]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/method/probe.rs
Auto merge of #103779 - the8472:simd-str-contains, r=thomcc
[rust.git] / compiler / rustc_hir_typeck / src / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::errors::MethodCallOnUnknownType;
7 use crate::FnCtxt;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_hir::def::Namespace;
13 use rustc_infer::infer::canonical::OriginalQueryValues;
14 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
15 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
16 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
17 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
18 use rustc_middle::middle::stability;
19 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
20 use rustc_middle::ty::AssocItem;
21 use rustc_middle::ty::GenericParamDefKind;
22 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
23 use rustc_middle::ty::{InternalSubsts, SubstsRef};
24 use rustc_session::lint;
25 use rustc_span::def_id::DefId;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     scope_expr_id: hir::HirId,
88 }
89
90 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
91     type Target = FnCtxt<'a, 'tcx>;
92     fn deref(&self) -> &Self::Target {
93         self.fcx
94     }
95 }
96
97 #[derive(Debug, Clone)]
98 struct Candidate<'tcx> {
99     // Candidates are (I'm not quite sure, but they are mostly) basically
100     // some metadata on top of a `ty::AssocItem` (without substs).
101     //
102     // However, method probing wants to be able to evaluate the predicates
103     // for a function with the substs applied - for example, if a function
104     // has `where Self: Sized`, we don't want to consider it unless `Self`
105     // is actually `Sized`, and similarly, return-type suggestions want
106     // to consider the "actual" return type.
107     //
108     // The way this is handled is through `xform_self_ty`. It contains
109     // the receiver type of this candidate, but `xform_self_ty`,
110     // `xform_ret_ty` and `kind` (which contains the predicates) have the
111     // generic parameters of this candidate substituted with the *same set*
112     // of inference variables, which acts as some weird sort of "query".
113     //
114     // When we check out a candidate, we require `xform_self_ty` to be
115     // a subtype of the passed-in self-type, and this equates the type
116     // variables in the rest of the fields.
117     //
118     // For example, if we have this candidate:
119     // ```
120     //    trait Foo {
121     //        fn foo(&self) where Self: Sized;
122     //    }
123     // ```
124     //
125     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
126     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
127     // the receiver `&T`, we'll do the subtyping which will make `?X`
128     // get the right value, then when we evaluate the predicate we'll check
129     // if `T: Sized`.
130     xform_self_ty: Ty<'tcx>,
131     xform_ret_ty: Option<Ty<'tcx>>,
132     item: ty::AssocItem,
133     kind: CandidateKind<'tcx>,
134     import_ids: SmallVec<[LocalDefId; 1]>,
135 }
136
137 #[derive(Debug, Clone)]
138 enum CandidateKind<'tcx> {
139     InherentImplCandidate(
140         SubstsRef<'tcx>,
141         // Normalize obligations
142         Vec<traits::PredicateObligation<'tcx>>,
143     ),
144     ObjectCandidate,
145     TraitCandidate(ty::TraitRef<'tcx>),
146     WhereClauseCandidate(
147         // Trait
148         ty::PolyTraitRef<'tcx>,
149     ),
150 }
151
152 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
153 enum ProbeResult {
154     NoMatch,
155     BadReturnType,
156     Match,
157 }
158
159 /// When adjusting a receiver we often want to do one of
160 ///
161 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
162 /// - If the receiver has type `*mut T`, convert it to `*const T`
163 ///
164 /// This type tells us which one to do.
165 ///
166 /// Note that in principle we could do both at the same time. For example, when the receiver has
167 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
168 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
169 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
170 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
171 #[derive(Debug, PartialEq, Copy, Clone)]
172 pub enum AutorefOrPtrAdjustment {
173     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
174     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
175     Autoref {
176         mutbl: hir::Mutability,
177
178         /// Indicates that the source expression should be "unsized" to a target type.
179         /// This is special-cased for just arrays unsizing to slices.
180         unsize: bool,
181     },
182     /// Receiver has type `*mut T`, convert to `*const T`
183     ToConstPtr,
184 }
185
186 impl AutorefOrPtrAdjustment {
187     fn get_unsize(&self) -> bool {
188         match self {
189             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
190             AutorefOrPtrAdjustment::ToConstPtr => false,
191         }
192     }
193 }
194
195 #[derive(Debug, Clone)]
196 pub struct Pick<'tcx> {
197     pub item: ty::AssocItem,
198     pub kind: PickKind<'tcx>,
199     pub import_ids: SmallVec<[LocalDefId; 1]>,
200
201     /// Indicates that the source expression should be autoderef'd N times
202     /// ```ignore (not-rust)
203     /// A = expr | *expr | **expr | ...
204     /// ```
205     pub autoderefs: usize,
206
207     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
208     /// `*mut T`, convert it to `*const T`.
209     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
210     pub self_ty: Ty<'tcx>,
211
212     /// Unstable candidates alongside the stable ones.
213     unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
214 }
215
216 #[derive(Clone, Debug, PartialEq, Eq)]
217 pub enum PickKind<'tcx> {
218     InherentImplPick,
219     ObjectPick,
220     TraitPick,
221     WhereClausePick(
222         // Trait
223         ty::PolyTraitRef<'tcx>,
224     ),
225 }
226
227 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
228
229 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
230 pub enum Mode {
231     // An expression of the form `receiver.method_name(...)`.
232     // Autoderefs are performed on `receiver`, lookup is done based on the
233     // `self` argument  of the method, and static methods aren't considered.
234     MethodCall,
235     // An expression of the form `Type::item` or `<T>::item`.
236     // No autoderefs are performed, lookup is done based on the type each
237     // implementation is for, and static methods are included.
238     Path,
239 }
240
241 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
242 pub enum ProbeScope {
243     // Assemble candidates coming only from traits in scope.
244     TraitsInScope,
245
246     // Assemble candidates coming from all traits.
247     AllTraits,
248 }
249
250 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
251     /// This is used to offer suggestions to users. It returns methods
252     /// that could have been called which have the desired return
253     /// type. Some effort is made to rule out methods that, if called,
254     /// would result in an error (basically, the same criteria we
255     /// would use to decide if a method is a plausible fit for
256     /// ambiguity purposes).
