]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/method/probe.rs
Rollup merge of #104158 - Ayush1325:executable, r=Mark-Simulacrum
[rust.git] / compiler / rustc_hir_typeck / src / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::errors::MethodCallOnUnknownType;
7 use crate::FnCtxt;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_hir::def::Namespace;
13 use rustc_infer::infer::canonical::OriginalQueryValues;
14 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
15 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
16 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
17 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
18 use rustc_middle::middle::stability;
19 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
20 use rustc_middle::ty::GenericParamDefKind;
21 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
22 use rustc_middle::ty::{InternalSubsts, SubstsRef};
23 use rustc_session::lint;
24 use rustc_span::def_id::DefId;
25 use rustc_span::def_id::LocalDefId;
26 use rustc_span::lev_distance::{
27     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
28 };
29 use rustc_span::symbol::sym;
30 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
31 use rustc_trait_selection::autoderef::{self, Autoderef};
32 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
33 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
34 use rustc_trait_selection::traits::query::method_autoderef::{
35     CandidateStep, MethodAutoderefStepsResult,
36 };
37 use rustc_trait_selection::traits::query::CanonicalTyGoal;
38 use rustc_trait_selection::traits::{self, ObligationCause};
39 use std::cmp::max;
40 use std::iter;
41 use std::mem;
42 use std::ops::Deref;
43
44 use smallvec::{smallvec, SmallVec};
45
46 use self::CandidateKind::*;
47 pub use self::PickKind::*;
48
49 /// Boolean flag used to indicate if this search is for a suggestion
50 /// or not. If true, we can allow ambiguity and so forth.
51 #[derive(Clone, Copy, Debug)]
52 pub struct IsSuggestion(pub bool);
53
54 struct ProbeContext<'a, 'tcx> {
55     fcx: &'a FnCtxt<'a, 'tcx>,
56     span: Span,
57     mode: Mode,
58     method_name: Option<Ident>,
59     return_type: Option<Ty<'tcx>>,
60
61     /// This is the OriginalQueryValues for the steps queries
62     /// that are answered in steps.
63     orig_steps_var_values: OriginalQueryValues<'tcx>,
64     steps: &'tcx [CandidateStep<'tcx>],
65
66     inherent_candidates: Vec<Candidate<'tcx>>,
67     extension_candidates: Vec<Candidate<'tcx>>,
68     impl_dups: FxHashSet<DefId>,
69
70     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
71     /// used for error reporting
72     static_candidates: Vec<CandidateSource>,
73
74     /// When probing for names, include names that are close to the
75     /// requested name (by Levensthein distance)
76     allow_similar_names: bool,
77
78     /// Some(candidate) if there is a private candidate
79     private_candidate: Option<(DefKind, DefId)>,
80
81     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
82     /// for error reporting
83     unsatisfied_predicates:
84         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
85
86     is_suggestion: IsSuggestion,
87
88     scope_expr_id: hir::HirId,
89 }
90
91 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
92     type Target = FnCtxt<'a, 'tcx>;
93     fn deref(&self) -> &Self::Target {
94         self.fcx
95     }
96 }
97
98 #[derive(Debug, Clone)]
99 struct Candidate<'tcx> {
100     // Candidates are (I'm not quite sure, but they are mostly) basically
101     // some metadata on top of a `ty::AssocItem` (without substs).
102     //
103     // However, method probing wants to be able to evaluate the predicates
104     // for a function with the substs applied - for example, if a function
105     // has `where Self: Sized`, we don't want to consider it unless `Self`
106     // is actually `Sized`, and similarly, return-type suggestions want
107     // to consider the "actual" return type.
108     //
109     // The way this is handled is through `xform_self_ty`. It contains
110     // the receiver type of this candidate, but `xform_self_ty`,
111     // `xform_ret_ty` and `kind` (which contains the predicates) have the
112     // generic parameters of this candidate substituted with the *same set*
113     // of inference variables, which acts as some weird sort of "query".
114     //
115     // When we check out a candidate, we require `xform_self_ty` to be
116     // a subtype of the passed-in self-type, and this equates the type
117     // variables in the rest of the fields.
118     //
119     // For example, if we have this candidate:
120     // ```
121     //    trait Foo {
122     //        fn foo(&self) where Self: Sized;
123     //    }
124     // ```
125     //
126     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
127     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
128     // the receiver `&T`, we'll do the subtyping which will make `?X`
129     // get the right value, then when we evaluate the predicate we'll check
130     // if `T: Sized`.
131     xform_self_ty: Ty<'tcx>,
132     xform_ret_ty: Option<Ty<'tcx>>,
133     item: ty::AssocItem,
134     kind: CandidateKind<'tcx>,
135     import_ids: SmallVec<[LocalDefId; 1]>,
136 }
137
138 #[derive(Debug, Clone)]
139 enum CandidateKind<'tcx> {
140     InherentImplCandidate(
141         SubstsRef<'tcx>,
142         // Normalize obligations
143         Vec<traits::PredicateObligation<'tcx>>,
144     ),
145     ObjectCandidate,
146     TraitCandidate(ty::TraitRef<'tcx>),
147     WhereClauseCandidate(
148         // Trait
149         ty::PolyTraitRef<'tcx>,
150     ),
151 }
152
153 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
154 enum ProbeResult {
155     NoMatch,
156     BadReturnType,
157     Match,
158 }
159
160 /// When adjusting a receiver we often want to do one of
161 ///
162 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
163 /// - If the receiver has type `*mut T`, convert it to `*const T`
164 ///
165 /// This type tells us which one to do.
166 ///
167 /// Note that in principle we could do both at the same time. For example, when the receiver has
168 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
169 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
170 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
171 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
172 #[derive(Debug, PartialEq, Copy, Clone)]
173 pub enum AutorefOrPtrAdjustment {
174     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
175     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
176     Autoref {
177         mutbl: hir::Mutability,
178
179         /// Indicates that the source expression should be "unsized" to a target type.
180         /// This is special-cased for just arrays unsizing to slices.
181         unsize: bool,
182     },
183     /// Receiver has type `*mut T`, convert to `*const T`
184     ToConstPtr,
185 }
186
187 impl AutorefOrPtrAdjustment {
188     fn get_unsize(&self) -> bool {
189         match self {
190             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
191             AutorefOrPtrAdjustment::ToConstPtr => false,
192         }
193     }
194 }
195
196 #[derive(Debug, PartialEq, Clone)]
197 pub struct Pick<'tcx> {
198     pub item: ty::AssocItem,
199     pub kind: PickKind<'tcx>,
200     pub import_ids: SmallVec<[LocalDefId; 1]>,
201
202     /// Indicates that the source expression should be autoderef'd N times
203     /// ```ignore (not-rust)
204     /// A = expr | *expr | **expr | ...
205     /// ```
206     pub autoderefs: usize,
207
208     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
209     /// `*mut T`, convert it to `*const T`.
210     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
211     pub self_ty: Ty<'tcx>,
212 }
213
214 #[derive(Clone, Debug, PartialEq, Eq)]
215 pub enum PickKind<'tcx> {
216     InherentImplPick,
217     ObjectPick,
218     TraitPick,
219     WhereClausePick(
220         // Trait
221         ty::PolyTraitRef<'tcx>,
222     ),
223 }
224
225 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
226
227 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
228 pub enum Mode {
229     // An expression of the form `receiver.method_name(...)`.
