]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/method/probe.rs
:arrow_up: rust-analyzer
[rust.git] / compiler / rustc_hir_typeck / src / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::errors::MethodCallOnUnknownType;
7 use crate::FnCtxt;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_hir::def::Namespace;
13 use rustc_infer::infer::canonical::OriginalQueryValues;
14 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
15 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
16 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
17 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
18 use rustc_middle::middle::stability;
19 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
20 use rustc_middle::ty::AssocItem;
21 use rustc_middle::ty::GenericParamDefKind;
22 use rustc_middle::ty::ToPredicate;
23 use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeFoldable, TypeVisitable};
24 use rustc_middle::ty::{InternalSubsts, SubstsRef};
25 use rustc_session::lint;
26 use rustc_span::def_id::DefId;
27 use rustc_span::def_id::LocalDefId;
28 use rustc_span::lev_distance::{
29     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
30 };
31 use rustc_span::symbol::sym;
32 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
33 use rustc_trait_selection::autoderef::{self, Autoderef};
34 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
35 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
36 use rustc_trait_selection::traits::query::method_autoderef::{
37     CandidateStep, MethodAutoderefStepsResult,
38 };
39 use rustc_trait_selection::traits::query::CanonicalTyGoal;
40 use rustc_trait_selection::traits::{self, ObligationCause};
41 use std::cmp::max;
42 use std::iter;
43 use std::mem;
44 use std::ops::Deref;
45
46 use smallvec::{smallvec, SmallVec};
47
48 use self::CandidateKind::*;
49 pub use self::PickKind::*;
50
51 /// Boolean flag used to indicate if this search is for a suggestion
52 /// or not. If true, we can allow ambiguity and so forth.
53 #[derive(Clone, Copy, Debug)]
54 pub struct IsSuggestion(pub bool);
55
56 struct ProbeContext<'a, 'tcx> {
57     fcx: &'a FnCtxt<'a, 'tcx>,
58     span: Span,
59     mode: Mode,
60     method_name: Option<Ident>,
61     return_type: Option<Ty<'tcx>>,
62
63     /// This is the OriginalQueryValues for the steps queries
64     /// that are answered in steps.
65     orig_steps_var_values: OriginalQueryValues<'tcx>,
66     steps: &'tcx [CandidateStep<'tcx>],
67
68     inherent_candidates: Vec<Candidate<'tcx>>,
69     extension_candidates: Vec<Candidate<'tcx>>,
70     impl_dups: FxHashSet<DefId>,
71
72     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
73     /// used for error reporting
74     static_candidates: Vec<CandidateSource>,
75
76     /// When probing for names, include names that are close to the
77     /// requested name (by Levensthein distance)
78     allow_similar_names: bool,
79
80     /// Some(candidate) if there is a private candidate
81     private_candidate: Option<(DefKind, DefId)>,
82
83     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
84     /// for error reporting
85     unsatisfied_predicates:
86         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
87
88     scope_expr_id: hir::HirId,
89 }
90
91 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
92     type Target = FnCtxt<'a, 'tcx>;
93     fn deref(&self) -> &Self::Target {
94         self.fcx
95     }
96 }
97
98 #[derive(Debug, Clone)]
99 struct Candidate<'tcx> {
100     // Candidates are (I'm not quite sure, but they are mostly) basically
101     // some metadata on top of a `ty::AssocItem` (without substs).
102     //
103     // However, method probing wants to be able to evaluate the predicates
104     // for a function with the substs applied - for example, if a function
105     // has `where Self: Sized`, we don't want to consider it unless `Self`
106     // is actually `Sized`, and similarly, return-type suggestions want
107     // to consider the "actual" return type.
108     //
109     // The way this is handled is through `xform_self_ty`. It contains
110     // the receiver type of this candidate, but `xform_self_ty`,
111     // `xform_ret_ty` and `kind` (which contains the predicates) have the
112     // generic parameters of this candidate substituted with the *same set*
113     // of inference variables, which acts as some weird sort of "query".
114     //
115     // When we check out a candidate, we require `xform_self_ty` to be
116     // a subtype of the passed-in self-type, and this equates the type
117     // variables in the rest of the fields.