257     #[instrument(level = "debug", skip(self, candidate_filter))]
258     pub fn probe_for_return_type(
259         &self,
260         span: Span,
261         mode: Mode,
262         return_type: Ty<'tcx>,
263         self_ty: Ty<'tcx>,
264         scope_expr_id: hir::HirId,
265         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
266     ) -> Vec<ty::AssocItem> {
267         let method_names = self
268             .probe_op(
269                 span,
270                 mode,
271                 None,
272                 Some(return_type),
273                 IsSuggestion(true),
274                 self_ty,
275                 scope_expr_id,
276                 ProbeScope::AllTraits,
277                 |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
278             )
279             .unwrap_or_default();
280         method_names
281             .iter()
282             .flat_map(|&method_name| {
283                 self.probe_op(
284                     span,
285                     mode,
286                     Some(method_name),
287                     Some(return_type),
288                     IsSuggestion(true),
289                     self_ty,
290                     scope_expr_id,
291                     ProbeScope::AllTraits,
292                     |probe_cx| probe_cx.pick(),
293                 )
294                 .ok()
295                 .map(|pick| pick.item)
296             })
297             .collect()
298     }
299
300     #[instrument(level = "debug", skip(self))]
301     pub fn probe_for_name(
302         &self,
303         mode: Mode,
304         item_name: Ident,
305         is_suggestion: IsSuggestion,
306         self_ty: Ty<'tcx>,
307         scope_expr_id: hir::HirId,
308         scope: ProbeScope,
309     ) -> PickResult<'tcx> {
310         self.probe_op(
311             item_name.span,
312             mode,
313             Some(item_name),
314             None,
315             is_suggestion,
316             self_ty,
317             scope_expr_id,
318             scope,
319             |probe_cx| probe_cx.pick(),
320         )
321     }
322
323     fn probe_op<OP, R>(
324         &'a self,
325         span: Span,
326         mode: Mode,
327         method_name: Option<Ident>,
328         return_type: Option<Ty<'tcx>>,
329         is_suggestion: IsSuggestion,
330         self_ty: Ty<'tcx>,
331         scope_expr_id: hir::HirId,
332         scope: ProbeScope,
333         op: OP,
334     ) -> Result<R, MethodError<'tcx>>
335     where
336         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
337     {
338         let mut orig_values = OriginalQueryValues::default();
339         let param_env_and_self_ty = self.canonicalize_query(
340             ParamEnvAnd { param_env: self.param_env, value: self_ty },
341             &mut orig_values,
342         );
343
344         let steps = if mode == Mode::MethodCall {
345             self.tcx.method_autoderef_steps(param_env_and_self_ty)
346         } else {
347             self.probe(|_| {
348                 // Mode::Path - the deref steps is "trivial". This turns
349                 // our CanonicalQuery into a "trivial" QueryResponse. This
350                 // is a bit inefficient, but I don't think that writing
351                 // special handling for this "trivial case" is a good idea.
352
353                 let infcx = &self.infcx;
354                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
355                     infcx.instantiate_canonical_with_fresh_inference_vars(
356                         span,
357                         &param_env_and_self_ty,
358                     );
359                 debug!(
360                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
361                     param_env_and_self_ty, self_ty
362                 );
363                 MethodAutoderefStepsResult {
364                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
365                         self_ty: self.make_query_response_ignoring_pending_obligations(
366                             canonical_inference_vars,
367                             self_ty,
368                         ),
369                         autoderefs: 0,
370                         from_unsafe_deref: false,
371                         unsize: false,
372                     }]),
373                     opt_bad_ty: None,
374                     reached_recursion_limit: false,
375                 }
376             })
377         };
378
379         // If our autoderef loop had reached the recursion limit,
380         // report an overflow error, but continue going on with
381         // the truncated autoderef list.
382         if steps.reached_recursion_limit {
383             self.probe(|_| {
384                 let ty = &steps
385                     .steps
386                     .last()
387                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
388                     .self_ty;
389                 let ty = self
390                     .probe_instantiate_query_response(span, &orig_values, ty)
391                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
392                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
393             });
394         }
395
396         // If we encountered an `_` type or an error type during autoderef, this is
397         // ambiguous.
398         if let Some(bad_ty) = &steps.opt_bad_ty {
399             if is_suggestion.0 {
400                 // Ambiguity was encountered during a suggestion. Just keep going.
401                 debug!("ProbeContext: encountered ambiguity in suggestion");
402             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
403                 // this case used to be allowed by the compiler,
404                 // so we do a future-compat lint here for the 2015 edition
405                 // (see https://github.com/rust-lang/rust/issues/46906)
406                 if self.tcx.sess.rust_2018() {
407                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
408                 } else {
409                     self.tcx.struct_span_lint_hir(
410                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
411                         scope_expr_id,
412                         span,
413                         "type annotations needed",
414                         |lint| lint,
415                     );
416                 }
417             } else {
418                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
419                 // an `Err`, report the right "type annotations needed" error pointing
420                 // to it.
421                 let ty = &bad_ty.ty;
422                 let ty = self
423                     .probe_instantiate_query_response(span, &orig_values, ty)
424                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
425                 let ty = self.structurally_resolved_type(span, ty.value);
426                 assert!(matches!(ty.kind(), ty::Error(_)));
427                 return Err(MethodError::NoMatch(NoMatchData {
428                     static_candidates: Vec::new(),
429                     unsatisfied_predicates: Vec::new(),
430                     out_of_scope_traits: Vec::new(),
431                     lev_candidate: None,
432                     mode,
433                 }));
434             }
435         }
436
437         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
438
439         // this creates one big transaction so that all type variables etc
440         // that we create during the probe process are removed later
441         self.probe(|_| {
442             let mut probe_cx = ProbeContext::new(
443                 self,
444                 span,
445                 mode,
446                 method_name,
447                 return_type,
448                 orig_values,
449                 steps.steps,
450                 scope_expr_id,
451             );
452
453             probe_cx.assemble_inherent_candidates();
454             match scope {
455                 ProbeScope::TraitsInScope => {
456                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
457                 }
458                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
459             };
460             op(probe_cx)
461         })
462     }
463 }
464
465 pub fn provide(providers: &mut ty::query::Providers) {
466     providers.method_autoderef_steps = method_autoderef_steps;
467 }
468
469 fn method_autoderef_steps<'tcx>(
470     tcx: TyCtxt<'tcx>,
471     goal: CanonicalTyGoal<'tcx>,
472 ) -> MethodAutoderefStepsResult<'tcx> {
473     debug!("method_autoderef_steps({:?})", goal);
474
475     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
476     let ParamEnvAnd { param_env, value: self_ty } = goal;
477
478     let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
479         .include_raw_pointers()
480         .silence_errors();
481     let mut reached_raw_pointer = false;
482     let mut steps: Vec<_> = autoderef
483         .by_ref()
484         .map(|(ty, d)| {
485             let step = CandidateStep {
486                 self_ty: infcx
487                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
488                 autoderefs: d,
489                 from_unsafe_deref: reached_raw_pointer,
490                 unsize: false,
491             };
492             if let ty::RawPtr(_) = ty.kind() {
493                 // all the subsequent steps will be from_unsafe_deref
494                 reached_raw_pointer = true;
495             }
496             step
497         })
498         .collect();
499
500     let final_ty = autoderef.final_ty(true);
501     let opt_bad_ty = match final_ty.kind() {
502         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
503             reached_raw_pointer,
504             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
505         }),
506         ty::Array(elem_ty, _) => {
507             let dereferences = steps.len() - 1;
508
509             steps.push(CandidateStep {
510                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
511                     inference_vars,
512                     infcx.tcx.mk_slice(*elem_ty),
513                 ),
514                 autoderefs: dereferences,
515                 // this could be from an unsafe deref if we had
516                 // a *mut/const [T; N]
517                 from_unsafe_deref: reached_raw_pointer,
518                 unsize: true,
519             });
520
521             None
522         }
523         _ => None,
524     };
525
526     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
527
528     MethodAutoderefStepsResult {
529         steps: tcx.arena.alloc_from_iter(steps),
530         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