230     // Autoderefs are performed on `receiver`, lookup is done based on the
231     // `self` argument  of the method, and static methods aren't considered.
232     MethodCall,
233     // An expression of the form `Type::item` or `<T>::item`.
234     // No autoderefs are performed, lookup is done based on the type each
235     // implementation is for, and static methods are included.
236     Path,
237 }
238
239 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
240 pub enum ProbeScope {
241     // Assemble candidates coming only from traits in scope.
242     TraitsInScope,
243
244     // Assemble candidates coming from all traits.
245     AllTraits,
246 }
247
248 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
249     /// This is used to offer suggestions to users. It returns methods
250     /// that could have been called which have the desired return
251     /// type. Some effort is made to rule out methods that, if called,
252     /// would result in an error (basically, the same criteria we
253     /// would use to decide if a method is a plausible fit for
254     /// ambiguity purposes).
255     #[instrument(level = "debug", skip(self, candidate_filter))]
256     pub fn probe_for_return_type(
257         &self,
258         span: Span,
259         mode: Mode,
260         return_type: Ty<'tcx>,
261         self_ty: Ty<'tcx>,
262         scope_expr_id: hir::HirId,
263         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
264     ) -> Vec<ty::AssocItem> {
265         let method_names = self
266             .probe_op(
267                 span,
268                 mode,
269                 None,
270                 Some(return_type),
271                 IsSuggestion(true),
272                 self_ty,
273                 scope_expr_id,
274                 ProbeScope::AllTraits,
275                 |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
276             )
277             .unwrap_or_default();
278         method_names
279             .iter()
280             .flat_map(|&method_name| {
281                 self.probe_op(
282                     span,
283                     mode,
284                     Some(method_name),
285                     Some(return_type),
286                     IsSuggestion(true),
287                     self_ty,
288                     scope_expr_id,
289                     ProbeScope::AllTraits,
290                     |probe_cx| probe_cx.pick(),
291                 )
292                 .ok()
293                 .map(|pick| pick.item)
294             })
295             .collect()
296     }
297
298     #[instrument(level = "debug", skip(self))]
299     pub fn probe_for_name(
300         &self,
301         span: Span,
302         mode: Mode,
303         item_name: Ident,
304         is_suggestion: IsSuggestion,
305         self_ty: Ty<'tcx>,
306         scope_expr_id: hir::HirId,
307         scope: ProbeScope,
308     ) -> PickResult<'tcx> {
309         self.probe_op(
310             span,
311             mode,
312             Some(item_name),
313             None,
314             is_suggestion,
315             self_ty,
316             scope_expr_id,
317             scope,
318             |probe_cx| probe_cx.pick(),
319         )
320     }
321
322     fn probe_op<OP, R>(
323         &'a self,
324         span: Span,
325         mode: Mode,
326         method_name: Option<Ident>,
327         return_type: Option<Ty<'tcx>>,
328         is_suggestion: IsSuggestion,
329         self_ty: Ty<'tcx>,
330         scope_expr_id: hir::HirId,
331         scope: ProbeScope,
332         op: OP,
333     ) -> Result<R, MethodError<'tcx>>
334     where
335         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
336     {
337         let mut orig_values = OriginalQueryValues::default();
338         let param_env_and_self_ty = self.canonicalize_query(
339             ParamEnvAnd { param_env: self.param_env, value: self_ty },
340             &mut orig_values,
341         );
342
343         let steps = if mode == Mode::MethodCall {
344             self.tcx.method_autoderef_steps(param_env_and_self_ty)
345         } else {
346             self.probe(|_| {
347                 // Mode::Path - the deref steps is "trivial". This turns
348                 // our CanonicalQuery into a "trivial" QueryResponse. This
349                 // is a bit inefficient, but I don't think that writing
350                 // special handling for this "trivial case" is a good idea.
351
352                 let infcx = &self.infcx;
353                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
354                     infcx.instantiate_canonical_with_fresh_inference_vars(
355                         span,
356                         &param_env_and_self_ty,
357                     );
358                 debug!(
359                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
360                     param_env_and_self_ty, self_ty
361                 );
362                 MethodAutoderefStepsResult {
363                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
364                         self_ty: self.make_query_response_ignoring_pending_obligations(
365                             canonical_inference_vars,
366                             self_ty,
367                         ),
368                         autoderefs: 0,
369                         from_unsafe_deref: false,
370                         unsize: false,
371                     }]),
372                     opt_bad_ty: None,
373                     reached_recursion_limit: false,
374                 }
375             })
376         };
377
378         // If our autoderef loop had reached the recursion limit,
379         // report an overflow error, but continue going on with
380         // the truncated autoderef list.
381         if steps.reached_recursion_limit {
382             self.probe(|_| {
383                 let ty = &steps
384                     .steps
385                     .last()
386                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
387                     .self_ty;
388                 let ty = self
389                     .probe_instantiate_query_response(span, &orig_values, ty)
390                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
391                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
392             });
393         }
394
395         // If we encountered an `_` type or an error type during autoderef, this is
396         // ambiguous.
397         if let Some(bad_ty) = &steps.opt_bad_ty {
398             if is_suggestion.0 {
399                 // Ambiguity was encountered during a suggestion. Just keep going.
400                 debug!("ProbeContext: encountered ambiguity in suggestion");
401             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
402                 // this case used to be allowed by the compiler,
403                 // so we do a future-compat lint here for the 2015 edition
404                 // (see https://github.com/rust-lang/rust/issues/46906)
405                 if self.tcx.sess.rust_2018() {
406                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
407                 } else {
408                     self.tcx.struct_span_lint_hir(
409                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
410                         scope_expr_id,
411                         span,
412                         "type annotations needed",
413                         |lint| lint,
414                     );
415                 }
416             } else {
417                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
418                 // an `Err`, report the right "type annotations needed" error pointing
419                 // to it.