118     //
119     // For example, if we have this candidate:
120     // ```
121     //    trait Foo {
122     //        fn foo(&self) where Self: Sized;
123     //    }
124     // ```
125     //
126     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
127     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
128     // the receiver `&T`, we'll do the subtyping which will make `?X`
129     // get the right value, then when we evaluate the predicate we'll check
130     // if `T: Sized`.
131     xform_self_ty: Ty<'tcx>,
132     xform_ret_ty: Option<Ty<'tcx>>,
133     item: ty::AssocItem,
134     kind: CandidateKind<'tcx>,
135     import_ids: SmallVec<[LocalDefId; 1]>,
136 }
137
138 #[derive(Debug, Clone)]
139 enum CandidateKind<'tcx> {
140     InherentImplCandidate(
141         SubstsRef<'tcx>,
142         // Normalize obligations
143         Vec<traits::PredicateObligation<'tcx>>,
144     ),
145     ObjectCandidate,
146     TraitCandidate(ty::TraitRef<'tcx>),
147     WhereClauseCandidate(
148         // Trait
149         ty::PolyTraitRef<'tcx>,
150     ),
151 }
152
153 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
154 enum ProbeResult {
155     NoMatch,
156     BadReturnType,
157     Match,
158 }
159
160 /// When adjusting a receiver we often want to do one of
161 ///
162 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
163 /// - If the receiver has type `*mut T`, convert it to `*const T`
164 ///
165 /// This type tells us which one to do.
166 ///
167 /// Note that in principle we could do both at the same time. For example, when the receiver has
168 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
169 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
170 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
171 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
172 #[derive(Debug, PartialEq, Copy, Clone)]
173 pub enum AutorefOrPtrAdjustment {
174     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
175     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
176     Autoref {
177         mutbl: hir::Mutability,
178
179         /// Indicates that the source expression should be "unsized" to a target type.
180         /// This is special-cased for just arrays unsizing to slices.
181         unsize: bool,
182     },
183     /// Receiver has type `*mut T`, convert to `*const T`
184     ToConstPtr,
185 }
186
187 impl AutorefOrPtrAdjustment {
188     fn get_unsize(&self) -> bool {
189         match self {
190             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
191             AutorefOrPtrAdjustment::ToConstPtr => false,
192         }
193     }
194 }
195
196 #[derive(Debug, Clone)]
197 pub struct Pick<'tcx> {
198     pub item: ty::AssocItem,
199     pub kind: PickKind<'tcx>,
200     pub import_ids: SmallVec<[LocalDefId; 1]>,
201
202     /// Indicates that the source expression should be autoderef'd N times
203     /// ```ignore (not-rust)
204     /// A = expr | *expr | **expr | ...
205     /// ```
206     pub autoderefs: usize,
207
208     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
209     /// `*mut T`, convert it to `*const T`.
210     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
211     pub self_ty: Ty<'tcx>,
212
213     /// Unstable candidates alongside the stable ones.
214     unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
215 }
216
217 #[derive(Clone, Debug, PartialEq, Eq)]
218 pub enum PickKind<'tcx> {
219     InherentImplPick,
220     ObjectPick,
221     TraitPick,
222     WhereClausePick(
223         // Trait
224         ty::PolyTraitRef<'tcx>,
225     ),
226 }
227
228 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
229
230 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
231 pub enum Mode {
232     // An expression of the form `receiver.method_name(...)`.
233     // Autoderefs are performed on `receiver`, lookup is done based on the
234     // `self` argument  of the method, and static methods aren't considered.
235     MethodCall,
236     // An expression of the form `Type::item` or `<T>::item`.
237     // No autoderefs are performed, lookup is done based on the type each
238     // implementation is for, and static methods are included.
239     Path,
240 }
241
242 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
243 pub enum ProbeScope {
244     // Assemble candidates coming only from traits in scope.
245     TraitsInScope,
246
247     // Assemble candidates coming from all traits.
248     AllTraits,
249 }
250
251 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
252     /// This is used to offer suggestions to users. It returns methods
253     /// that could have been called which have the desired return
254     /// type. Some effort is made to rule out methods that, if called,
255     /// would result in an error (basically, the same criteria we
256     /// would use to decide if a method is a plausible fit for
257     /// ambiguity purposes).