531         reached_recursion_limit: autoderef.reached_recursion_limit(),
532     }
533 }
534
535 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
536     fn new(
537         fcx: &'a FnCtxt<'a, 'tcx>,
538         span: Span,
539         mode: Mode,
540         method_name: Option<Ident>,
541         return_type: Option<Ty<'tcx>>,
542         orig_steps_var_values: OriginalQueryValues<'tcx>,
543         steps: &'tcx [CandidateStep<'tcx>],
544         scope_expr_id: hir::HirId,
545     ) -> ProbeContext<'a, 'tcx> {
546         ProbeContext {
547             fcx,
548             span,
549             mode,
550             method_name,
551             return_type,
552             inherent_candidates: Vec::new(),
553             extension_candidates: Vec::new(),
554             impl_dups: FxHashSet::default(),
555             orig_steps_var_values,
556             steps,
557             static_candidates: Vec::new(),
558             allow_similar_names: false,
559             private_candidate: None,
560             unsatisfied_predicates: Vec::new(),
561             scope_expr_id,
562         }
563     }
564
565     fn reset(&mut self) {
566         self.inherent_candidates.clear();
567         self.extension_candidates.clear();
568         self.impl_dups.clear();
569         self.static_candidates.clear();
570         self.private_candidate = None;
571     }
572
573     ///////////////////////////////////////////////////////////////////////////
574     // CANDIDATE ASSEMBLY
575
576     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
577         let is_accessible = if let Some(name) = self.method_name {
578             let item = candidate.item;
579             let def_scope = self
580                 .tcx
581                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
582                 .1;
583             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
584         } else {
585             true
586         };
587         if is_accessible {
588             if is_inherent {
589                 self.inherent_candidates.push(candidate);
590             } else {
591                 self.extension_candidates.push(candidate);
592             }
593         } else if self.private_candidate.is_none() {
594             self.private_candidate =
595                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
596         }
597     }
598
599     fn assemble_inherent_candidates(&mut self) {
600         for step in self.steps.iter() {
601             self.assemble_probe(&step.self_ty);
602         }
603     }
604
605     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
606         debug!("assemble_probe: self_ty={:?}", self_ty);
607         let raw_self_ty = self_ty.value.value;
608         match *raw_self_ty.kind() {
609             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
610                 // Subtle: we can't use `instantiate_query_response` here: using it will
611                 // commit to all of the type equalities assumed by inference going through
612                 // autoderef (see the `method-probe-no-guessing` test).
613                 //
614                 // However, in this code, it is OK if we end up with an object type that is
615                 // "more general" than the object type that we are evaluating. For *every*
616                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
617                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
618                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
619                 // of the iterations in the autoderef loop, so there is no problem with it
620                 // being discoverable in another one of these iterations.
621                 //
622                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
623                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
624                 // `CanonicalVarValues` will exactly give us such a generalization - it
625                 // will still match the original object type, but it won't pollute our
626                 // type variables in any form, so just do that!
627                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
628                     self.fcx
629                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
630
631                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
632                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
633                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
634                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
635                 }
636             }
637             ty::Adt(def, _) => {
638                 let def_id = def.did();
639                 self.assemble_inherent_impl_candidates_for_type(def_id);
640                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
641                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
642                 }
643             }
644             ty::Foreign(did) => {
645                 self.assemble_inherent_impl_candidates_for_type(did);
646                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
647                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
648                 }
649             }
650             ty::Param(p) => {
651                 self.assemble_inherent_candidates_from_param(p);
652             }
653             ty::Bool
654             | ty::Char
655             | ty::Int(_)
656             | ty::Uint(_)
657             | ty::Float(_)
658             | ty::Str
659             | ty::Array(..)
660             | ty::Slice(_)
661             | ty::RawPtr(_)
662             | ty::Ref(..)
663             | ty::Never
664             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
665             _ => {}
666         }
667     }
668
669     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
670         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
671             bug!("unexpected incoherent type: {:?}", self_ty)
672         };
673         for &impl_def_id in self.tcx.incoherent_impls(simp) {
674             self.assemble_inherent_impl_probe(impl_def_id);
675         }
676     }
677
678     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
679         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
680         for &impl_def_id in impl_def_ids.iter() {
681             self.assemble_inherent_impl_probe(impl_def_id);
682         }
683     }
684
685     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
686         if !self.impl_dups.insert(impl_def_id) {
687             return; // already visited
688         }
689
690         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
691
692         for item in self.impl_or_trait_item(impl_def_id) {
693             if !self.has_applicable_self(&item) {
694                 // No receiver declared. Not a candidate.
695                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
696                 continue;
697             }
698
699             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
700             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
701
702             debug!("impl_ty: {:?}", impl_ty);
703
704             // Determine the receiver type that the method itself expects.
705             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
706             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
707
708             // We can't use normalize_associated_types_in as it will pollute the
709             // fcx's fulfillment context after this probe is over.
710             // Note: we only normalize `xform_self_ty` here since the normalization
711             // of the return type can lead to inference results that prohibit
712             // valid candidates from being found, see issue #85671
713             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
714             // which might be caused by the `param_env` itself. The clauses of the `param_env`
715             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
716             // see issue #89650
717             let cause = traits::ObligationCause::misc(self.span, self.body_id);
718             let selcx = &mut traits::SelectionContext::new(self.fcx);
719             let traits::Normalized { value: xform_self_ty, obligations } =
720                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
721             debug!(
722                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
723                 xform_self_ty, xform_ret_ty
724             );
725
726             self.push_candidate(
727                 Candidate {
728                     xform_self_ty,
729                     xform_ret_ty,
730                     item,
731                     kind: InherentImplCandidate(impl_substs, obligations),
732                     import_ids: smallvec![],
733                 },
734                 true,
735             );
736         }
737     }
738
739     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
740         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
741
742         let principal = match self_ty.kind() {
743             ty::Dynamic(ref data, ..) => Some(data),
744             _ => None,
745         }
746         .and_then(|data| data.principal())
747         .unwrap_or_else(|| {
748             span_bug!(
749                 self.span,
750                 "non-object {:?} in assemble_inherent_candidates_from_object",
751                 self_ty
752             )
753         });
754
755         // It is illegal to invoke a method on a trait instance that refers to
756         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
757         // will be reported by `object_safety.rs` if the method refers to the
758         // `Self` type anywhere other than the receiver. Here, we use a
759         // substitution that replaces `Self` with the object type itself. Hence,
760         // a `&self` method will wind up with an argument type like `&dyn Trait`.
761         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
762         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
763             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
764
765             let (xform_self_ty, xform_ret_ty) =
766                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
767             this.push_candidate(
768                 Candidate {
769                     xform_self_ty,
770                     xform_ret_ty,
771                     item,
772                     kind: ObjectCandidate,
773                     import_ids: smallvec![],
774                 },
775                 true,
776             );
777         });
778     }
779
780     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
781         // FIXME: do we want to commit to this behavior for param bounds?
