overloaded_binop(
201         &self,
202         expr: &'tcx hir::Expr<'tcx>,
203         lhs_expr: &'tcx hir::Expr<'tcx>,
204         rhs_expr: &'tcx hir::Expr<'tcx>,
205         op: hir::BinOp,
206         is_assign: IsAssign,
207         expected: Expectation<'tcx>,
208     ) -> (Ty<'tcx>, Ty<'tcx>, Ty<'tcx>) {
209         debug!(
210             "check_overloaded_binop(expr.hir_id={}, op={:?}, is_assign={:?})",
211             expr.hir_id, op, is_assign
212         );
213
214         let lhs_ty = match is_assign {
215             IsAssign::No => {
216                 // Find a suitable supertype of the LHS expression's type, by coercing to
217                 // a type variable, to pass as the `Self` to the trait, avoiding invariant
218                 // trait matching creating lifetime constraints that are too strict.
219                 // e.g., adding `&'a T` and `&'b T`, given `&'x T: Add<&'x T>`, will result
220                 // in `&'a T <: &'x T` and `&'b T <: &'x T`, instead of `'a = 'b = 'x`.
221                 let lhs_ty = self.check_expr(lhs_expr);
222                 let fresh_var = self.next_ty_var(TypeVariableOrigin {
223                     kind: TypeVariableOriginKind::MiscVariable,
224                     span: lhs_expr.span,
225                 });
226                 self.demand_coerce(lhs_expr, lhs_ty, fresh_var, Some(rhs_expr), AllowTwoPhase::No)
227             }
228             IsAssign::Yes => {
229                 // rust-lang/rust#52126: We have to use strict
230                 // equivalence on the LHS of an assign-op like `+=`;
231                 // overwritten or mutably-borrowed places cannot be
232                 // coerced to a supertype.
233                 self.check_expr(lhs_expr)
234             }
235         };
236         let lhs_ty = self.resolve_vars_with_obligations(lhs_ty);
237
238         // N.B., as we have not yet type-checked the RHS, we don't have the
239         // type at hand. Make a variable to represent it. The whole reason
240         // for this indirection is so that, below, we can check the expr
241         // using this variable as the expected type, which sometimes lets
242         // us do better coercions than we would be able to do otherwise,
243         // particularly for things like `String + &String`.
244         let rhs_ty_var = self.next_ty_var(TypeVariableOrigin {
245             kind: TypeVariableOriginKind::MiscVariable,
246             span: rhs_expr.span,
247         });
248
249         let result = self.lookup_op_method(
250             lhs_ty,
251             Some((rhs_expr, rhs_ty_var)),
252             Op::Binary(op, is_assign),
253             expected,
254         );
255
256         // see `NB` above
257         let rhs_ty = self.check_expr_coercable_to_type(rhs_expr, rhs_ty_var, Some(lhs_expr));
258         let rhs_ty = self.resolve_vars_with_obligations(rhs_ty);
259
260         let return_ty = match result {
261             Ok(method) => {
262                 let by_ref_binop = !op.node.is_by_value();
263                 if is_assign == IsAssign::Yes || by_ref_binop {
264                     if let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() {
265                         let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);
266                         let autoref = Adjustment {
267                             kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
268                             target: method.sig.inputs()[0],
269                         };
270                         self.apply_adjustments(lhs_expr, vec![autoref]);
271                     }
272                 }
273                 if by_ref_binop {
274                     if let ty::Ref(region, _, mutbl) = method.sig.inputs()[1].kind() {
275                         // Allow two-phase borrows for binops in initial deployment
276                         // since they desugar to methods
277                         let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);
278
279                         let autoref = Adjustment {
280                             kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
281                             target: method.sig.inputs()[1],
282                         };
283                         // HACK(eddyb) Bypass checks due to reborrows being in
284                         // some cases applied on the RHS, on top of which we need
285                         // to autoref, which is not allowed by apply_adjustments.