258     #[instrument(level = "debug", skip(self, candidate_filter))]
259     pub fn probe_for_return_type(
260         &self,
261         span: Span,
262         mode: Mode,
263         return_type: Ty<'tcx>,
264         self_ty: Ty<'tcx>,
265         scope_expr_id: hir::HirId,
266         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
267     ) -> Vec<ty::AssocItem> {
268         let method_names = self
269             .probe_op(
270                 span,
271                 mode,
272                 None,
273                 Some(return_type),
274                 IsSuggestion(true),
275                 self_ty,
276                 scope_expr_id,
277                 ProbeScope::AllTraits,
278                 |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
279             )
280             .unwrap_or_default();
281         method_names
282             .iter()
283             .flat_map(|&method_name| {
284                 self.probe_op(
285                     span,
286                     mode,
287                     Some(method_name),
288                     Some(return_type),
289                     IsSuggestion(true),
290                     self_ty,
291                     scope_expr_id,
292                     ProbeScope::AllTraits,
293                     |probe_cx| probe_cx.pick(),
294                 )
295                 .ok()
296                 .map(|pick| pick.item)
297             })
298             .collect()
299     }
300
301     #[instrument(level = "debug", skip(self))]
302     pub fn probe_for_name(
303         &self,
304         mode: Mode,
305         item_name: Ident,
306         is_suggestion: IsSuggestion,
307         self_ty: Ty<'tcx>,
308         scope_expr_id: hir::HirId,
309         scope: ProbeScope,
310     ) -> PickResult<'tcx> {
311         self.probe_op(
312             item_name.span,
313             mode,
314             Some(item_name),
315             None,
316             is_suggestion,
317             self_ty,
318             scope_expr_id,
319             scope,
320             |probe_cx| probe_cx.pick(),
321         )
322     }
323
324     fn probe_op<OP, R>(
325         &'a self,
326         span: Span,
327         mode: Mode,
328         method_name: Option<Ident>,
329         return_type: Option<Ty<'tcx>>,
330         is_suggestion: IsSuggestion,
331         self_ty: Ty<'tcx>,
332         scope_expr_id: hir::HirId,
333         scope: ProbeScope,
334         op: OP,
335     ) -> Result<R, MethodError<'tcx>>
336     where
337         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
338     {
339         let mut orig_values = OriginalQueryValues::default();
340         let param_env_and_self_ty = self.canonicalize_query(
341             ParamEnvAnd { param_env: self.param_env, value: self_ty },
342             &mut orig_values,
343         );
344
345         let steps = if mode == Mode::MethodCall {
346             self.tcx.method_autoderef_steps(param_env_and_self_ty)
347         } else {
348             self.probe(|_| {
349                 // Mode::Path - the deref steps is "trivial". This turns
350                 // our CanonicalQuery into a "trivial" QueryResponse. This
351                 // is a bit inefficient, but I don't think that writing
352                 // special handling for this "trivial case" is a good idea.
353
354                 let infcx = &self.infcx;
355                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
356                     infcx.instantiate_canonical_with_fresh_inference_vars(
357                         span,
358                         &param_env_and_self_ty,
359                     );
360                 debug!(
361                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
362                     param_env_and_self_ty, self_ty
363                 );
364                 MethodAutoderefStepsResult {
365                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
366                         self_ty: self.make_query_response_ignoring_pending_obligations(
367                             canonical_inference_vars,
368                             self_ty,
369                         ),
370                         autoderefs: 0,
371                         from_unsafe_deref: false,
372                         unsize: false,
373                     }]),
374                     opt_bad_ty: None,
375                     reached_recursion_limit: false,
376                 }
377             })
378         };
379
380         // If our autoderef loop had reached the recursion limit,
381         // report an overflow error, but continue going on with
382         // the truncated autoderef list.
383         if steps.reached_recursion_limit {
384             self.probe(|_| {
385                 let ty = &steps
386                     .steps
387                     .last()
388                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
389                     .self_ty;
390                 let ty = self
391                     .probe_instantiate_query_response(span, &orig_values, ty)
392                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
393                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
394             });
395         }
396
397         // If we encountered an `_` type or an error type during autoderef, this is
398         // ambiguous.
399         if let Some(bad_ty) = &steps.opt_bad_ty {
400             if is_suggestion.0 {
401                 // Ambiguity was encountered during a suggestion. Just keep going.