782         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
783
784         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
785             let bound_predicate = predicate.kind();
786             match bound_predicate.skip_binder() {
787                 ty::PredicateKind::Trait(trait_predicate) => {
788                     match *trait_predicate.trait_ref.self_ty().kind() {
789                         ty::Param(p) if p == param_ty => {
790                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
791                         }
792                         _ => None,
793                     }
794                 }
795                 ty::PredicateKind::Subtype(..)
796                 | ty::PredicateKind::Coerce(..)
797                 | ty::PredicateKind::Projection(..)
798                 | ty::PredicateKind::RegionOutlives(..)
799                 | ty::PredicateKind::WellFormed(..)
800                 | ty::PredicateKind::ObjectSafe(..)
801                 | ty::PredicateKind::ClosureKind(..)
802                 | ty::PredicateKind::TypeOutlives(..)
803                 | ty::PredicateKind::ConstEvaluatable(..)
804                 | ty::PredicateKind::ConstEquate(..)
805                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
806             }
807         });
808
809         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
810             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
811
812             let (xform_self_ty, xform_ret_ty) =
813                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
814
815             // Because this trait derives from a where-clause, it
816             // should not contain any inference variables or other
817             // artifacts. This means it is safe to put into the
818             // `WhereClauseCandidate` and (eventually) into the
819             // `WhereClausePick`.
820             assert!(!trait_ref.substs.needs_infer());
821
822             this.push_candidate(
823                 Candidate {
824                     xform_self_ty,
825                     xform_ret_ty,
826                     item,
827                     kind: WhereClauseCandidate(poly_trait_ref),
828                     import_ids: smallvec![],
829                 },
830                 true,
831             );
832         });
833     }
834
835     // Do a search through a list of bounds, using a callback to actually
836     // create the candidates.
837     fn elaborate_bounds<F>(
838         &mut self,
839         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
840         mut mk_cand: F,
841     ) where
842         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
843     {
844         let tcx = self.tcx;
845         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
846             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
847             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
848                 if !self.has_applicable_self(&item) {
849                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
850                 } else {
851                     mk_cand(self, bound_trait_ref, item);
852                 }
853             }
854         }
855     }
856
857     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
858         let mut duplicates = FxHashSet::default();
859         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
860         if let Some(applicable_traits) = opt_applicable_traits {
861             for trait_candidate in applicable_traits.iter() {
862                 let trait_did = trait_candidate.def_id;
863                 if duplicates.insert(trait_did) {
864                     self.assemble_extension_candidates_for_trait(
865                         &trait_candidate.import_ids,
866                         trait_did,
867                     );
868                 }
869             }
870         }
871     }
872
873     fn assemble_extension_candidates_for_all_traits(&mut self) {
874         let mut duplicates = FxHashSet::default();
875         for trait_info in suggest::all_traits(self.tcx) {
876             if duplicates.insert(trait_info.def_id) {
877                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
878             }
879         }
880     }
881
882     fn matches_return_type(
883         &self,
884         method: &ty::AssocItem,
885         self_ty: Option<Ty<'tcx>>,
886         expected: Ty<'tcx>,
887     ) -> bool {
888         match method.kind {
889             ty::AssocKind::Fn => {
890                 let fty = self.tcx.bound_fn_sig(method.def_id);
891                 self.probe(|_| {
892                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
893                     let fty = fty.subst(self.tcx, substs);
894                     let fty =
895                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
896
897                     if let Some(self_ty) = self_ty {
898                         if self
899                             .at(&ObligationCause::dummy(), self.param_env)
900                             .sup(fty.inputs()[0], self_ty)
901                             .is_err()
902                         {
903                             return false;
904                         }
905                     }
906                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
907                 })
908             }
909             _ => false,
910         }
911     }
912
913     fn assemble_extension_candidates_for_trait(
914         &mut self,
915         import_ids: &SmallVec<[LocalDefId; 1]>,
916         trait_def_id: DefId,
917     ) {
918         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
919         let trait_substs = self.fresh_item_substs(trait_def_id);
920         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
921
922         if self.tcx.is_trait_alias(trait_def_id) {
923             // For trait aliases, assume all supertraits are relevant.
924             let bounds = iter::once(ty::Binder::dummy(trait_ref));
925             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
926                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
927
928                 let (xform_self_ty, xform_ret_ty) =
929                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
930                 this.push_candidate(
931                     Candidate {
932                         xform_self_ty,
933                         xform_ret_ty,
934                         item,
935                         import_ids: import_ids.clone(),
936                         kind: TraitCandidate(new_trait_ref),
937                     },
938                     false,
939                 );
940             });
941         } else {
942             debug_assert!(self.tcx.is_trait(trait_def_id));
943             for item in self.impl_or_trait_item(trait_def_id) {
944                 // Check whether `trait_def_id` defines a method with suitable name.
945                 if !self.has_applicable_self(&item) {
946                     debug!("method has inapplicable self");
947                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
948                     continue;
949                 }
950
951                 let (xform_self_ty, xform_ret_ty) =
952                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
953                 self.push_candidate(
954                     Candidate {
955                         xform_self_ty,
956                         xform_ret_ty,
957                         item,
958                         import_ids: import_ids.clone(),
959                         kind: TraitCandidate(trait_ref),
960                     },
961                     false,
962                 );
963             }
964         }
965     }
966
967     fn candidate_method_names(
968         &self,
969         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
970     ) -> Vec<Ident> {
971         let mut set = FxHashSet::default();
972         let mut names: Vec<_> = self
973             .inherent_candidates
974             .iter()
975             .chain(&self.extension_candidates)
976             .filter(|candidate| candidate_filter(&candidate.item))
977             .filter(|candidate| {
978                 if let Some(return_ty) = self.return_type {
979                     self.matches_return_type(&candidate.item, None, return_ty)
980                 } else {
981                     true
982                 }
983             })
984             .map(|candidate| candidate.item.ident(self.tcx))
985             .filter(|&name| set.insert(name))
986             .collect();
987
988         // Sort them by the name so we have a stable result.
989         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
990         names
991     }
992
993     ///////////////////////////////////////////////////////////////////////////
994     // THE ACTUAL SEARCH
995
996     fn pick(mut self) -> PickResult<'tcx> {
997         assert!(self.method_name.is_some());
998
999         if let Some(r) = self.pick_core() {
1000             return r;
1001         }
1002
1003         debug!("pick: actual search failed, assemble diagnostics");
1004
1005         let static_candidates = mem::take(&mut self.static_candidates);
1006         let private_candidate = self.private_candidate.take();
1007         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1008
1009         // things failed, so lets look at all traits, for diagnostic purposes now:
1010         self.reset();
1011
1012         let span = self.span;
1013         let tcx = self.tcx;
1014
1015         self.assemble_extension_candidates_for_all_traits();
1016
1017         let out_of_scope_traits = match self.pick_core() {
1018             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1019             Some(Err(MethodError::Ambiguity(v))) => v
1020                 .into_iter()
1021                 .map(|source| match source {
1022                     CandidateSource::Trait(id) => id,
1023                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1024                         Some(id) => id,
1025                         None => span_bug!(span, "found inherent method when looking at traits"),
1026                     },
1027                 })
1028                 .collect(),
1029             Some(Err(MethodError::NoMatch(NoMatchData {
1030                 out_of_scope_traits: others, ..