286                         // self.apply_adjustments(rhs_expr, vec![autoref]);
287                         self.typeck_results
288                             .borrow_mut()
289                             .adjustments_mut()
290                             .entry(rhs_expr.hir_id)
291                             .or_default()
292                             .push(autoref);
293                     }
294                 }
295                 self.write_method_call(expr.hir_id, method);
296
297                 method.sig.output()
298             }
299             // error types are considered "builtin"
300             Err(_) if lhs_ty.references_error() || rhs_ty.references_error() => self.tcx.ty_error(),
301             Err(errors) => {
302                 let (_, trait_def_id) =
303                     lang_item_for_op(self.tcx, Op::Binary(op, is_assign), op.span);
304                 let missing_trait = trait_def_id
305                     .map(|def_id| with_no_trimmed_paths!(self.tcx.def_path_str(def_id)));
306                 let (mut err, output_def_id) = match is_assign {
307                     IsAssign::Yes => {
308                         let mut err = struct_span_err!(
309                             self.tcx.sess,
310                             expr.span,
311                             E0368,
312                             "binary assignment operation `{}=` cannot be applied to type `{}`",
313                             op.node.as_str(),
314                             lhs_ty,
315                         );
316                         err.span_label(
317                             lhs_expr.span,
318                             format!("cannot use `{}=` on type `{}`", op.node.as_str(), lhs_ty),
319                         );
320                         self.note_unmet_impls_on_type(&mut err, errors);
321                         (err, None)
322                     }
323                     IsAssign::No => {
324                         let message = match op.node {
325                             hir::BinOpKind::Add => {
326                                 format!("cannot add `{rhs_ty}` to `{lhs_ty}`")
327                             }
328                             hir::BinOpKind::Sub => {
329                                 format!("cannot subtract `{rhs_ty}` from `{lhs_ty}`")
330                             }
331                             hir::BinOpKind::Mul => {
332                                 format!("cannot multiply `{lhs_ty}` by `{rhs_ty}`")
333                             }
334                             hir::BinOpKind::Div => {
335                                 format!("cannot divide `{lhs_ty}` by `{rhs_ty}`")
336                             }
337                             hir::BinOpKind::Rem => {
338                                 format!("cannot mod `{lhs_ty}` by `{rhs_ty}`")
339                             }
340                             hir::BinOpKind::BitAnd => {
341                                 format!("no implementation for `{lhs_ty} & {rhs_ty}`")
342                             }
343                             hir::BinOpKind::BitXor => {
344                                 format!("no implementation for `{lhs_ty} ^ {rhs_ty}`")
345                             }
346                             hir::BinOpKind::BitOr => {
347                                 format!("no implementation for `{lhs_ty} | {rhs_ty}`")
348                             }
349                             hir::BinOpKind::Shl => {
350                                 format!("no implementation for `{lhs_ty} << {rhs_ty}`")
351                             }
352                             hir::BinOpKind::Shr => {
353                                 format!("no implementation for `{lhs_ty} >> {rhs_ty}`")
354                             }
355                             _ => format!(
356                                 "binary operation `{}` cannot be applied to type `{}`",
357                                 op.node.as_str(),
358                                 lhs_ty
359                             ),
360                         };
361                         let output_def_id = trait_def_id.and_then(|def_id| {
362                             self.tcx
363                                 .associated_item_def_ids(def_id)
364                                 .iter()
365                                 .find(|item_def_id| {
366                                     self.tcx.associated_item(*item_def_id).name == sym::Output
367                                 })
368                                 .cloned()
369                         });
370                         let mut err = struct_span_err!(self.tcx.sess, op.span, E0369, "{message}");
371                         if !lhs_expr.span.eq(&rhs_expr.span) {
372                             err.span_label(lhs_expr.span, lhs_ty.to_string());
373                             err.span_label(rhs_expr.span, rhs_ty.to_string());
374                         }
375                         self.note_unmet_impls_on_type(&mut err, errors);
376                         (err, output_def_id)
377                     }
378                 };
379
380                 let mut suggest_deref_binop = |lhs_deref_ty: Ty<'tcx>| {
381                     if self
382                         .lookup_op_method(