420                 let ty = &bad_ty.ty;
421                 let ty = self
422                     .probe_instantiate_query_response(span, &orig_values, ty)
423                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
424                 let ty = self.structurally_resolved_type(span, ty.value);
425                 assert!(matches!(ty.kind(), ty::Error(_)));
426                 return Err(MethodError::NoMatch(NoMatchData {
427                     static_candidates: Vec::new(),
428                     unsatisfied_predicates: Vec::new(),
429                     out_of_scope_traits: Vec::new(),
430                     lev_candidate: None,
431                     mode,
432                 }));
433             }
434         }
435
436         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
437
438         // this creates one big transaction so that all type variables etc
439         // that we create during the probe process are removed later
440         self.probe(|_| {
441             let mut probe_cx = ProbeContext::new(
442                 self,
443                 span,
444                 mode,
445                 method_name,
446                 return_type,
447                 orig_values,
448                 steps.steps,
449                 is_suggestion,
450                 scope_expr_id,
451             );
452
453             probe_cx.assemble_inherent_candidates();
454             match scope {
455                 ProbeScope::TraitsInScope => {
456                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
457                 }
458                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
459             };
460             op(probe_cx)
461         })
462     }
463 }
464
465 pub fn provide(providers: &mut ty::query::Providers) {
466     providers.method_autoderef_steps = method_autoderef_steps;
467 }
468
469 fn method_autoderef_steps<'tcx>(
470     tcx: TyCtxt<'tcx>,
471     goal: CanonicalTyGoal<'tcx>,
472 ) -> MethodAutoderefStepsResult<'tcx> {
473     debug!("method_autoderef_steps({:?})", goal);
474
475     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
476     let ParamEnvAnd { param_env, value: self_ty } = goal;
477
478     let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
479         .include_raw_pointers()
480         .silence_errors();
481     let mut reached_raw_pointer = false;
482     let mut steps: Vec<_> = autoderef
483         .by_ref()
484         .map(|(ty, d)| {
485             let step = CandidateStep {
486                 self_ty: infcx
487                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
488                 autoderefs: d,
489                 from_unsafe_deref: reached_raw_pointer,
490                 unsize: false,
491             };
492             if let ty::RawPtr(_) = ty.kind() {
493                 // all the subsequent steps will be from_unsafe_deref
494                 reached_raw_pointer = true;
495             }
496             step
497         })
498         .collect();
499
500     let final_ty = autoderef.final_ty(true);
501     let opt_bad_ty = match final_ty.kind() {
502         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
503             reached_raw_pointer,
504             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
505         }),
506         ty::Array(elem_ty, _) => {
507             let dereferences = steps.len() - 1;
508
509             steps.push(CandidateStep {
510                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
511                     inference_vars,
512                     infcx.tcx.mk_slice(*elem_ty),
513                 ),
514                 autoderefs: dereferences,
515                 // this could be from an unsafe deref if we had
516                 // a *mut/const [T; N]
517                 from_unsafe_deref: reached_raw_pointer,
518                 unsize: true,
519             });
520
521             None
522         }
523         _ => None,
524     };
525
526     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
527
528     MethodAutoderefStepsResult {
529         steps: tcx.arena.alloc_from_iter(steps),
530         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
531         reached_recursion_limit: autoderef.reached_recursion_limit(),
532     }
533 }
534
535 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
536     fn new(
537         fcx: &'a FnCtxt<'a, 'tcx>,
538         span: Span,
539         mode: Mode,
540         method_name: Option<Ident>,
541         return_type: Option<Ty<'tcx>>,
542         orig_steps_var_values: OriginalQueryValues<'tcx>,
543         steps: &'tcx [CandidateStep<'tcx>],
544         is_suggestion: IsSuggestion,
545         scope_expr_id: hir::HirId,
546     ) -> ProbeContext<'a, 'tcx> {
547         ProbeContext {
548             fcx,
549             span,
550             mode,
551             method_name,
552             return_type,
553             inherent_candidates: Vec::new(),
554             extension_candidates: Vec::new(),
555             impl_dups: FxHashSet::default(),
556             orig_steps_var_values,
557             steps,
558             static_candidates: Vec::new(),
559             allow_similar_names: false,
560             private_candidate: None,
561             unsatisfied_predicates: Vec::new(),
562             is_suggestion,
563             scope_expr_id,
564         }
565     }
566
567     fn reset(&mut self) {
568         self.inherent_candidates.clear();
569         self.extension_candidates.clear();
570         self.impl_dups.clear();
571         self.static_candidates.clear();
572         self.private_candidate = None;
573     }
574
575     ///////////////////////////////////////////////////////////////////////////
576     // CANDIDATE ASSEMBLY
577
578     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
579         let is_accessible = if let Some(name) = self.method_name {
580             let item = candidate.item;
581             let def_scope = self
582                 .tcx
583                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
584                 .1;
585             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
586         } else {
587             true
588         };
589         if is_accessible {
590             if is_inherent {
591                 self.inherent_candidates.push(candidate);
592             } else {
593                 self.extension_candidates.push(candidate);
594             }
595         } else if self.private_candidate.is_none() {
596             self.private_candidate =
597                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
598         }
599     }
600
601     fn assemble_inherent_candidates(&mut self) {
602         for step in self.steps.iter() {
603             self.assemble_probe(&step.self_ty);
604         }
605     }
606
607     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
608         debug!("assemble_probe: self_ty={:?}", self_ty);
609         let raw_self_ty = self_ty.value.value;
610         match *raw_self_ty.kind() {
611             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
612                 // Subtle: we can't use `instantiate_query_response` here: using it will
613                 // commit to all of the type equalities assumed by inference going through
614                 // autoderef (see the `method-probe-no-guessing` test).
615                 //
616                 // However, in this code, it is OK if we end up with an object type that is
617                 // "more general" than the object type that we are evaluating. For *every*
618                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
619                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
620                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
621                 // of the iterations in the autoderef loop, so there is no problem with it
622                 // being discoverable in another one of these iterations.
623                 //
624                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
625                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
626                 // `CanonicalVarValues` will exactly give us such a generalization - it
627                 // will still match the original object type, but it won't pollute our
628                 // type variables in any form, so just do that!
629                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
630                     self.fcx
631                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
632
633                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
634                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
635                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
636                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
637                 }
638             }
639             ty::Adt(def, _) => {
640                 let def_id = def.did();
641                 self.assemble_inherent_impl_candidates_for_type(def_id);
642                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
643                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
644                 }
645             }
646             ty::Foreign(did) => {
647                 self.assemble_inherent_impl_candidates_for_type(did);
648                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
649                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
650                 }
651             }
652             ty::Param(p) => {
653                 self.assemble_inherent_candidates_from_param(p);
654             }
655             ty::Bool
656             | ty::Char
657             | ty::Int(_)
658             | ty::Uint(_)
659             | ty::Float(_)
660             | ty::Str
661             | ty::Array(..)
662             | ty::Slice(_)
663             | ty::RawPtr(_)
664             | ty::Ref(..)
665             | ty::Never
666             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
667             _ => {}
668         }
669     }
670
671     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
672         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
673             bug!("unexpected incoherent type: {:?}", self_ty)
674         };
675         for &impl_def_id in self.tcx.incoherent_impls(simp) {
676             self.assemble_inherent_impl_probe(impl_def_id);
677         }
678     }
679
680     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
681         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
682         for &impl_def_id in impl_def_ids.iter() {
683             self.assemble_inherent_impl_probe(impl_def_id);
684         }
685     }
686
687     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
688         if !self.impl_dups.insert(impl_def_id) {
689             return; // already visited
690         }
691
692         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
693
694         for item in self.impl_or_trait_item(impl_def_id) {
695             if !self.has_applicable_self(&item) {
696                 // No receiver declared. Not a candidate.
697                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
698                 continue;
699             }
700
701             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
702             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
703
704             debug!("impl_ty: {:?}", impl_ty);
705
706             // Determine the receiver type that the method itself expects.
707             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
708             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
709
710             // We can't use normalize_associated_types_in as it will pollute the
711             // fcx's fulfillment context after this probe is over.