1031             }))) => {
1032                 assert!(others.is_empty());
1033                 vec![]
1034             }
1035             _ => vec![],
1036         };
1037
1038         if let Some((kind, def_id)) = private_candidate {
1039             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1040         }
1041         let lev_candidate = self.probe_for_lev_candidate()?;
1042
1043         Err(MethodError::NoMatch(NoMatchData {
1044             static_candidates,
1045             unsatisfied_predicates,
1046             out_of_scope_traits,
1047             lev_candidate,
1048             mode: self.mode,
1049         }))
1050     }
1051
1052     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1053         let pick = self.pick_all_method(Some(&mut vec![]));
1054
1055         // In this case unstable picking is done by `pick_method`.
1056         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1057             return pick;
1058         }
1059
1060         if pick.is_none() {
1061             return self.pick_all_method(None);
1062         }
1063         pick
1064     }
1065
1066     fn pick_all_method(
1067         &mut self,
1068         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1069     ) -> Option<PickResult<'tcx>> {
1070         let steps = self.steps.clone();
1071         steps
1072             .iter()
1073             .filter(|step| {
1074                 debug!("pick_all_method: step={:?}", step);
1075                 // skip types that are from a type error or that would require dereferencing
1076                 // a raw pointer
1077                 !step.self_ty.references_error() && !step.from_unsafe_deref
1078             })
1079             .flat_map(|step| {
1080                 let InferOk { value: self_ty, obligations: _ } = self
1081                     .fcx
1082                     .probe_instantiate_query_response(
1083                         self.span,
1084                         &self.orig_steps_var_values,
1085                         &step.self_ty,
1086                     )
1087                     .unwrap_or_else(|_| {
1088                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1089                     });
1090                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1091                     .or_else(|| {
1092                         self.pick_autorefd_method(
1093                             step,
1094                             self_ty,
1095                             hir::Mutability::Not,
1096                             unstable_candidates.as_deref_mut(),
1097                         )
1098                         .or_else(|| {
1099                             self.pick_autorefd_method(
1100                                 step,
1101                                 self_ty,
1102                                 hir::Mutability::Mut,
1103                                 unstable_candidates.as_deref_mut(),
1104                             )
1105                         })
1106                         .or_else(|| {
1107                             self.pick_const_ptr_method(
1108                                 step,
1109                                 self_ty,
1110                                 unstable_candidates.as_deref_mut(),
1111                             )
1112                         })
1113                     })
1114             })
1115             .next()
1116     }
1117
1118     /// For each type `T` in the step list, this attempts to find a method where
1119     /// the (transformed) self type is exactly `T`. We do however do one
1120     /// transformation on the adjustment: if we are passing a region pointer in,
1121     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1122     /// to transparently pass `&mut` pointers, in particular, without consuming
1123     /// them for their entire lifetime.
1124     fn pick_by_value_method(
1125         &mut self,
1126         step: &CandidateStep<'tcx>,
1127         self_ty: Ty<'tcx>,
1128         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1129     ) -> Option<PickResult<'tcx>> {
1130         if step.unsize {
1131             return None;
1132         }
1133
1134         self.pick_method(self_ty, unstable_candidates).map(|r| {
1135             r.map(|mut pick| {
1136                 pick.autoderefs = step.autoderefs;
1137
1138                 // Insert a `&*` or `&mut *` if this is a reference type:
1139                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1140                     pick.autoderefs += 1;
1141                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1142                         mutbl,
1143                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1144                     })
1145                 }
1146
1147                 pick
1148             })
1149         })
1150     }
1151
1152     fn pick_autorefd_method(
1153         &mut self,
1154         step: &CandidateStep<'tcx>,
1155         self_ty: Ty<'tcx>,
1156         mutbl: hir::Mutability,
1157         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1158     ) -> Option<PickResult<'tcx>> {
1159         let tcx = self.tcx;
1160
1161         // In general, during probing we erase regions.
1162         let region = tcx.lifetimes.re_erased;
1163
1164         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1165         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1166             r.map(|mut pick| {
1167                 pick.autoderefs = step.autoderefs;
1168                 pick.autoref_or_ptr_adjustment =
1169                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1170                 pick
1171             })
1172         })
1173     }
1174
1175     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1176     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1177     /// autorefs would require dereferencing the pointer, which is not safe.
1178     fn pick_const_ptr_method(
1179         &mut self,
1180         step: &CandidateStep<'tcx>,
1181         self_ty: Ty<'tcx>,
1182         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1183     ) -> Option<PickResult<'tcx>> {
1184         // Don't convert an unsized reference to ptr
1185         if step.unsize {
1186             return None;
1187         }
1188
1189         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1190             return None;
1191         };
1192
1193         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1194         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1195         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1196             r.map(|mut pick| {
1197                 pick.autoderefs = step.autoderefs;
1198                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1199                 pick
1200             })
1201         })
1202     }
1203
1204     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1205         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1206
1207         let mut possibly_unsatisfied_predicates = Vec::new();
1208
1209         for (kind, candidates) in
1210             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1211         {
1212             debug!("searching {} candidates", kind);
1213             let res = self.consider_candidates(
1214                 self_ty,
1215                 candidates.iter(),
1216                 &mut possibly_unsatisfied_predicates,
1217                 Some(&mut vec![]),
1218             );
1219             if res.is_some() {
1220                 return res;
1221             }
1222         }
1223
1224         debug!("searching unstable candidates");
1225         let res = self.consider_candidates(
1226             self_ty,
1227             self.inherent_candidates.iter().chain(&self.extension_candidates),
1228             &mut possibly_unsatisfied_predicates,
1229             None,
1230         );
1231         if res.is_none() {
1232             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1233         }
1234         res
1235     }
1236
1237     fn pick_method(
1238         &mut self,
1239         self_ty: Ty<'tcx>,
1240         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1241     ) -> Option<PickResult<'tcx>> {
1242         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1243             return self.pick_method_with_unstable(self_ty);
1244         }
1245
1246         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1247
1248         let mut possibly_unsatisfied_predicates = Vec::new();
1249
1250         for (kind, candidates) in
1251             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1252         {
1253             debug!("searching {} candidates", kind);
1254             let res = self.consider_candidates(
1255                 self_ty,
1256                 candidates.iter(),
1257                 &mut possibly_unsatisfied_predicates,
1258                 unstable_candidates.as_deref_mut(),
1259             );
1260             if let Some(pick) = res {
1261                 return Some(pick);
1262             }
1263         }
1264
1265         // `pick_method` may be called twice for the same self_ty if no stable methods
1266         // match. Only extend once.