383                             lhs_deref_ty,
384                             Some((rhs_expr, rhs_ty)),
385                             Op::Binary(op, is_assign),
386                             expected,
387                         )
388                         .is_ok()
389                     {
390                         let msg = &format!(
391                             "`{}{}` can be used on `{}` if you dereference the left-hand side",
392                             op.node.as_str(),
393                             match is_assign {
394                                 IsAssign::Yes => "=",
395                                 IsAssign::No => "",
396                             },
397                             lhs_deref_ty,
398                         );
399                         err.span_suggestion_verbose(
400                             lhs_expr.span.shrink_to_lo(),
401                             msg,
402                             "*",
403                             rustc_errors::Applicability::MachineApplicable,
404                         );
405                     }
406                 };
407
408                 let is_compatible = |lhs_ty, rhs_ty| {
409                     self.lookup_op_method(
410                         lhs_ty,
411                         Some((rhs_expr, rhs_ty)),
412                         Op::Binary(op, is_assign),
413                         expected,
414                     )
415                     .is_ok()
416                 };
417
418                 // We should suggest `a + b` => `*a + b` if `a` is copy, and suggest
419                 // `a += b` => `*a += b` if a is a mut ref.
420                 if !op.span.can_be_used_for_suggestions() {
421                     // Suppress suggestions when lhs and rhs are not in the same span as the error
422                 } else if is_assign == IsAssign::Yes
423                     && let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty)
424                 {
425                     suggest_deref_binop(lhs_deref_ty);
426                 } else if is_assign == IsAssign::No
427                     && let Ref(_, lhs_deref_ty, _) = lhs_ty.kind()
428                 {
429                     if self.type_is_copy_modulo_regions(
430                         self.param_env,
431                         *lhs_deref_ty,
432                         lhs_expr.span,
433                     ) {
434                         suggest_deref_binop(*lhs_deref_ty);
435                     }
436                 } else if self.suggest_fn_call(&mut err, lhs_expr, lhs_ty, |lhs_ty| {
437                     is_compatible(lhs_ty, rhs_ty)
438                 }) || self.suggest_fn_call(&mut err, rhs_expr, rhs_ty, |rhs_ty| {
439                     is_compatible(lhs_ty, rhs_ty)
440                 }) || self.suggest_two_fn_call(
441                     &mut err,
442                     rhs_expr,
443                     rhs_ty,
444                     lhs_expr,
445                     lhs_ty,
446                     |lhs_ty, rhs_ty| is_compatible(lhs_ty, rhs_ty),
447                 ) {
448                     // Cool
449                 }
450
451                 if let Some(missing_trait) = missing_trait {
452                     if op.node == hir::BinOpKind::Add
453                         && self.check_str_addition(
454                             lhs_expr, rhs_expr, lhs_ty, rhs_ty, &mut err, is_assign, op,
455                         )
456                     {
457                         // This has nothing here because it means we did string
458                         // concatenation (e.g., "Hello " + "World!"). This means
459                         // we don't want the note in the else clause to be emitted
460                     } else if lhs_ty.has_non_region_param() {
461                         // Look for a TraitPredicate in the Fulfillment errors,
462                         // and use it to generate a suggestion.
463                         //
464                         // Note that lookup_op_method must be called again but
465                         // with a specific rhs_ty instead of a placeholder so
466                         // the resulting predicate generates a more specific
467                         // suggestion for the user.
468                         let errors = self
469                             .lookup_op_method(
470                                 lhs_ty,
471                                 Some((rhs_expr, rhs_ty)),
472                                 Op::Binary(op, is_assign),
473                                 expected,
474                             )
475                             .unwrap_err();
476                         if !errors.is_empty() {
477                             for error in errors {
478                                 if let Some(trait_pred) =
479                                     error.obligation.predicate.to_opt_poly_trait_pred()
480                                 {
481                                     let output_associated_item = match error.obligation.cause.code()
482                                     {
483                                         ObligationCauseCode::BinOp {
484                                             output_ty: Some(output_ty),
485                                             ..