712             // Note: we only normalize `xform_self_ty` here since the normalization
713             // of the return type can lead to inference results that prohibit
714             // valid candidates from being found, see issue #85671
715             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
716             // which might be caused by the `param_env` itself. The clauses of the `param_env`
717             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
718             // see issue #89650
719             let cause = traits::ObligationCause::misc(self.span, self.body_id);
720             let selcx = &mut traits::SelectionContext::new(self.fcx);
721             let traits::Normalized { value: xform_self_ty, obligations } =
722                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
723             debug!(
724                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
725                 xform_self_ty, xform_ret_ty
726             );
727
728             self.push_candidate(
729                 Candidate {
730                     xform_self_ty,
731                     xform_ret_ty,
732                     item,
733                     kind: InherentImplCandidate(impl_substs, obligations),
734                     import_ids: smallvec![],
735                 },
736                 true,
737             );
738         }
739     }
740
741     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
742         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
743
744         let principal = match self_ty.kind() {
745             ty::Dynamic(ref data, ..) => Some(data),
746             _ => None,
747         }
748         .and_then(|data| data.principal())
749         .unwrap_or_else(|| {
750             span_bug!(
751                 self.span,
752                 "non-object {:?} in assemble_inherent_candidates_from_object",
753                 self_ty
754             )
755         });
756
757         // It is illegal to invoke a method on a trait instance that refers to
758         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
759         // will be reported by `object_safety.rs` if the method refers to the
760         // `Self` type anywhere other than the receiver. Here, we use a
761         // substitution that replaces `Self` with the object type itself. Hence,
762         // a `&self` method will wind up with an argument type like `&dyn Trait`.
763         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
764         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
765             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
766
767             let (xform_self_ty, xform_ret_ty) =
768                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
769             this.push_candidate(
770                 Candidate {
771                     xform_self_ty,
772                     xform_ret_ty,
773                     item,
774                     kind: ObjectCandidate,
775                     import_ids: smallvec![],
776                 },
777                 true,
778             );
779         });
780     }
781
782     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
783         // FIXME: do we want to commit to this behavior for param bounds?
784         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
785
786         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
787             let bound_predicate = predicate.kind();
788             match bound_predicate.skip_binder() {
789                 ty::PredicateKind::Trait(trait_predicate) => {
790                     match *trait_predicate.trait_ref.self_ty().kind() {
791                         ty::Param(p) if p == param_ty => {
792                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
793                         }
794                         _ => None,
795                     }
796                 }
797                 ty::PredicateKind::Subtype(..)
798                 | ty::PredicateKind::Coerce(..)
799                 | ty::PredicateKind::Projection(..)
800                 | ty::PredicateKind::RegionOutlives(..)
801                 | ty::PredicateKind::WellFormed(..)
802                 | ty::PredicateKind::ObjectSafe(..)
803                 | ty::PredicateKind::ClosureKind(..)
804                 | ty::PredicateKind::TypeOutlives(..)
805                 | ty::PredicateKind::ConstEvaluatable(..)
806                 | ty::PredicateKind::ConstEquate(..)
807                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
808             }
809         });
810
811         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
812             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
813
814             let (xform_self_ty, xform_ret_ty) =
815                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
816
817             // Because this trait derives from a where-clause, it
818             // should not contain any inference variables or other
819             // artifacts. This means it is safe to put into the
820             // `WhereClauseCandidate` and (eventually) into the
821             // `WhereClausePick`.
822             assert!(!trait_ref.substs.needs_infer());
823
824             this.push_candidate(
825                 Candidate {
826                     xform_self_ty,
827                     xform_ret_ty,
828                     item,
829                     kind: WhereClauseCandidate(poly_trait_ref),
830                     import_ids: smallvec![],
831                 },
832                 true,
833             );
834         });
835     }
836
837     // Do a search through a list of bounds, using a callback to actually
838     // create the candidates.
839     fn elaborate_bounds<F>(
840         &mut self,
841         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
842         mut mk_cand: F,
843     ) where
844         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
845     {
846         let tcx = self.tcx;
847         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
848             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
849             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
850                 if !self.has_applicable_self(&item) {
851                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
852                 } else {
853                     mk_cand(self, bound_trait_ref, item);
854                 }
855             }
856         }
857     }
858
859     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
860         let mut duplicates = FxHashSet::default();
861         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
862         if let Some(applicable_traits) = opt_applicable_traits {
863             for trait_candidate in applicable_traits.iter() {
864                 let trait_did = trait_candidate.def_id;
865                 if duplicates.insert(trait_did) {
866                     self.assemble_extension_candidates_for_trait(
867                         &trait_candidate.import_ids,
868                         trait_did,
869                     );
870                 }
871             }
872         }
873     }
874
875     fn assemble_extension_candidates_for_all_traits(&mut self) {
876         let mut duplicates = FxHashSet::default();
877         for trait_info in suggest::all_traits(self.tcx) {
878             if duplicates.insert(trait_info.def_id) {
879                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
880             }
881         }
882     }
883
884     pub fn matches_return_type(
885         &self,
886         method: &ty::AssocItem,
887         self_ty: Option<Ty<'tcx>>,
888         expected: Ty<'tcx>,
889     ) -> bool {
890         match method.kind {
891             ty::AssocKind::Fn => {
892                 let fty = self.tcx.bound_fn_sig(method.def_id);
893                 self.probe(|_| {
894                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
895                     let fty = fty.subst(self.tcx, substs);
896                     let fty =
897                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
898
899                     if let Some(self_ty) = self_ty {
900                         if self
901                             .at(&ObligationCause::dummy(), self.param_env)
902                             .sup(fty.inputs()[0], self_ty)
903                             .is_err()
904                         {
905                             return false;
906                         }
907                     }
908                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
909                 })
910             }
911             _ => false,
912         }
913     }
914
915     fn assemble_extension_candidates_for_trait(
916         &mut self,
917         import_ids: &SmallVec<[LocalDefId; 1]>,
918         trait_def_id: DefId,
919     ) {
920         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
921         let trait_substs = self.fresh_item_substs(trait_def_id);
922         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
923
924         if self.tcx.is_trait_alias(trait_def_id) {
925             // For trait aliases, assume all supertraits are relevant.
926             let bounds = iter::once(ty::Binder::dummy(trait_ref));
927             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
928                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
929
930                 let (xform_self_ty, xform_ret_ty) =
931                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
932                 this.push_candidate(
933                     Candidate {
934                         xform_self_ty,
935                         xform_ret_ty,
936                         item,
937                         import_ids: import_ids.clone(),
938                         kind: TraitCandidate(new_trait_ref),
939                     },
940                     false,
941                 );
942             });
943         } else {
944             debug_assert!(self.tcx.is_trait(trait_def_id));
945             for item in self.impl_or_trait_item(trait_def_id) {
946                 // Check whether `trait_def_id` defines a method with suitable name.
947                 if !self.has_applicable_self(&item) {
948                     debug!("method has inapplicable self");
949                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
950                     continue;
951                 }
952
953                 let (xform_self_ty, xform_ret_ty) =
954                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
955                 self.push_candidate(
956                     Candidate {
957                         xform_self_ty,
958                         xform_ret_ty,
959                         item,
960                         import_ids: import_ids.clone(),
961                         kind: TraitCandidate(trait_ref),
962                     },
963                     false,
964                 );
965             }
966         }
967     }
968
969     fn candidate_method_names(
970         &self,
971         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
972     ) -> Vec<Ident> {
973         let mut set = FxHashSet::default();
974         let mut names: Vec<_> = self
975             .inherent_candidates
976             .iter()
977             .chain(&self.extension_candidates)
978             .filter(|candidate| candidate_filter(&candidate.item))
979             .filter(|candidate| {
980                 if let Some(return_ty) = self.return_type {
981                     self.matches_return_type(&candidate.item, None, return_ty)
982                 } else {
983                     true
984                 }
985             })
986             .map(|candidate| candidate.item.ident(self.tcx))
987             .filter(|&name| set.insert(name))
988             .collect();
989
990         // Sort them by the name so we have a stable result.