402                 debug!("ProbeContext: encountered ambiguity in suggestion");
403             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
404                 // this case used to be allowed by the compiler,
405                 // so we do a future-compat lint here for the 2015 edition
406                 // (see https://github.com/rust-lang/rust/issues/46906)
407                 if self.tcx.sess.rust_2018() {
408                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
409                 } else {
410                     self.tcx.struct_span_lint_hir(
411                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
412                         scope_expr_id,
413                         span,
414                         "type annotations needed",
415                         |lint| lint,
416                     );
417                 }
418             } else {
419                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
420                 // an `Err`, report the right "type annotations needed" error pointing
421                 // to it.
422                 let ty = &bad_ty.ty;
423                 let ty = self
424                     .probe_instantiate_query_response(span, &orig_values, ty)
425                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
426                 let ty = self.structurally_resolved_type(span, ty.value);
427                 assert!(matches!(ty.kind(), ty::Error(_)));
428                 return Err(MethodError::NoMatch(NoMatchData {
429                     static_candidates: Vec::new(),
430                     unsatisfied_predicates: Vec::new(),
431                     out_of_scope_traits: Vec::new(),
432                     lev_candidate: None,
433                     mode,
434                 }));
435             }
436         }
437
438         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
439
440         // this creates one big transaction so that all type variables etc
441         // that we create during the probe process are removed later
442         self.probe(|_| {
443             let mut probe_cx = ProbeContext::new(
444                 self,
445                 span,
446                 mode,
447                 method_name,
448                 return_type,
449                 orig_values,
450                 steps.steps,
451                 scope_expr_id,
452             );
453
454             probe_cx.assemble_inherent_candidates();
455             match scope {
456                 ProbeScope::TraitsInScope => {
457                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
458                 }
459                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
460             };
461             op(probe_cx)
462         })
463     }
464 }
465
466 pub fn provide(providers: &mut ty::query::Providers) {
467     providers.method_autoderef_steps = method_autoderef_steps;
468 }
469
470 fn method_autoderef_steps<'tcx>(
471     tcx: TyCtxt<'tcx>,
472     goal: CanonicalTyGoal<'tcx>,
473 ) -> MethodAutoderefStepsResult<'tcx> {
474     debug!("method_autoderef_steps({:?})", goal);
475
476     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
477     let ParamEnvAnd { param_env, value: self_ty } = goal;
478
479     let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
480         .include_raw_pointers()
481         .silence_errors();
482     let mut reached_raw_pointer = false;
483     let mut steps: Vec<_> = autoderef
484         .by_ref()
485         .map(|(ty, d)| {
486             let step = CandidateStep {
487                 self_ty: infcx
488                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
489                 autoderefs: d,
490                 from_unsafe_deref: reached_raw_pointer,
491                 unsize: false,
492             };
493             if let ty::RawPtr(_) = ty.kind() {
494                 // all the subsequent steps will be from_unsafe_deref
495                 reached_raw_pointer = true;
496             }
497             step
498         })
499         .collect();
500
501     let final_ty = autoderef.final_ty(true);
502     let opt_bad_ty = match final_ty.kind() {
503         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
504             reached_raw_pointer,
505             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
506         }),
507         ty::Array(elem_ty, _) => {
508             let dereferences = steps.len() - 1;
509
510             steps.push(CandidateStep {
511                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
512                     inference_vars,
513                     infcx.tcx.mk_slice(*elem_ty),
514                 ),
515                 autoderefs: dereferences,
516                 // this could be from an unsafe deref if we had
517                 // a *mut/const [T; N]
518                 from_unsafe_deref: reached_raw_pointer,
519                 unsize: true,
520             });
521
522             None
523         }
524         _ => None,
525     };
526
527     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
528
529     MethodAutoderefStepsResult {
530         steps: tcx.arena.alloc_from_iter(steps),
531         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
532         reached_recursion_limit: autoderef.reached_recursion_limit(),
533     }
534 }
535
536 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
537     fn new(
538         fcx: &'a FnCtxt<'a, 'tcx>,
539         span: Span,
540         mode: Mode,
541         method_name: Option<Ident>,
542         return_type: Option<Ty<'tcx>>,
543         orig_steps_var_values: OriginalQueryValues<'tcx>,
544         steps: &'tcx [CandidateStep<'tcx>],
545         scope_expr_id: hir::HirId,
546     ) -> ProbeContext<'a, 'tcx> {
547         ProbeContext {
548             fcx,
549             span,
550             mode,
551             method_name,
552             return_type,
553             inherent_candidates: Vec::new(),
554             extension_candidates: Vec::new(),
555             impl_dups: FxHashSet::default(),
556             orig_steps_var_values,
557             steps,
558             static_candidates: Vec::new(),
559             allow_similar_names: false,
560             private_candidate: None,