486                                         } => {
487                                             // Make sure that we're attaching `Output = ..` to the right trait predicate
488                                             if let Some(output_def_id) = output_def_id
489                                                 && let Some(trait_def_id) = trait_def_id
490                                                 && self.tcx.parent(output_def_id) == trait_def_id
491                                                 && output_ty.is_suggestable(self.tcx, false)
492                                             {
493                                                 Some(("Output", *output_ty))
494                                             } else {
495                                                 None
496                                             }
497                                         }
498                                         _ => None,
499                                     };
500
501                                     self.err_ctxt().suggest_restricting_param_bound(
502                                         &mut err,
503                                         trait_pred,
504                                         output_associated_item,
505                                         self.body_id,
506                                     );
507                                 }
508                             }
509                         } else {
510                             // When we know that a missing bound is responsible, we don't show
511                             // this note as it is redundant.
512                             err.note(&format!(
513                                 "the trait `{missing_trait}` is not implemented for `{lhs_ty}`"
514                             ));
515                         }
516                     }
517                 }
518                 let reported = err.emit();
519                 self.tcx.ty_error_with_guaranteed(reported)
520             }
521         };
522
523         (lhs_ty, rhs_ty, return_ty)
524     }
525
526     /// Provide actionable suggestions when trying to add two strings with incorrect types,
527     /// like `&str + &str`, `String + String` and `&str + &String`.
528     ///
529     /// If this function returns `true` it means a note was printed, so we don't need
530     /// to print the normal "implementation of `std::ops::Add` might be missing" note
531     fn check_str_addition(
532         &self,
533         lhs_expr: &'tcx hir::Expr<'tcx>,
534         rhs_expr: &'tcx hir::Expr<'tcx>,
535         lhs_ty: Ty<'tcx>,
536         rhs_ty: Ty<'tcx>,
537         err: &mut Diagnostic,
538         is_assign: IsAssign,
539         op: hir::BinOp,
540     ) -> bool {
541         let str_concat_note = "string concatenation requires an owned `String` on the left";
542         let rm_borrow_msg = "remove the borrow to obtain an owned `String`";
543         let to_owned_msg = "create an owned `String` from a string reference";
544
545         let string_type = self.tcx.lang_items().string();
546         let is_std_string = |ty: Ty<'tcx>| {
547             ty.ty_adt_def().map_or(false, |ty_def| Some(ty_def.did()) == string_type)
548         };
549
550         match (lhs_ty.kind(), rhs_ty.kind()) {
551             (&Ref(_, l_ty, _), &Ref(_, r_ty, _)) // &str or &String + &str, &String or &&str
552                 if (*l_ty.kind() == Str || is_std_string(l_ty))
553                     && (*r_ty.kind() == Str
554                         || is_std_string(r_ty)
555                         || matches!(
556                             r_ty.kind(), Ref(_, inner_ty, _) if *inner_ty.kind() == Str
557                         )) =>
558             {
559                 if let IsAssign::No = is_assign { // Do not supply this message if `&str += &str`
560                     err.span_label(op.span, "`+` cannot be used to concatenate two `&str` strings");
561                     err.note(str_concat_note);
562                     if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
563                         err.span_suggestion_verbose(
564                             lhs_expr.span.until(lhs_inner_expr.span),
565                             rm_borrow_msg,
566                             "",
567                             Applicability::MachineApplicable
568                         );
569                     } else {
570                         err.span_suggestion_verbose(
571                             lhs_expr.span.shrink_to_hi(),
572                             to_owned_msg,
573                             ".to_owned()",
574                             Applicability::MachineApplicable
575                         );
576                     }
577                 }
578                 true
579             }
580             (&Ref(_, l_ty, _), &Adt(..)) // Handle `&str` & `&String` + `String`