991         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
992         names
993     }
994
995     ///////////////////////////////////////////////////////////////////////////
996     // THE ACTUAL SEARCH
997
998     fn pick(mut self) -> PickResult<'tcx> {
999         assert!(self.method_name.is_some());
1000
1001         if let Some(r) = self.pick_core() {
1002             return r;
1003         }
1004
1005         debug!("pick: actual search failed, assemble diagnostics");
1006
1007         let static_candidates = mem::take(&mut self.static_candidates);
1008         let private_candidate = self.private_candidate.take();
1009         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1010
1011         // things failed, so lets look at all traits, for diagnostic purposes now:
1012         self.reset();
1013
1014         let span = self.span;
1015         let tcx = self.tcx;
1016
1017         self.assemble_extension_candidates_for_all_traits();
1018
1019         let out_of_scope_traits = match self.pick_core() {
1020             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1021             Some(Err(MethodError::Ambiguity(v))) => v
1022                 .into_iter()
1023                 .map(|source| match source {
1024                     CandidateSource::Trait(id) => id,
1025                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1026                         Some(id) => id,
1027                         None => span_bug!(span, "found inherent method when looking at traits"),
1028                     },
1029                 })
1030                 .collect(),
1031             Some(Err(MethodError::NoMatch(NoMatchData {
1032                 out_of_scope_traits: others, ..
1033             }))) => {
1034                 assert!(others.is_empty());
1035                 vec![]
1036             }
1037             _ => vec![],
1038         };
1039
1040         if let Some((kind, def_id)) = private_candidate {
1041             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1042         }
1043         let lev_candidate = self.probe_for_lev_candidate()?;
1044
1045         Err(MethodError::NoMatch(NoMatchData {
1046             static_candidates,
1047             unsatisfied_predicates,
1048             out_of_scope_traits,
1049             lev_candidate,
1050             mode: self.mode,
1051         }))
1052     }
1053
1054     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1055         let mut unstable_candidates = Vec::new();
1056         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1057
1058         // In this case unstable picking is done by `pick_method`.
1059         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1060             return pick;
1061         }
1062
1063         match pick {
1064             // Emit a lint if there are unstable candidates alongside the stable ones.
1065             //
1066             // We suppress warning if we're picking the method only because it is a
1067             // suggestion.
1068             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1069                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1070                 pick
1071             }
1072             Some(_) => pick,
1073             None => self.pick_all_method(None),
1074         }
1075     }
1076
1077     fn pick_all_method(
1078         &mut self,
1079         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1080     ) -> Option<PickResult<'tcx>> {
1081         let steps = self.steps.clone();
1082         steps
1083             .iter()
1084             .filter(|step| {
1085                 debug!("pick_all_method: step={:?}", step);
1086                 // skip types that are from a type error or that would require dereferencing
1087                 // a raw pointer
1088                 !step.self_ty.references_error() && !step.from_unsafe_deref
1089             })
1090             .flat_map(|step| {
1091                 let InferOk { value: self_ty, obligations: _ } = self
1092                     .fcx
1093                     .probe_instantiate_query_response(
1094                         self.span,
1095                         &self.orig_steps_var_values,
1096                         &step.self_ty,
1097                     )
1098                     .unwrap_or_else(|_| {
1099                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1100                     });
1101                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1102                     .or_else(|| {
1103                         self.pick_autorefd_method(
1104                             step,
1105                             self_ty,
1106                             hir::Mutability::Not,
1107                             unstable_candidates.as_deref_mut(),
1108                         )
1109                         .or_else(|| {
1110                             self.pick_autorefd_method(
1111                                 step,
1112                                 self_ty,
1113                                 hir::Mutability::Mut,
1114                                 unstable_candidates.as_deref_mut(),
1115                             )
1116                         })
1117                         .or_else(|| {
1118                             self.pick_const_ptr_method(
1119                                 step,
1120                                 self_ty,
1121                                 unstable_candidates.as_deref_mut(),
1122                             )
1123                         })
1124                     })
1125             })
1126             .next()
1127     }
1128
1129     /// For each type `T` in the step list, this attempts to find a method where
1130     /// the (transformed) self type is exactly `T`. We do however do one
1131     /// transformation on the adjustment: if we are passing a region pointer in,
1132     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1133     /// to transparently pass `&mut` pointers, in particular, without consuming
1134     /// them for their entire lifetime.
1135     fn pick_by_value_method(
1136         &mut self,
1137         step: &CandidateStep<'tcx>,
1138         self_ty: Ty<'tcx>,
1139         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1140     ) -> Option<PickResult<'tcx>> {
1141         if step.unsize {
1142             return None;
1143         }
1144
1145         self.pick_method(self_ty, unstable_candidates).map(|r| {
1146             r.map(|mut pick| {
1147                 pick.autoderefs = step.autoderefs;
1148
1149                 // Insert a `&*` or `&mut *` if this is a reference type:
1150                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1151                     pick.autoderefs += 1;
1152                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1153                         mutbl,
1154                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1155                     })
1156                 }
1157
1158                 pick
1159             })
1160         })
1161     }
1162
1163     fn pick_autorefd_method(
1164         &mut self,
1165         step: &CandidateStep<'tcx>,
1166         self_ty: Ty<'tcx>,
1167         mutbl: hir::Mutability,
1168         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1169     ) -> Option<PickResult<'tcx>> {
1170         let tcx = self.tcx;
1171
1172         // In general, during probing we erase regions.
1173         let region = tcx.lifetimes.re_erased;
1174
1175         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1176         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1177             r.map(|mut pick| {
1178                 pick.autoderefs = step.autoderefs;
1179                 pick.autoref_or_ptr_adjustment =
1180                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1181                 pick
1182             })
1183         })
1184     }
1185
1186     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1187     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1188     /// autorefs would require dereferencing the pointer, which is not safe.
1189     fn pick_const_ptr_method(
1190         &mut self,
1191         step: &CandidateStep<'tcx>,
1192         self_ty: Ty<'tcx>,
1193         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1194     ) -> Option<PickResult<'tcx>> {
1195         // Don't convert an unsized reference to ptr
1196         if step.unsize {
1197             return None;
1198         }
1199
1200         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1201             return None;
1202         };
1203
1204         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1205         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1206         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1207             r.map(|mut pick| {
1208                 pick.autoderefs = step.autoderefs;
1209                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1210                 pick
1211             })
1212         })
1213     }
1214
1215     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1216         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1217
1218         let mut possibly_unsatisfied_predicates = Vec::new();
1219         let mut unstable_candidates = Vec::new();
1220
1221         for (kind, candidates) in
1222             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1223         {
1224             debug!("searching {} candidates", kind);
1225             let res = self.consider_candidates(
1226                 self_ty,
1227                 candidates.iter(),
1228                 &mut possibly_unsatisfied_predicates,
1229                 Some(&mut unstable_candidates),
1230             );
1231             if let Some(pick) = res {
1232                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1233                     if let Ok(p) = &pick {
1234                         // Emit a lint if there are unstable candidates alongside the stable ones.