561             unsatisfied_predicates: Vec::new(),
562             scope_expr_id,
563         }
564     }
565
566     fn reset(&mut self) {
567         self.inherent_candidates.clear();
568         self.extension_candidates.clear();
569         self.impl_dups.clear();
570         self.static_candidates.clear();
571         self.private_candidate = None;
572     }
573
574     ///////////////////////////////////////////////////////////////////////////
575     // CANDIDATE ASSEMBLY
576
577     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
578         let is_accessible = if let Some(name) = self.method_name {
579             let item = candidate.item;
580             let def_scope = self
581                 .tcx
582                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
583                 .1;
584             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
585         } else {
586             true
587         };
588         if is_accessible {
589             if is_inherent {
590                 self.inherent_candidates.push(candidate);
591             } else {
592                 self.extension_candidates.push(candidate);
593             }
594         } else if self.private_candidate.is_none() {
595             self.private_candidate =
596                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
597         }
598     }
599
600     fn assemble_inherent_candidates(&mut self) {
601         for step in self.steps.iter() {
602             self.assemble_probe(&step.self_ty);
603         }
604     }
605
606     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
607         debug!("assemble_probe: self_ty={:?}", self_ty);
608         let raw_self_ty = self_ty.value.value;
609         match *raw_self_ty.kind() {
610             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
611                 // Subtle: we can't use `instantiate_query_response` here: using it will
612                 // commit to all of the type equalities assumed by inference going through
613                 // autoderef (see the `method-probe-no-guessing` test).
614                 //
615                 // However, in this code, it is OK if we end up with an object type that is
616                 // "more general" than the object type that we are evaluating. For *every*
617                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
618                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
619                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
620                 // of the iterations in the autoderef loop, so there is no problem with it
621                 // being discoverable in another one of these iterations.
622                 //
623                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
624                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
625                 // `CanonicalVarValues` will exactly give us such a generalization - it
626                 // will still match the original object type, but it won't pollute our
627                 // type variables in any form, so just do that!
628                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
629                     self.fcx
630                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
631
632                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
633                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
634                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
635                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
636                 }
637             }
638             ty::Adt(def, _) => {
639                 let def_id = def.did();
640                 self.assemble_inherent_impl_candidates_for_type(def_id);
641                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
642                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
643                 }
644             }
645             ty::Foreign(did) => {
646                 self.assemble_inherent_impl_candidates_for_type(did);
647                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
648                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
649                 }
650             }
651             ty::Param(p) => {
652                 self.assemble_inherent_candidates_from_param(p);
653             }
654             ty::Bool
655             | ty::Char
656             | ty::Int(_)
657             | ty::Uint(_)
658             | ty::Float(_)
659             | ty::Str
660             | ty::Array(..)
661             | ty::Slice(_)
662             | ty::RawPtr(_)
663             | ty::Ref(..)
664             | ty::Never
665             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
666             _ => {}
667         }
668     }
669
670     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
671         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
672             bug!("unexpected incoherent type: {:?}", self_ty)
673         };
674         for &impl_def_id in self.tcx.incoherent_impls(simp) {
675             self.assemble_inherent_impl_probe(impl_def_id);
676         }
677     }
678
679     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
680         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
681         for &impl_def_id in impl_def_ids.iter() {
682             self.assemble_inherent_impl_probe(impl_def_id);
683         }
684     }
685
686     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
687         if !self.impl_dups.insert(impl_def_id) {
688             return; // already visited
689         }
690
691         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
692
693         for item in self.impl_or_trait_item(impl_def_id) {
694             if !self.has_applicable_self(&item) {
695                 // No receiver declared. Not a candidate.
696                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
697                 continue;
698             }
699
700             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
701             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
702
703             debug!("impl_ty: {:?}", impl_ty);
704
705             // Determine the receiver type that the method itself expects.