581                 if (*l_ty.kind() == Str || is_std_string(l_ty)) && is_std_string(rhs_ty) =>
582             {
583                 err.span_label(
584                     op.span,
585                     "`+` cannot be used to concatenate a `&str` with a `String`",
586                 );
587                 match is_assign {
588                     IsAssign::No => {
589                         let sugg_msg;
590                         let lhs_sugg = if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
591                             sugg_msg = "remove the borrow on the left and add one on the right";
592                             (lhs_expr.span.until(lhs_inner_expr.span), "".to_owned())
593                         } else {
594                             sugg_msg = "create an owned `String` on the left and add a borrow on the right";
595                             (lhs_expr.span.shrink_to_hi(), ".to_owned()".to_owned())
596                         };
597                         let suggestions = vec![
598                             lhs_sugg,
599                             (rhs_expr.span.shrink_to_lo(), "&".to_owned()),
600                         ];
601                         err.multipart_suggestion_verbose(
602                             sugg_msg,
603                             suggestions,
604                             Applicability::MachineApplicable,
605                         );
606                     }
607                     IsAssign::Yes => {
608                         err.note(str_concat_note);
609                     }
610                 }
611                 true
612             }
613             _ => false,
614         }
615     }
616
617     pub fn check_user_unop(
618         &self,
619         ex: &'tcx hir::Expr<'tcx>,
620         operand_ty: Ty<'tcx>,
621         op: hir::UnOp,
622         expected: Expectation<'tcx>,
623     ) -> Ty<'tcx> {
624         assert!(op.is_by_value());
625         match self.lookup_op_method(operand_ty, None, Op::Unary(op, ex.span), expected) {
626             Ok(method) => {
627                 self.write_method_call(ex.hir_id, method);
628                 method.sig.output()
629             }
630             Err(errors) => {
631                 let actual = self.resolve_vars_if_possible(operand_ty);
632                 if !actual.references_error() {
633                     let mut err = struct_span_err!(
634                         self.tcx.sess,
635                         ex.span,
636                         E0600,
637                         "cannot apply unary operator `{}` to type `{}`",
638                         op.as_str(),
639                         actual
640                     );
641                     err.span_label(
642                         ex.span,
643                         format!("cannot apply unary operator `{}`", op.as_str()),
644                     );
645
646                     if operand_ty.has_non_region_param() {
647                         let predicates = errors.iter().filter_map(|error| {
648                             error.obligation.predicate.to_opt_poly_trait_pred()
649                         });
650                         for pred in predicates {
651                             self.err_ctxt().suggest_restricting_param_bound(
652                                 &mut err,
653                                 pred,
654                                 None,
655                                 self.body_id,
656                             );
657                         }
658                     }
659
660                     let sp = self.tcx.sess.source_map().start_point(ex.span);
661                     if let Some(sp) =
662                         self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
663                     {
664                         // If the previous expression was a block expression, suggest parentheses
665                         // (turning this into a binary subtraction operation instead.)
666                         // for example, `{2} - 2` -> `({2}) - 2` (see src\test\ui\parser\expr-as-stmt.rs)
667                         err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
668                     } else {
669                         match actual.kind() {
670                             Uint(_) if op == hir::UnOp::Neg => {
671                                 err.note("unsigned values cannot be negated");
672
673                                 if let hir::ExprKind::Unary(
674                                     _,
675                                     hir::Expr {
676                                         kind:
677                                             hir::ExprKind::Lit(Spanned {
678                                                 node: ast::LitKind::Int(1, _),
679                                                 ..
680                                             }),
681                                         ..