1267         if unstable_candidates.is_some() {
1268             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1269         }
1270         None
1271     }
1272
1273     fn consider_candidates<'b, ProbesIter>(
1274         &self,
1275         self_ty: Ty<'tcx>,
1276         probes: ProbesIter,
1277         possibly_unsatisfied_predicates: &mut Vec<(
1278             ty::Predicate<'tcx>,
1279             Option<ty::Predicate<'tcx>>,
1280             Option<ObligationCause<'tcx>>,
1281         )>,
1282         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1283     ) -> Option<PickResult<'tcx>>
1284     where
1285         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1286         'tcx: 'b,
1287     {
1288         let mut applicable_candidates: Vec<_> = probes
1289             .clone()
1290             .map(|probe| {
1291                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1292             })
1293             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1294             .collect();
1295
1296         debug!("applicable_candidates: {:?}", applicable_candidates);
1297
1298         if applicable_candidates.len() > 1 {
1299             if let Some(pick) =
1300                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1301             {
1302                 return Some(Ok(pick));
1303             }
1304         }
1305
1306         if let Some(uc) = &mut unstable_candidates {
1307             applicable_candidates.retain(|&(p, _)| {
1308                 if let stability::EvalResult::Deny { feature, .. } =
1309                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1310                 {
1311                     uc.push((p.clone(), feature));
1312                     return false;
1313                 }
1314                 true
1315             });
1316         }
1317
1318         if applicable_candidates.len() > 1 {
1319             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1320             return Some(Err(MethodError::Ambiguity(sources)));
1321         }
1322
1323         applicable_candidates.pop().map(|(probe, status)| {
1324             if status == ProbeResult::Match {
1325                 Ok(probe
1326                     .to_unadjusted_pick(self_ty, unstable_candidates.cloned().unwrap_or_default()))
1327             } else {
1328                 Err(MethodError::BadReturnType)
1329             }
1330         })
1331     }
1332 }
1333
1334 impl<'tcx> Pick<'tcx> {
1335     /// In case there were unstable name collisions, emit them as a lint.
1336     /// Checks whether two picks do not refer to the same trait item for the same `Self` type.
1337     /// Only useful for comparisons of picks in order to improve diagnostics.
1338     /// Do not use for type checking.
1339     pub fn differs_from(&self, other: &Self) -> bool {
1340         let Self {
1341             item:
1342                 AssocItem {
1343                     def_id,
1344                     name: _,
1345                     kind: _,
1346                     container: _,
1347                     trait_item_def_id: _,
1348                     fn_has_self_parameter: _,
1349                 },
1350             kind: _,
1351             import_ids: _,
1352             autoderefs: _,
1353             autoref_or_ptr_adjustment: _,
1354             self_ty,
1355             unstable_candidates: _,
1356         } = *self;
1357         self_ty != other.self_ty || def_id != other.item.def_id
1358     }
1359
1360     /// In case there were unstable name collisions, emit them as a lint.
1361     pub fn maybe_emit_unstable_name_collision_hint(
1362         &self,
1363         tcx: TyCtxt<'tcx>,
1364         span: Span,
1365         scope_expr_id: hir::HirId,
1366     ) {
1367         if self.unstable_candidates.is_empty() {
1368             return;
1369         }
1370         let def_kind = self.item.kind.as_def_kind();
1371         tcx.struct_span_lint_hir(
1372             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1373             scope_expr_id,
1374             span,
1375             format!(
1376                 "{} {} with this name may be added to the standard library in the future",
1377                 def_kind.article(),
1378                 def_kind.descr(self.item.def_id),
1379             ),
1380             |lint| {
1381                 match (self.item.kind, self.item.container) {
1382                     (ty::AssocKind::Fn, _) => {
1383                         // FIXME: This should be a `span_suggestion` instead of `help`
1384                         // However `self.span` only
1385                         // highlights the method name, so we can't use it. Also consider reusing
1386                         // the code from `report_method_error()`.
1387                         lint.help(&format!(
1388                             "call with fully qualified syntax `{}(...)` to keep using the current \
1389                              method",
1390                             tcx.def_path_str(self.item.def_id),
1391                         ));
1392                     }
1393                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1394                         let def_id = self.item.container_id(tcx);
1395                         lint.span_suggestion(
1396                             span,
1397                             "use the fully qualified path to the associated const",
1398                             format!(
1399                                 "<{} as {}>::{}",
1400                                 self.self_ty,
1401                                 tcx.def_path_str(def_id),
1402                                 self.item.name
1403                             ),
1404                             Applicability::MachineApplicable,
1405                         );
1406                     }
1407                     _ => {}
1408                 }
1409                 if tcx.sess.is_nightly_build() {
1410                     for (candidate, feature) in &self.unstable_candidates {
1411                         lint.help(&format!(
1412                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1413                             feature,
1414                             tcx.def_path_str(candidate.item.def_id),
1415                         ));
1416                     }
1417                 }
1418
1419                 lint
1420             },
1421         );
1422     }
1423 }
1424
1425 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
1426     fn select_trait_candidate(
1427         &self,
1428         trait_ref: ty::TraitRef<'tcx>,
1429     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1430         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1431         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1432         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1433         traits::SelectionContext::new(self).select(&obligation)
1434     }
1435
1436     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1437         match candidate.kind {
1438             InherentImplCandidate(..) => {
1439                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1440             }
1441             ObjectCandidate | WhereClauseCandidate(_) => {
1442                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1443             }
1444             TraitCandidate(trait_ref) => self.probe(|_| {
1445                 let _ = self
1446                     .at(&ObligationCause::dummy(), self.param_env)
1447                     .define_opaque_types(false)
1448                     .sup(candidate.xform_self_ty, self_ty);
1449                 match self.select_trait_candidate(trait_ref) {
1450                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1451                         // If only a single impl matches, make the error message point
1452                         // to that impl.
1453                         CandidateSource::Impl(impl_data.impl_def_id)
1454                     }
1455                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1456                 }
1457             }),
1458         }
1459     }
1460
1461     fn consider_probe(
1462         &self,
1463         self_ty: Ty<'tcx>,
1464         probe: &Candidate<'tcx>,
1465         possibly_unsatisfied_predicates: &mut Vec<(
1466             ty::Predicate<'tcx>,
1467             Option<ty::Predicate<'tcx>>,
1468             Option<ObligationCause<'tcx>>,
1469         )>,
1470     ) -> ProbeResult {
1471         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1472
1473         self.probe(|_| {
1474             // First check that the self type can be related.
1475             let sub_obligations = match self
1476                 .at(&ObligationCause::dummy(), self.param_env)
1477                 .define_opaque_types(false)
1478                 .sup(probe.xform_self_ty, self_ty)
1479             {
1480                 Ok(InferOk { obligations, value: () }) => obligations,
1481                 Err(err) => {
1482                     debug!("--> cannot relate self-types {:?}", err);
1483                     return ProbeResult::NoMatch;
1484                 }
1485             };
1486
1487             let mut result = ProbeResult::Match;
1488             let mut xform_ret_ty = probe.xform_ret_ty;
1489             debug!(?xform_ret_ty);
1490
1491             let selcx = &mut traits::SelectionContext::new(self);
1492             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1493
1494             let mut parent_pred = None;
1495
1496             // If so, impls may carry other conditions (e.g., where
1497             // clauses) that must be considered. Make sure that those
1498             // match as well (or at least may match, sometimes we
1499             // don't have enough information to fully evaluate).