1235                         //
1236                         // We suppress warning if we're picking the method only because it is a
1237                         // suggestion.
1238                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1239                     }
1240                 }
1241                 return Some(pick);
1242             }
1243         }
1244
1245         debug!("searching unstable candidates");
1246         let res = self.consider_candidates(
1247             self_ty,
1248             unstable_candidates.iter().map(|(c, _)| c),
1249             &mut possibly_unsatisfied_predicates,
1250             None,
1251         );
1252         if res.is_none() {
1253             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1254         }
1255         res
1256     }
1257
1258     fn pick_method(
1259         &mut self,
1260         self_ty: Ty<'tcx>,
1261         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1262     ) -> Option<PickResult<'tcx>> {
1263         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1264             return self.pick_method_with_unstable(self_ty);
1265         }
1266
1267         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1268
1269         let mut possibly_unsatisfied_predicates = Vec::new();
1270
1271         for (kind, candidates) in
1272             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1273         {
1274             debug!("searching {} candidates", kind);
1275             let res = self.consider_candidates(
1276                 self_ty,
1277                 candidates.iter(),
1278                 &mut possibly_unsatisfied_predicates,
1279                 unstable_candidates.as_deref_mut(),
1280             );
1281             if let Some(pick) = res {
1282                 return Some(pick);
1283             }
1284         }
1285
1286         // `pick_method` may be called twice for the same self_ty if no stable methods
1287         // match. Only extend once.
1288         if unstable_candidates.is_some() {
1289             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1290         }
1291         None
1292     }
1293
1294     fn consider_candidates<'b, ProbesIter>(
1295         &self,
1296         self_ty: Ty<'tcx>,
1297         probes: ProbesIter,
1298         possibly_unsatisfied_predicates: &mut Vec<(
1299             ty::Predicate<'tcx>,
1300             Option<ty::Predicate<'tcx>>,
1301             Option<ObligationCause<'tcx>>,
1302         )>,
1303         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1304     ) -> Option<PickResult<'tcx>>
1305     where
1306         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1307         'tcx: 'b,
1308     {
1309         let mut applicable_candidates: Vec<_> = probes
1310             .clone()
1311             .map(|probe| {
1312                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1313             })
1314             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1315             .collect();
1316
1317         debug!("applicable_candidates: {:?}", applicable_candidates);
1318
1319         if applicable_candidates.len() > 1 {
1320             if let Some(pick) =
1321                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1322             {
1323                 return Some(Ok(pick));
1324             }
1325         }
1326
1327         if let Some(uc) = unstable_candidates {
1328             applicable_candidates.retain(|&(p, _)| {
1329                 if let stability::EvalResult::Deny { feature, .. } =
1330                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1331                 {
1332                     uc.push((p.clone(), feature));
1333                     return false;
1334                 }
1335                 true
1336             });
1337         }
1338
1339         if applicable_candidates.len() > 1 {
1340             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1341             return Some(Err(MethodError::Ambiguity(sources)));
1342         }
1343
1344         applicable_candidates.pop().map(|(probe, status)| {
1345             if status == ProbeResult::Match {
1346                 Ok(probe.to_unadjusted_pick(self_ty))
1347             } else {
1348                 Err(MethodError::BadReturnType)
1349             }
1350         })
1351     }
1352
1353     fn emit_unstable_name_collision_hint(
1354         &self,
1355         stable_pick: &Pick<'_>,
1356         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1357     ) {
1358         let def_kind = stable_pick.item.kind.as_def_kind();
1359         self.tcx.struct_span_lint_hir(
1360             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1361             self.scope_expr_id,
1362             self.span,
1363             format!(
1364                 "{} {} with this name may be added to the standard library in the future",
1365                 def_kind.article(),
1366                 def_kind.descr(stable_pick.item.def_id),
1367             ),
1368             |lint| {
1369                 match (stable_pick.item.kind, stable_pick.item.container) {
1370                     (ty::AssocKind::Fn, _) => {
1371                         // FIXME: This should be a `span_suggestion` instead of `help`
1372                         // However `self.span` only
1373                         // highlights the method name, so we can't use it. Also consider reusing
1374                         // the code from `report_method_error()`.
1375                         lint.help(&format!(
1376                             "call with fully qualified syntax `{}(...)` to keep using the current \
1377                              method",
1378                             self.tcx.def_path_str(stable_pick.item.def_id),
1379                         ));
1380                     }
1381                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1382                         let def_id = stable_pick.item.container_id(self.tcx);
1383                         lint.span_suggestion(
1384                             self.span,
1385                             "use the fully qualified path to the associated const",
1386                             format!(
1387                                 "<{} as {}>::{}",
1388                                 stable_pick.self_ty,
1389                                 self.tcx.def_path_str(def_id),
1390                                 stable_pick.item.name
1391                             ),
1392                             Applicability::MachineApplicable,
1393                         );
1394                     }
1395                     _ => {}
1396                 }
1397                 if self.tcx.sess.is_nightly_build() {
1398                     for (candidate, feature) in unstable_candidates {
1399                         lint.help(&format!(
1400                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1401                             feature,
1402                             self.tcx.def_path_str(candidate.item.def_id),
1403                         ));
1404                     }
1405                 }
1406
1407                 lint
1408             },
1409         );
1410     }
1411
1412     fn select_trait_candidate(
1413         &self,
1414         trait_ref: ty::TraitRef<'tcx>,
1415     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1416         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1417         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1418         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1419         traits::SelectionContext::new(self).select(&obligation)
1420     }
1421
1422     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1423         match candidate.kind {
1424             InherentImplCandidate(..) => {
1425                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1426             }
1427             ObjectCandidate | WhereClauseCandidate(_) => {
1428                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1429             }
1430             TraitCandidate(trait_ref) => self.probe(|_| {
1431                 let _ = self
1432                     .at(&ObligationCause::dummy(), self.param_env)
1433                     .define_opaque_types(false)
1434                     .sup(candidate.xform_self_ty, self_ty);
1435                 match self.select_trait_candidate(trait_ref) {
1436                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1437                         // If only a single impl matches, make the error message point
1438                         // to that impl.
1439                         CandidateSource::Impl(impl_data.impl_def_id)
1440                     }
1441                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1442                 }
1443             }),
1444         }
1445     }
1446
1447     fn consider_probe(
1448         &self,
1449         self_ty: Ty<'tcx>,
1450         probe: &Candidate<'tcx>,
1451         possibly_unsatisfied_predicates: &mut Vec<(
1452             ty::Predicate<'tcx>,
1453             Option<ty::Predicate<'tcx>>,
1454             Option<ObligationCause<'tcx>>,
1455         )>,
1456     ) -> ProbeResult {
1457         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1458
1459         self.probe(|_| {
1460             // First check that the self type can be related.
1461             let sub_obligations = match self
1462                 .at(&ObligationCause::dummy(), self.param_env)
1463                 .define_opaque_types(false)
1464                 .sup(probe.xform_self_ty, self_ty)
1465             {
1466                 Ok(InferOk { obligations, value: () }) => obligations,
1467                 Err(err) => {
1468                     debug!("--> cannot relate self-types {:?}", err);
1469                     return ProbeResult::NoMatch;
1470                 }
1471             };
1472
1473             let mut result = ProbeResult::Match;
1474             let mut xform_ret_ty = probe.xform_ret_ty;
1475             debug!(?xform_ret_ty);
1476
1477             let selcx = &mut traits::SelectionContext::new(self);
1478             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1479
1480             let mut parent_pred = None;
1481
1482             // If so, impls may carry other conditions (e.g., where
1483             // clauses) that must be considered. Make sure that those
1484             // match as well (or at least may match, sometimes we
1485             // don't have enough information to fully evaluate).