706             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
707             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
708
709             // We can't use normalize_associated_types_in as it will pollute the
710             // fcx's fulfillment context after this probe is over.
711             // Note: we only normalize `xform_self_ty` here since the normalization
712             // of the return type can lead to inference results that prohibit
713             // valid candidates from being found, see issue #85671
714             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
715             // which might be caused by the `param_env` itself. The clauses of the `param_env`
716             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
717             // see issue #89650
718             let cause = traits::ObligationCause::misc(self.span, self.body_id);
719             let selcx = &mut traits::SelectionContext::new(self.fcx);
720             let traits::Normalized { value: xform_self_ty, obligations } =
721                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
722             debug!(
723                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
724                 xform_self_ty, xform_ret_ty
725             );
726
727             self.push_candidate(
728                 Candidate {
729                     xform_self_ty,
730                     xform_ret_ty,
731                     item,
732                     kind: InherentImplCandidate(impl_substs, obligations),
733                     import_ids: smallvec![],
734                 },
735                 true,
736             );
737         }
738     }
739
740     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
741         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
742
743         let principal = match self_ty.kind() {
744             ty::Dynamic(ref data, ..) => Some(data),
745             _ => None,
746         }
747         .and_then(|data| data.principal())
748         .unwrap_or_else(|| {
749             span_bug!(
750                 self.span,
751                 "non-object {:?} in assemble_inherent_candidates_from_object",
752                 self_ty
753             )
754         });
755
756         // It is illegal to invoke a method on a trait instance that refers to
757         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
758         // will be reported by `object_safety.rs` if the method refers to the
759         // `Self` type anywhere other than the receiver. Here, we use a
760         // substitution that replaces `Self` with the object type itself. Hence,
761         // a `&self` method will wind up with an argument type like `&dyn Trait`.
762         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
763         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
764             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
765
766             let (xform_self_ty, xform_ret_ty) =
767                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
768             this.push_candidate(
769                 Candidate {
770                     xform_self_ty,
771                     xform_ret_ty,
772                     item,
773                     kind: ObjectCandidate,
774                     import_ids: smallvec![],
775                 },
776                 true,
777             );
778         });
779     }
780
781     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
782         // FIXME: do we want to commit to this behavior for param bounds?
783         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
784
785         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
786             let bound_predicate = predicate.kind();
787             match bound_predicate.skip_binder() {
788                 ty::PredicateKind::Trait(trait_predicate) => {
789                     match *trait_predicate.trait_ref.self_ty().kind() {
790                         ty::Param(p) if p == param_ty => {
791                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
792                         }
793                         _ => None,
794                     }
795                 }
796                 ty::PredicateKind::Subtype(..)
797                 | ty::PredicateKind::Coerce(..)
798                 | ty::PredicateKind::Projection(..)
799                 | ty::PredicateKind::RegionOutlives(..)
800                 | ty::PredicateKind::WellFormed(..)
801                 | ty::PredicateKind::ObjectSafe(..)
802                 | ty::PredicateKind::ClosureKind(..)
803                 | ty::PredicateKind::TypeOutlives(..)
804                 | ty::PredicateKind::ConstEvaluatable(..)
805                 | ty::PredicateKind::ConstEquate(..)
806                 | ty::PredicateKind::Ambiguous
807                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
808             }
809         });
810
811         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
812             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
813
814             let (xform_self_ty, xform_ret_ty) =
815                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
816
817             // Because this trait derives from a where-clause, it
818             // should not contain any inference variables or other
819             // artifacts. This means it is safe to put into the
820             // `WhereClauseCandidate` and (eventually) into the
821             // `WhereClausePick`.
822             assert!(!trait_ref.substs.needs_infer());
823
824             this.push_candidate(
825                 Candidate {
826                     xform_self_ty,
827                     xform_ret_ty,
828                     item,
829                     kind: WhereClauseCandidate(poly_trait_ref),
830                     import_ids: smallvec![],
831                 },
832                 true,
833             );
834         });
835     }
836
837     // Do a search through a list of bounds, using a callback to actually
838     // create the candidates.