1500             match probe.kind {
1501                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1502                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1503                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1504                     // for why this is necessary
1505                     let traits::Normalized {
1506                         value: normalized_xform_ret_ty,
1507                         obligations: normalization_obligations,
1508                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1509                     xform_ret_ty = normalized_xform_ret_ty;
1510                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1511
1512                     // Check whether the impl imposes obligations we have to worry about.
1513                     let impl_def_id = probe.item.container_id(self.tcx);
1514                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1515                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1516                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1517                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1518
1519                     // Convert the bounds into obligations.
1520                     let impl_obligations = traits::predicates_for_generics(
1521                         move |_, _| cause.clone(),
1522                         self.param_env,
1523                         impl_bounds,
1524                     );
1525
1526                     let candidate_obligations = impl_obligations
1527                         .chain(norm_obligations.into_iter())
1528                         .chain(ref_obligations.iter().cloned())
1529                         .chain(normalization_obligations.into_iter());
1530
1531                     // Evaluate those obligations to see if they might possibly hold.
1532                     for o in candidate_obligations {
1533                         let o = self.resolve_vars_if_possible(o);
1534                         if !self.predicate_may_hold(&o) {
1535                             result = ProbeResult::NoMatch;
1536                             possibly_unsatisfied_predicates.push((
1537                                 o.predicate,
1538                                 None,
1539                                 Some(o.cause),
1540                             ));
1541                         }
1542                     }
1543                 }
1544
1545                 ObjectCandidate | WhereClauseCandidate(..) => {
1546                     // These have no additional conditions to check.
1547                 }
1548
1549                 TraitCandidate(trait_ref) => {
1550                     if let Some(method_name) = self.method_name {
1551                         // Some trait methods are excluded for arrays before 2021.
1552                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1553                         if self_ty.is_array() && !method_name.span.rust_2021() {
1554                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1555                             if trait_def.skip_array_during_method_dispatch {
1556                                 return ProbeResult::NoMatch;
1557                             }
1558                         }
1559                     }
1560                     let predicate =
1561                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1562                     parent_pred = Some(predicate);
1563                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1564                     if !self.predicate_may_hold(&obligation) {
1565                         result = ProbeResult::NoMatch;
1566                         if self.probe(|_| {
1567                             match self.select_trait_candidate(trait_ref) {
1568                                 Err(_) => return true,
1569                                 Ok(Some(impl_source))
1570                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1571                                 {
1572                                     for obligation in impl_source.borrow_nested_obligations() {
1573                                         // Determine exactly which obligation wasn't met, so
1574                                         // that we can give more context in the error.
1575                                         if !self.predicate_may_hold(obligation) {
1576                                             let nested_predicate =
1577                                                 self.resolve_vars_if_possible(obligation.predicate);
1578                                             let predicate =
1579                                                 self.resolve_vars_if_possible(predicate);
1580                                             let p = if predicate == nested_predicate {
1581                                                 // Avoid "`MyStruct: Foo` which is required by
1582                                                 // `MyStruct: Foo`" in E0599.
1583                                                 None
1584                                             } else {
1585                                                 Some(predicate)
1586                                             };
1587                                             possibly_unsatisfied_predicates.push((
1588                                                 nested_predicate,
1589                                                 p,
1590                                                 Some(obligation.cause.clone()),
1591                                             ));
1592                                         }
1593                                     }
1594                                 }
1595                                 _ => {
1596                                     // Some nested subobligation of this predicate
1597                                     // failed.
1598                                     let predicate = self.resolve_vars_if_possible(predicate);
1599                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1600                                 }
1601                             }
1602                             false
1603                         }) {
1604                             // This candidate's primary obligation doesn't even
1605                             // select - don't bother registering anything in
1606                             // `potentially_unsatisfied_predicates`.
1607                             return ProbeResult::NoMatch;
1608                         }
1609                     }
1610                 }
1611             }
1612
1613             // Evaluate those obligations to see if they might possibly hold.
1614             for o in sub_obligations {
1615                 let o = self.resolve_vars_if_possible(o);
1616                 if !self.predicate_may_hold(&o) {
1617                     result = ProbeResult::NoMatch;
1618                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1619                 }
1620             }
1621
1622             if let ProbeResult::Match = result {
1623                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1624                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1625                     debug!(
1626                         "comparing return_ty {:?} with xform ret ty {:?}",
1627                         return_ty, probe.xform_ret_ty
1628                     );
1629                     if self
1630                         .at(&ObligationCause::dummy(), self.param_env)
1631                         .define_opaque_types(false)
1632                         .sup(return_ty, xform_ret_ty)
1633                         .is_err()
1634                     {
1635                         return ProbeResult::BadReturnType;
1636                     }
1637                 }
1638             }
1639
1640             result
1641         })
1642     }
1643
1644     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1645     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1646     /// external interface of the method can be determined from the trait, it's ok not to decide.
1647     /// We can basically just collapse all of the probes for various impls into one where-clause
1648     /// probe. This will result in a pending obligation so when more type-info is available we can
1649     /// make the final decision.
1650     ///
1651     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1652     ///
1653     /// ```ignore (illustrative)
1654     /// trait Foo { ... }
1655     /// impl Foo for Vec<i32> { ... }
1656     /// impl Foo for Vec<usize> { ... }
1657     /// ```
1658     ///
1659     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1660     /// use, so it's ok to just commit to "using the method from the trait Foo".
1661     fn collapse_candidates_to_trait_pick(
1662         &self,
1663         self_ty: Ty<'tcx>,
1664         probes: &[(&Candidate<'tcx>, ProbeResult)],
1665     ) -> Option<Pick<'tcx>> {
1666         // Do all probes correspond to the same trait?
1667         let container = probes[0].0.item.trait_container(self.tcx)?;
1668         for (p, _) in &probes[1..] {
1669             let p_container = p.item.trait_container(self.tcx)?;
1670             if p_container != container {
1671                 return None;
1672             }
1673         }
1674
1675         // FIXME: check the return type here somehow.
1676         // If so, just use this trait and call it a day.
1677         Some(Pick {
1678             item: probes[0].0.item,
1679             kind: TraitPick,
1680             import_ids: probes[0].0.import_ids.clone(),
1681             autoderefs: 0,
1682             autoref_or_ptr_adjustment: None,
1683             self_ty,
1684             unstable_candidates: vec![],
1685         })
1686     }
1687
1688     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1689     /// candidate method where the method name may have been misspelled. Similarly to other
1690     /// Levenshtein based suggestions, we provide at most one such suggestion.