1486             match probe.kind {
1487                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1488                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1489                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1490                     // for why this is necessary
1491                     let traits::Normalized {
1492                         value: normalized_xform_ret_ty,
1493                         obligations: normalization_obligations,
1494                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1495                     xform_ret_ty = normalized_xform_ret_ty;
1496                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1497
1498                     // Check whether the impl imposes obligations we have to worry about.
1499                     let impl_def_id = probe.item.container_id(self.tcx);
1500                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1501                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1502                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1503                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1504
1505                     // Convert the bounds into obligations.
1506                     let impl_obligations = traits::predicates_for_generics(
1507                         move |_, _| cause.clone(),
1508                         self.param_env,
1509                         impl_bounds,
1510                     );
1511
1512                     let candidate_obligations = impl_obligations
1513                         .chain(norm_obligations.into_iter())
1514                         .chain(ref_obligations.iter().cloned())
1515                         .chain(normalization_obligations.into_iter());
1516
1517                     // Evaluate those obligations to see if they might possibly hold.
1518                     for o in candidate_obligations {
1519                         let o = self.resolve_vars_if_possible(o);
1520                         if !self.predicate_may_hold(&o) {
1521                             result = ProbeResult::NoMatch;
1522                             possibly_unsatisfied_predicates.push((
1523                                 o.predicate,
1524                                 None,
1525                                 Some(o.cause),
1526                             ));
1527                         }
1528                     }
1529                 }
1530
1531                 ObjectCandidate | WhereClauseCandidate(..) => {
1532                     // These have no additional conditions to check.
1533                 }
1534
1535                 TraitCandidate(trait_ref) => {
1536                     if let Some(method_name) = self.method_name {
1537                         // Some trait methods are excluded for arrays before 2021.
1538                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1539                         if self_ty.is_array() && !method_name.span.rust_2021() {
1540                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1541                             if trait_def.skip_array_during_method_dispatch {
1542                                 return ProbeResult::NoMatch;
1543                             }
1544                         }
1545                     }
1546                     let predicate =
1547                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1548                     parent_pred = Some(predicate);
1549                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1550                     if !self.predicate_may_hold(&obligation) {
1551                         result = ProbeResult::NoMatch;
1552                         if self.probe(|_| {
1553                             match self.select_trait_candidate(trait_ref) {
1554                                 Err(_) => return true,
1555                                 Ok(Some(impl_source))
1556                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1557                                 {
1558                                     for obligation in impl_source.borrow_nested_obligations() {
1559                                         // Determine exactly which obligation wasn't met, so
1560                                         // that we can give more context in the error.
1561                                         if !self.predicate_may_hold(obligation) {
1562                                             let nested_predicate =
1563                                                 self.resolve_vars_if_possible(obligation.predicate);
1564                                             let predicate =
1565                                                 self.resolve_vars_if_possible(predicate);
1566                                             let p = if predicate == nested_predicate {
1567                                                 // Avoid "`MyStruct: Foo` which is required by
1568                                                 // `MyStruct: Foo`" in E0599.
1569                                                 None
1570                                             } else {
1571                                                 Some(predicate)
1572                                             };
1573                                             possibly_unsatisfied_predicates.push((
1574                                                 nested_predicate,
1575                                                 p,
1576                                                 Some(obligation.cause.clone()),
1577                                             ));
1578                                         }
1579                                     }
1580                                 }
1581                                 _ => {
1582                                     // Some nested subobligation of this predicate
1583                                     // failed.
1584                                     let predicate = self.resolve_vars_if_possible(predicate);
1585                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1586                                 }
1587                             }
1588                             false
1589                         }) {
1590                             // This candidate's primary obligation doesn't even
1591                             // select - don't bother registering anything in
1592                             // `potentially_unsatisfied_predicates`.
1593                             return ProbeResult::NoMatch;
1594                         }
1595                     }
1596                 }
1597             }
1598
1599             // Evaluate those obligations to see if they might possibly hold.
1600             for o in sub_obligations {
1601                 let o = self.resolve_vars_if_possible(o);
1602                 if !self.predicate_may_hold(&o) {
1603                     result = ProbeResult::NoMatch;
1604                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1605                 }
1606             }
1607
1608             if let ProbeResult::Match = result {
1609                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1610                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1611                     debug!(
1612                         "comparing return_ty {:?} with xform ret ty {:?}",
1613                         return_ty, probe.xform_ret_ty
1614                     );
1615                     if self
1616                         .at(&ObligationCause::dummy(), self.param_env)
1617                         .define_opaque_types(false)
1618                         .sup(return_ty, xform_ret_ty)
1619                         .is_err()
1620                     {
1621                         return ProbeResult::BadReturnType;
1622                     }
1623                 }
1624             }
1625
1626             result
1627         })
1628     }
1629
1630     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1631     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1632     /// external interface of the method can be determined from the trait, it's ok not to decide.
1633     /// We can basically just collapse all of the probes for various impls into one where-clause
1634     /// probe. This will result in a pending obligation so when more type-info is available we can
1635     /// make the final decision.
1636     ///
1637     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1638     ///
1639     /// ```ignore (illustrative)
1640     /// trait Foo { ... }
1641     /// impl Foo for Vec<i32> { ... }
1642     /// impl Foo for Vec<usize> { ... }
1643     /// ```
1644     ///
1645     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1646     /// use, so it's ok to just commit to "using the method from the trait Foo".
1647     fn collapse_candidates_to_trait_pick(
1648         &self,
1649         self_ty: Ty<'tcx>,
1650         probes: &[(&Candidate<'tcx>, ProbeResult)],
1651     ) -> Option<Pick<'tcx>> {
1652         // Do all probes correspond to the same trait?
1653         let container = probes[0].0.item.trait_container(self.tcx)?;
1654         for (p, _) in &probes[1..] {
1655             let p_container = p.item.trait_container(self.tcx)?;
1656             if p_container != container {
1657                 return None;
1658             }
1659         }
1660
1661         // FIXME: check the return type here somehow.
1662         // If so, just use this trait and call it a day.
1663         Some(Pick {
1664             item: probes[0].0.item,
1665             kind: TraitPick,
1666             import_ids: probes[0].0.import_ids.clone(),
1667             autoderefs: 0,
1668             autoref_or_ptr_adjustment: None,
1669             self_ty,
1670         })
1671     }
1672
1673     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1674     /// candidate method where the method name may have been misspelled. Similarly to other
1675     /// Levenshtein based suggestions, we provide at most one such suggestion.