839     fn elaborate_bounds<F>(
840         &mut self,
841         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
842         mut mk_cand: F,
843     ) where
844         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
845     {
846         let tcx = self.tcx;
847         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
848             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
849             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
850                 if !self.has_applicable_self(&item) {
851                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
852                 } else {
853                     mk_cand(self, bound_trait_ref, item);
854                 }
855             }
856         }
857     }
858
859     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
860         let mut duplicates = FxHashSet::default();
861         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
862         if let Some(applicable_traits) = opt_applicable_traits {
863             for trait_candidate in applicable_traits.iter() {
864                 let trait_did = trait_candidate.def_id;
865                 if duplicates.insert(trait_did) {
866                     self.assemble_extension_candidates_for_trait(
867                         &trait_candidate.import_ids,
868                         trait_did,
869                     );
870                 }
871             }
872         }
873     }
874
875     fn assemble_extension_candidates_for_all_traits(&mut self) {
876         let mut duplicates = FxHashSet::default();
877         for trait_info in suggest::all_traits(self.tcx) {
878             if duplicates.insert(trait_info.def_id) {
879                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
880             }
881         }
882     }
883
884     fn matches_return_type(
885         &self,
886         method: &ty::AssocItem,
887         self_ty: Option<Ty<'tcx>>,
888         expected: Ty<'tcx>,
889     ) -> bool {
890         match method.kind {
891             ty::AssocKind::Fn => {
892                 let fty = self.tcx.bound_fn_sig(method.def_id);
893                 self.probe(|_| {
894                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
895                     let fty = fty.subst(self.tcx, substs);
896                     let fty =
897                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
898
899                     if let Some(self_ty) = self_ty {
900                         if self
901                             .at(&ObligationCause::dummy(), self.param_env)
902                             .sup(fty.inputs()[0], self_ty)
903                             .is_err()
904                         {
905                             return false;
906                         }
907                     }
908                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
909                 })
910             }
911             _ => false,
912         }
913     }
914
915     fn assemble_extension_candidates_for_trait(
916         &mut self,
917         import_ids: &SmallVec<[LocalDefId; 1]>,
918         trait_def_id: DefId,
919     ) {
920         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
921         let trait_substs = self.fresh_item_substs(trait_def_id);
922         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
923
924         if self.tcx.is_trait_alias(trait_def_id) {
925             // For trait aliases, assume all supertraits are relevant.
926             let bounds = iter::once(ty::Binder::dummy(trait_ref));
927             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
928                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
929
930                 let (xform_self_ty, xform_ret_ty) =
931                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
932                 this.push_candidate(
933                     Candidate {
934                         xform_self_ty,
935                         xform_ret_ty,
936                         item,
937                         import_ids: import_ids.clone(),
938                         kind: TraitCandidate(new_trait_ref),
939                     },
940                     false,
941                 );
942             });
943         } else {
944             debug_assert!(self.tcx.is_trait(trait_def_id));
945             for item in self.impl_or_trait_item(trait_def_id) {
946                 // Check whether `trait_def_id` defines a method with suitable name.
947                 if !self.has_applicable_self(&item) {
948                     debug!("method has inapplicable self");
949                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
950                     continue;
951                 }
952
953                 let (xform_self_ty, xform_ret_ty) =
954                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
955                 self.push_candidate(
956                     Candidate {
957                         xform_self_ty,
958                         xform_ret_ty,
959                         item,
960                         import_ids: import_ids.clone(),
961                         kind: TraitCandidate(trait_ref),
962                     },
963                     false,
964                 );
965             }
966         }
967     }
968
969     fn candidate_method_names(
970         &self,
971         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
972     ) -> Vec<Ident> {
973         let mut set = FxHashSet::default();
974         let mut names: Vec<_> = self
975             .inherent_candidates
976             .iter()
977             .chain(&self.extension_candidates)
978             .filter(|candidate| candidate_filter(&candidate.item))
979             .filter(|candidate| {
980                 if let Some(return_ty) = self.return_type {
981                     self.matches_return_type(&candidate.item, None, return_ty)
982                 } else {
983                     true
984                 }
985             })
986             .map(|candidate| candidate.item.ident(self.tcx))
987             .filter(|&name| set.insert(name))
988             .collect();
989
990         // Sort them by the name so we have a stable result.