682                                     },
683                                 ) = ex.kind
684                                 {
685                                     err.span_suggestion(
686                                         ex.span,
687                                         &format!(
688                                             "you may have meant the maximum value of `{actual}`",
689                                         ),
690                                         format!("{actual}::MAX"),
691                                         Applicability::MaybeIncorrect,
692                                     );
693                                 }
694                             }
695                             Str | Never | Char | Tuple(_) | Array(_, _) => {}
696                             Ref(_, lty, _) if *lty.kind() == Str => {}
697                             _ => {
698                                 self.note_unmet_impls_on_type(&mut err, errors);
699                             }
700                         }
701                     }
702                     err.emit();
703                 }
704                 self.tcx.ty_error()
705             }
706         }
707     }
708
709     fn lookup_op_method(
710         &self,
711         lhs_ty: Ty<'tcx>,
712         opt_rhs: Option<(&'tcx hir::Expr<'tcx>, Ty<'tcx>)>,
713         op: Op,
714         expected: Expectation<'tcx>,
715     ) -> Result<MethodCallee<'tcx>, Vec<FulfillmentError<'tcx>>> {
716         let span = match op {
717             Op::Binary(op, _) => op.span,
718             Op::Unary(_, span) => span,
719         };
720         let (opname, trait_did) = lang_item_for_op(self.tcx, op, span);
721
722         debug!(
723             "lookup_op_method(lhs_ty={:?}, op={:?}, opname={:?}, trait_did={:?})",
724             lhs_ty, op, opname, trait_did
725         );
726
727         // Catches cases like #83893, where a lang item is declared with the
728         // wrong number of generic arguments. Should have yielded an error
729         // elsewhere by now, but we have to catch it here so that we do not
730         // index `other_tys` out of bounds (if the lang item has too many
731         // generic arguments, `other_tys` is too short).
732         if !has_expected_num_generic_args(
733             self.tcx,
734             trait_did,
735             match op {
736                 // Binary ops have a generic right-hand side, unary ops don't
737                 Op::Binary(..) => 1,
738                 Op::Unary(..) => 0,
739             },
740         ) {
741             self.tcx
742                 .sess
743                 .delay_span_bug(span, "operator didn't have the right number of generic args");
744             return Err(vec![]);
745         }
746
747         let opname = Ident::with_dummy_span(opname);
748         let input_types =
749             opt_rhs.as_ref().map(|(_, ty)| std::slice::from_ref(ty)).unwrap_or_default();
750         let cause = self.cause(
751             span,
752             traits::BinOp {
753                 rhs_span: opt_rhs.map(|(expr, _)| expr.span),
754                 is_lit: opt_rhs
755                     .map_or(false, |(expr, _)| matches!(expr.kind, hir::ExprKind::Lit(_))),
756                 output_ty: expected.only_has_type(self),
757             },
758         );
759
760         let method = trait_did.and_then(|trait_did| {
761             self.lookup_method_in_trait(cause.clone(), opname, trait_did, lhs_ty, Some(input_types))
762         });
763
764         match (method, trait_did) {
765             (Some(ok), _) => {
766                 let method = self.register_infer_ok_obligations(ok);
767                 self.select_obligations_where_possible(|_| {});
768                 Ok(method)
769             }
770             (None, None) => Err(vec![]),
771             (None, Some(trait_did)) => {
772                 let (obligation, _) =
773                     self.obligation_for_method(cause, trait_did, lhs_ty, Some(input_types));
774                 Err(rustc_trait_selection::traits::fully_solve_obligation(self, obligation))
775             }
776         }
777     }
778 }
779
780 fn lang_item_for_op(
781     tcx: TyCtxt<'_>,
782     op: Op,
783     span: Span,
784 ) -> (rustc_span::Symbol, Option<hir::def_id::DefId>) {
785     let lang = tcx.lang_items();
786     if let Op::Binary(op, IsAssign::Yes) = op {
787         match op.node {
788             hir::BinOpKind::Add => (sym::add_assign, lang.add_assign_trait()),
789             hir::BinOpKind::Sub => (sym::sub_assign, lang.sub_assign_trait()),
790             hir::BinOpKind::Mul => (sym::mul_assign, lang.mul_assign_trait()),
791             hir::BinOpKind::Div => (sym::div_assign, lang.div_assign_trait()),