1676     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1677         debug!("probing for method names similar to {:?}", self.method_name);
1678
1679         let steps = self.steps.clone();
1680         self.probe(|_| {
1681             let mut pcx = ProbeContext::new(
1682                 self.fcx,
1683                 self.span,
1684                 self.mode,
1685                 self.method_name,
1686                 self.return_type,
1687                 self.orig_steps_var_values.clone(),
1688                 steps,
1689                 IsSuggestion(true),
1690                 self.scope_expr_id,
1691             );
1692             pcx.allow_similar_names = true;
1693             pcx.assemble_inherent_candidates();
1694
1695             let method_names = pcx.candidate_method_names(|_| true);
1696             pcx.allow_similar_names = false;
1697             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1698                 .iter()
1699                 .filter_map(|&method_name| {
1700                     pcx.reset();
1701                     pcx.method_name = Some(method_name);
1702                     pcx.assemble_inherent_candidates();
1703                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1704                 })
1705                 .collect();
1706
1707             if applicable_close_candidates.is_empty() {
1708                 Ok(None)
1709             } else {
1710                 let best_name = {
1711                     let names = applicable_close_candidates
1712                         .iter()
1713                         .map(|cand| cand.name)
1714                         .collect::<Vec<Symbol>>();
1715                     find_best_match_for_name_with_substrings(
1716                         &names,
1717                         self.method_name.unwrap().name,
1718                         None,
1719                     )
1720                 }
1721                 .unwrap();
1722                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1723             }
1724         })
1725     }
1726
1727     ///////////////////////////////////////////////////////////////////////////
1728     // MISCELLANY
1729     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1730         // "Fast track" -- check for usage of sugar when in method call
1731         // mode.
1732         //
1733         // In Path mode (i.e., resolving a value like `T::next`), consider any
1734         // associated value (i.e., methods, constants) but not types.
1735         match self.mode {
1736             Mode::MethodCall => item.fn_has_self_parameter,
1737             Mode::Path => match item.kind {
1738                 ty::AssocKind::Type => false,
1739                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1740             },
1741         }
1742         // FIXME -- check for types that deref to `Self`,
1743         // like `Rc<Self>` and so on.
1744         //
1745         // Note also that the current code will break if this type
1746         // includes any of the type parameters defined on the method
1747         // -- but this could be overcome.
1748     }
1749
1750     fn record_static_candidate(&mut self, source: CandidateSource) {
1751         self.static_candidates.push(source);
1752     }
1753
1754     #[instrument(level = "debug", skip(self))]
1755     fn xform_self_ty(
1756         &self,
1757         item: &ty::AssocItem,
1758         impl_ty: Ty<'tcx>,
1759         substs: SubstsRef<'tcx>,
1760     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1761         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1762             let sig = self.xform_method_sig(item.def_id, substs);
1763             (sig.inputs()[0], Some(sig.output()))
1764         } else {
1765             (impl_ty, None)
1766         }
1767     }
1768
1769     #[instrument(level = "debug", skip(self))]
1770     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1771         let fn_sig = self.tcx.bound_fn_sig(method);
1772         debug!(?fn_sig);
1773
1774         assert!(!substs.has_escaping_bound_vars());
1775
1776         // It is possible for type parameters or early-bound lifetimes
1777         // to appear in the signature of `self`. The substitutions we
1778         // are given do not include type/lifetime parameters for the
1779         // method yet. So create fresh variables here for those too,
1780         // if there are any.
1781         let generics = self.tcx.generics_of(method);
1782         assert_eq!(substs.len(), generics.parent_count as usize);
1783
1784         let xform_fn_sig = if generics.params.is_empty() {
1785             fn_sig.subst(self.tcx, substs)
1786         } else {
1787             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1788                 let i = param.index as usize;
1789                 if i < substs.len() {
1790                     substs[i]
1791                 } else {
1792                     match param.kind {
1793                         GenericParamDefKind::Lifetime => {
1794                             // In general, during probe we erase regions.
1795                             self.tcx.lifetimes.re_erased.into()
1796                         }
1797                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1798                             self.var_for_def(self.span, param)
1799                         }
1800                     }
1801                 }
1802             });
1803             fn_sig.subst(self.tcx, substs)
1804         };
1805
1806         self.erase_late_bound_regions(xform_fn_sig)
1807     }
1808
1809     /// Gets the type of an impl and generate substitutions with inference vars.
1810     fn impl_ty_and_substs(
1811         &self,
1812         impl_def_id: DefId,
1813     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1814         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1815     }
1816
1817     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1818         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1819             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1820             GenericParamDefKind::Type { .. } => self
1821                 .next_ty_var(TypeVariableOrigin {
1822                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1823                     span: self.tcx.def_span(def_id),
1824                 })
1825                 .into(),
1826             GenericParamDefKind::Const { .. } => {
1827                 let span = self.tcx.def_span(def_id);
1828                 let origin = ConstVariableOrigin {
1829                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1830                     span,
1831                 };
1832                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1833             }
1834         })
1835     }
1836
1837     /// Replaces late-bound-regions bound by `value` with `'static` using
1838     /// `ty::erase_late_bound_regions`.
1839     ///
1840     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1841     /// method matching. It is reasonable during the probe phase because we don't consider region
1842     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1843     /// rather than creating fresh region variables. This is nice for two reasons:
1844     ///
1845     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1846     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1847     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1848     ///
1849     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1850     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1851     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1852     ///    region got replaced with the same variable, which requires a bit more coordination
1853     ///    and/or tracking the substitution and
1854     ///    so forth.
1855     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1856     where
1857         T: TypeFoldable<'tcx>,
1858     {
1859         self.tcx.erase_late_bound_regions(value)
1860     }
1861
1862     /// Finds the method with the appropriate name (or return type, as the case may be). If
1863     /// `allow_similar_names` is set, find methods with close-matching names.
1864     // The length of the returned iterator is nearly always 0 or 1 and this
1865     // method is fairly hot.
1866     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1867         if let Some(name) = self.method_name {
1868             if self.allow_similar_names {
1869                 let max_dist = max(name.as_str().len(), 3) / 3;
1870                 self.tcx
1871                     .associated_items(def_id)
1872                     .in_definition_order()
1873                     .filter(|x| {
1874                         if x.kind.namespace() != Namespace::ValueNS {
1875                             return false;
1876                         }
1877                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1878                         {
1879                             Some(d) => d > 0,
1880                             None => false,
1881                         }
1882                     })
1883                     .copied()
1884                     .collect()
1885             } else {
1886                 self.fcx
1887                     .associated_value(def_id, name)
1888                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1889             }
1890         } else {
1891             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1892         }
1893     }
1894 }
1895
1896 impl<'tcx> Candidate<'tcx> {
1897     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1898         Pick {
1899             item: self.item,
1900             kind: match self.kind {
1901                 InherentImplCandidate(..) => InherentImplPick,
1902                 ObjectCandidate => ObjectPick,
1903                 TraitCandidate(_) => TraitPick,
1904                 WhereClauseCandidate(ref trait_ref) => {
1905                     // Only trait derived from where-clauses should
1906                     // appear here, so they should not contain any
1907                     // inference variables or other artifacts. This
1908                     // means they are safe to put into the
1909                     // `WhereClausePick`.
1910                     assert!(
1911                         !trait_ref.skip_binder().substs.needs_infer()
1912                             && !trait_ref.skip_binder().substs.has_placeholders()
1913                     );
1914
1915                     WhereClausePick(*trait_ref)
1916                 }
1917             },
1918             import_ids: self.import_ids.clone(),
1919             autoderefs: 0,
1920             autoref_or_ptr_adjustment: None,
1921             self_ty,
1922         }
1923     }
1924 }