1691     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1692         debug!("probing for method names similar to {:?}", self.method_name);
1693
1694         let steps = self.steps.clone();
1695         self.probe(|_| {
1696             let mut pcx = ProbeContext::new(
1697                 self.fcx,
1698                 self.span,
1699                 self.mode,
1700                 self.method_name,
1701                 self.return_type,
1702                 self.orig_steps_var_values.clone(),
1703                 steps,
1704                 self.scope_expr_id,
1705             );
1706             pcx.allow_similar_names = true;
1707             pcx.assemble_inherent_candidates();
1708
1709             let method_names = pcx.candidate_method_names(|_| true);
1710             pcx.allow_similar_names = false;
1711             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1712                 .iter()
1713                 .filter_map(|&method_name| {
1714                     pcx.reset();
1715                     pcx.method_name = Some(method_name);
1716                     pcx.assemble_inherent_candidates();
1717                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1718                 })
1719                 .collect();
1720
1721             if applicable_close_candidates.is_empty() {
1722                 Ok(None)
1723             } else {
1724                 let best_name = {
1725                     let names = applicable_close_candidates
1726                         .iter()
1727                         .map(|cand| cand.name)
1728                         .collect::<Vec<Symbol>>();
1729                     find_best_match_for_name_with_substrings(
1730                         &names,
1731                         self.method_name.unwrap().name,
1732                         None,
1733                     )
1734                 }
1735                 .unwrap();
1736                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1737             }
1738         })
1739     }
1740
1741     ///////////////////////////////////////////////////////////////////////////
1742     // MISCELLANY
1743     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1744         // "Fast track" -- check for usage of sugar when in method call
1745         // mode.
1746         //
1747         // In Path mode (i.e., resolving a value like `T::next`), consider any
1748         // associated value (i.e., methods, constants) but not types.
1749         match self.mode {
1750             Mode::MethodCall => item.fn_has_self_parameter,
1751             Mode::Path => match item.kind {
1752                 ty::AssocKind::Type => false,
1753                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1754             },
1755         }
1756         // FIXME -- check for types that deref to `Self`,
1757         // like `Rc<Self>` and so on.
1758         //
1759         // Note also that the current code will break if this type
1760         // includes any of the type parameters defined on the method
1761         // -- but this could be overcome.
1762     }
1763
1764     fn record_static_candidate(&mut self, source: CandidateSource) {
1765         self.static_candidates.push(source);
1766     }
1767
1768     #[instrument(level = "debug", skip(self))]
1769     fn xform_self_ty(
1770         &self,
1771         item: &ty::AssocItem,
1772         impl_ty: Ty<'tcx>,
1773         substs: SubstsRef<'tcx>,
1774     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1775         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1776             let sig = self.xform_method_sig(item.def_id, substs);
1777             (sig.inputs()[0], Some(sig.output()))
1778         } else {
1779             (impl_ty, None)
1780         }
1781     }
1782
1783     #[instrument(level = "debug", skip(self))]
1784     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1785         let fn_sig = self.tcx.bound_fn_sig(method);
1786         debug!(?fn_sig);
1787
1788         assert!(!substs.has_escaping_bound_vars());
1789
1790         // It is possible for type parameters or early-bound lifetimes
1791         // to appear in the signature of `self`. The substitutions we
1792         // are given do not include type/lifetime parameters for the
1793         // method yet. So create fresh variables here for those too,
1794         // if there are any.
1795         let generics = self.tcx.generics_of(method);
1796         assert_eq!(substs.len(), generics.parent_count as usize);
1797
1798         let xform_fn_sig = if generics.params.is_empty() {
1799             fn_sig.subst(self.tcx, substs)
1800         } else {
1801             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1802                 let i = param.index as usize;
1803                 if i < substs.len() {
1804                     substs[i]
1805                 } else {
1806                     match param.kind {
1807                         GenericParamDefKind::Lifetime => {
1808                             // In general, during probe we erase regions.
1809                             self.tcx.lifetimes.re_erased.into()
1810                         }
1811                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1812                             self.var_for_def(self.span, param)
1813                         }
1814                     }
1815                 }
1816             });
1817             fn_sig.subst(self.tcx, substs)
1818         };
1819
1820         self.erase_late_bound_regions(xform_fn_sig)
1821     }
1822
1823     /// Gets the type of an impl and generate substitutions with inference vars.
1824     fn impl_ty_and_substs(
1825         &self,
1826         impl_def_id: DefId,
1827     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1828         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1829     }
1830
1831     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1832         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1833             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1834             GenericParamDefKind::Type { .. } => self
1835                 .next_ty_var(TypeVariableOrigin {
1836                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1837                     span: self.tcx.def_span(def_id),
1838                 })
1839                 .into(),
1840             GenericParamDefKind::Const { .. } => {
1841                 let span = self.tcx.def_span(def_id);
1842                 let origin = ConstVariableOrigin {
1843                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1844                     span,
1845                 };
1846                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1847             }
1848         })
1849     }
1850
1851     /// Replaces late-bound-regions bound by `value` with `'static` using
1852     /// `ty::erase_late_bound_regions`.
1853     ///
1854     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1855     /// method matching. It is reasonable during the probe phase because we don't consider region
1856     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1857     /// rather than creating fresh region variables. This is nice for two reasons:
1858     ///
1859     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1860     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1861     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1862     ///
1863     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1864     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1865     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1866     ///    region got replaced with the same variable, which requires a bit more coordination
1867     ///    and/or tracking the substitution and
1868     ///    so forth.
1869     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1870     where
1871         T: TypeFoldable<'tcx>,
1872     {
1873         self.tcx.erase_late_bound_regions(value)
1874     }
1875
1876     /// Finds the method with the appropriate name (or return type, as the case may be). If
1877     /// `allow_similar_names` is set, find methods with close-matching names.
1878     // The length of the returned iterator is nearly always 0 or 1 and this
1879     // method is fairly hot.
1880     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1881         if let Some(name) = self.method_name {
1882             if self.allow_similar_names {
1883                 let max_dist = max(name.as_str().len(), 3) / 3;
1884                 self.tcx
1885                     .associated_items(def_id)
1886                     .in_definition_order()
1887                     .filter(|x| {
1888                         if x.kind.namespace() != Namespace::ValueNS {
1889                             return false;
1890                         }
1891                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1892                         {
1893                             Some(d) => d > 0,
1894                             None => false,
1895                         }
1896                     })
1897                     .copied()
1898                     .collect()
1899             } else {
1900                 self.fcx
1901                     .associated_value(def_id, name)
1902                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1903             }
1904         } else {
1905             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1906         }
1907     }
1908 }
1909
1910 impl<'tcx> Candidate<'tcx> {
1911     fn to_unadjusted_pick(
1912         &self,
1913         self_ty: Ty<'tcx>,
1914         unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
1915     ) -> Pick<'tcx> {
1916         Pick {
1917             item: self.item,
1918             kind: match self.kind {
1919                 InherentImplCandidate(..) => InherentImplPick,
1920                 ObjectCandidate => ObjectPick,
1921                 TraitCandidate(_) => TraitPick,
1922                 WhereClauseCandidate(ref trait_ref) => {
1923                     // Only trait derived from where-clauses should
1924                     // appear here, so they should not contain any
1925                     // inference variables or other artifacts. This
1926                     // means they are safe to put into the
1927                     // `WhereClausePick`.
1928                     assert!(
1929                         !trait_ref.skip_binder().substs.needs_infer()
1930                             && !trait_ref.skip_binder().substs.has_placeholders()
1931                     );
1932
1933                     WhereClausePick(*trait_ref)
1934                 }
1935             },
1936             import_ids: self.import_ids.clone(),
1937             autoderefs: 0,
1938             autoref_or_ptr_adjustment: None,
1939             self_ty,
1940             unstable_candidates,
1941         }
1942     }
1943 }