792             hir::BinOpKind::Rem => (sym::rem_assign, lang.rem_assign_trait()),
793             hir::BinOpKind::BitXor => (sym::bitxor_assign, lang.bitxor_assign_trait()),
794             hir::BinOpKind::BitAnd => (sym::bitand_assign, lang.bitand_assign_trait()),
795             hir::BinOpKind::BitOr => (sym::bitor_assign, lang.bitor_assign_trait()),
796             hir::BinOpKind::Shl => (sym::shl_assign, lang.shl_assign_trait()),
797             hir::BinOpKind::Shr => (sym::shr_assign, lang.shr_assign_trait()),
798             hir::BinOpKind::Lt
799             | hir::BinOpKind::Le
800             | hir::BinOpKind::Ge
801             | hir::BinOpKind::Gt
802             | hir::BinOpKind::Eq
803             | hir::BinOpKind::Ne
804             | hir::BinOpKind::And
805             | hir::BinOpKind::Or => {
806                 span_bug!(span, "impossible assignment operation: {}=", op.node.as_str())
807             }
808         }
809     } else if let Op::Binary(op, IsAssign::No) = op {
810         match op.node {
811             hir::BinOpKind::Add => (sym::add, lang.add_trait()),
812             hir::BinOpKind::Sub => (sym::sub, lang.sub_trait()),
813             hir::BinOpKind::Mul => (sym::mul, lang.mul_trait()),
814             hir::BinOpKind::Div => (sym::div, lang.div_trait()),
815             hir::BinOpKind::Rem => (sym::rem, lang.rem_trait()),
816             hir::BinOpKind::BitXor => (sym::bitxor, lang.bitxor_trait()),
817             hir::BinOpKind::BitAnd => (sym::bitand, lang.bitand_trait()),
818             hir::BinOpKind::BitOr => (sym::bitor, lang.bitor_trait()),
819             hir::BinOpKind::Shl => (sym::shl, lang.shl_trait()),
820             hir::BinOpKind::Shr => (sym::shr, lang.shr_trait()),
821             hir::BinOpKind::Lt => (sym::lt, lang.partial_ord_trait()),
822             hir::BinOpKind::Le => (sym::le, lang.partial_ord_trait()),
823             hir::BinOpKind::Ge => (sym::ge, lang.partial_ord_trait()),
824             hir::BinOpKind::Gt => (sym::gt, lang.partial_ord_trait()),
825             hir::BinOpKind::Eq => (sym::eq, lang.eq_trait()),
826             hir::BinOpKind::Ne => (sym::ne, lang.eq_trait()),
827             hir::BinOpKind::And | hir::BinOpKind::Or => {
828                 span_bug!(span, "&& and || are not overloadable")
829             }
830         }
831     } else if let Op::Unary(hir::UnOp::Not, _) = op {
832         (sym::not, lang.not_trait())
833     } else if let Op::Unary(hir::UnOp::Neg, _) = op {
834         (sym::neg, lang.neg_trait())
835     } else {
836         bug!("lookup_op_method: op not supported: {:?}", op)
837     }
838 }
839
840 // Binary operator categories. These categories summarize the behavior
841 // with respect to the builtin operations supported.
842 enum BinOpCategory {
843     /// &&, || -- cannot be overridden
844     Shortcircuit,
845
846     /// <<, >> -- when shifting a single integer, rhs can be any
847     /// integer type. For simd, types must match.
848     Shift,
849
850     /// +, -, etc -- takes equal types, produces same type as input,
851     /// applicable to ints/floats/simd
852     Math,
853
854     /// &, |, ^ -- takes equal types, produces same type as input,
855     /// applicable to ints/floats/simd/bool
856     Bitwise,
857
858     /// ==, !=, etc -- takes equal types, produces bools, except for simd,
859     /// which produce the input type
860     Comparison,
861 }
862
863 impl BinOpCategory {
864     fn from(op: hir::BinOp) -> BinOpCategory {
865         match op.node {
866             hir::BinOpKind::Shl | hir::BinOpKind::Shr => BinOpCategory::Shift,
867
868             hir::BinOpKind::Add
869             | hir::BinOpKind::Sub
870             | hir::BinOpKind::Mul
871             | hir::BinOpKind::Div
872             | hir::BinOpKind::Rem => BinOpCategory::Math,
873
874             hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => {
875                 BinOpCategory::Bitwise
876             }
877
878             hir::BinOpKind::Eq
879             | hir::BinOpKind::Ne
880             | hir::BinOpKind::Lt
881             | hir::BinOpKind::Le
882             | hir::BinOpKind::Ge
883             | hir::BinOpKind::Gt => BinOpCategory::Comparison,
884
885             hir::BinOpKind::And | hir::BinOpKind::Or => BinOpCategory::Shortcircuit,
886         }
887     }
888 }
889
890 /// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
891 #[derive(Clone, Copy, Debug, PartialEq)]
892 enum IsAssign {
893     No,
894     Yes,
895 }
896
897 #[derive(Clone, Copy, Debug)]
898 enum Op {
899     Binary(hir::BinOp, IsAssign),
900     Unary(hir::UnOp, Span),
901 }
902
903 /// Dereferences a single level of immutable referencing.
904 fn deref_ty_if_possible(ty: Ty<'_>) -> Ty<'_> {
905     match ty.kind() {
906         ty::Ref(_, ty, hir::Mutability::Not) => *ty,
907         _ => ty,
908     }
909 }
910
911 /// Returns `true` if this is a built-in arithmetic operation (e.g., u32
912 /// + u32, i16x4 == i16x4) and false if these types would have to be
913 /// overloaded to be legal. There are two reasons that we distinguish
914 /// builtin operations from overloaded ones (vs trying to drive
915 /// everything uniformly through the trait system and intrinsics or
916 /// something like that):
917 ///
918 /// 1. Builtin operations can trivially be evaluated in constants.
919 /// 2. For comparison operators applied to SIMD types the result is
920 ///    not of type `bool`. For example, `i16x4 == i16x4` yields a
921 ///    type like `i16x4`. This means that the overloaded trait
922 ///    `PartialEq` is not applicable.
923 ///
924 /// Reason #2 is the killer. I tried for a while to always use
925 /// overloaded logic and just check the types in constants/codegen after
926 /// the fact, and it worked fine, except for SIMD types. -nmatsakis
927 fn is_builtin_binop<'tcx>(lhs: Ty<'tcx>, rhs: Ty<'tcx>, op: hir::BinOp) -> bool {
928     // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
929     // (See https://github.com/rust-lang/rust/issues/57447.)
930     let (lhs, rhs) = (deref_ty_if_possible(lhs), deref_ty_if_possible(rhs));
931
932     match BinOpCategory::from(op) {
933         BinOpCategory::Shortcircuit => true,
934
935         BinOpCategory::Shift => {
936             lhs.references_error()
937                 || rhs.references_error()
938                 || lhs.is_integral() && rhs.is_integral()
939         }
940
941         BinOpCategory::Math => {
942             lhs.references_error()
943                 || rhs.references_error()
944                 || lhs.is_integral() && rhs.is_integral()
945                 || lhs.is_floating_point() && rhs.is_floating_point()
946         }
947
948         BinOpCategory::Bitwise => {
949             lhs.references_error()
950                 || rhs.references_error()
951                 || lhs.is_integral() && rhs.is_integral()
952                 || lhs.is_floating_point() && rhs.is_floating_point()
953                 || lhs.is_bool() && rhs.is_bool()
954         }
955
956         BinOpCategory::Comparison => {
957             lhs.references_error() || rhs.references_error() || lhs.is_scalar() && rhs.is_scalar()
958         }
959     }
960 }
961
962 struct TypeParamEraser<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, Span);
963
964 impl<'tcx> TypeFolder<'tcx> for TypeParamEraser<'_, 'tcx> {
965     fn tcx(&self) -> TyCtxt<'tcx> {
966         self.0.tcx
967     }
968
969     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
970         match ty.kind() {
971             ty::Param(_) => self.0.next_ty_var(TypeVariableOrigin {
972                 kind: TypeVariableOriginKind::MiscVariable,
973                 span: self.1,
974             }),
975             _ => ty.super_fold_with(self),
976         }
977     }
978 }