991         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
992         names
993     }
994
995     ///////////////////////////////////////////////////////////////////////////
996     // THE ACTUAL SEARCH
997
998     fn pick(mut self) -> PickResult<'tcx> {
999         assert!(self.method_name.is_some());
1000
1001         if let Some(r) = self.pick_core() {
1002             return r;
1003         }
1004
1005         debug!("pick: actual search failed, assemble diagnostics");
1006
1007         let static_candidates = mem::take(&mut self.static_candidates);
1008         let private_candidate = self.private_candidate.take();
1009         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1010
1011         // things failed, so lets look at all traits, for diagnostic purposes now:
1012         self.reset();
1013
1014         let span = self.span;
1015         let tcx = self.tcx;
1016
1017         self.assemble_extension_candidates_for_all_traits();
1018
1019         let out_of_scope_traits = match self.pick_core() {
1020             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1021             Some(Err(MethodError::Ambiguity(v))) => v
1022                 .into_iter()
1023                 .map(|source| match source {
1024                     CandidateSource::Trait(id) => id,
1025                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1026                         Some(id) => id,
1027                         None => span_bug!(span, "found inherent method when looking at traits"),
1028                     },
1029                 })
1030                 .collect(),
1031             Some(Err(MethodError::NoMatch(NoMatchData {
1032                 out_of_scope_traits: others, ..
1033             }))) => {
1034                 assert!(others.is_empty());
1035                 vec![]
1036             }
1037             _ => vec![],
1038         };
1039
1040         if let Some((kind, def_id)) = private_candidate {
1041             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1042         }
1043         let lev_candidate = self.probe_for_lev_candidate()?;
1044
1045         Err(MethodError::NoMatch(NoMatchData {
1046             static_candidates,
1047             unsatisfied_predicates,
1048             out_of_scope_traits,
1049             lev_candidate,
1050             mode: self.mode,
1051         }))
1052     }
1053
1054     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1055         let pick = self.pick_all_method(Some(&mut vec![]));
1056
1057         // In this case unstable picking is done by `pick_method`.
1058         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1059             return pick;
1060         }
1061
1062         if pick.is_none() {
1063             return self.pick_all_method(None);
1064         }
1065         pick
1066     }
1067
1068     fn pick_all_method(
1069         &mut self,
1070         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1071     ) -> Option<PickResult<'tcx>> {
1072         let steps = self.steps.clone();
1073         steps
1074             .iter()
1075             .filter(|step| {
1076                 debug!("pick_all_method: step={:?}", step);
1077                 // skip types that are from a type error or that would require dereferencing
1078                 // a raw pointer
1079                 !step.self_ty.references_error() && !step.from_unsafe_deref
1080             })
1081             .flat_map(|step| {
1082                 let InferOk { value: self_ty, obligations: _ } = self
1083                     .fcx
1084                     .probe_instantiate_query_response(
1085                         self.span,
1086                         &self.orig_steps_var_values,
1087                         &step.self_ty,
1088                     )
1089                     .unwrap_or_else(|_| {
1090                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1091                     });
1092                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1093                     .or_else(|| {
1094                         self.pick_autorefd_method(
1095                             step,
1096                             self_ty,
1097                             hir::Mutability::Not,
1098                             unstable_candidates.as_deref_mut(),
1099                         )
1100                         .or_else(|| {
1101                             self.pick_autorefd_method(
1102                                 step,
1103                                 self_ty,
1104                                 hir::Mutability::Mut,
1105                                 unstable_candidates.as_deref_mut(),
1106                             )
1107                         })
1108                         .or_else(|| {
1109                             self.pick_const_ptr_method(
1110                                 step,
1111                                 self_ty,
1112                                 unstable_candidates.as_deref_mut(),
1113                             )
1114                         })
1115                     })
1116             })
1117             .next()
1118     }
1119
1120     /// For each type `T` in the step list, this attempts to find a method where
1121     /// the (transformed) self type is exactly `T`. We do however do one
1122     /// transformation on the adjustment: if we are passing a region pointer in,
1123     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1124     /// to transparently pass `&mut` pointers, in particular, without consuming
1125     /// them for their entire lifetime.
1126     fn pick_by_value_method(
1127         &mut self,
1128         step: &CandidateStep<'tcx>,
1129         self_ty: Ty<'tcx>,
1130         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1131     ) -> Option<PickResult<'tcx>> {
1132         if step.unsize {
1133             return None;
1134         }
1135
1136         self.pick_method(self_ty, unstable_candidates).map(|r| {
1137             r.map(|mut pick| {
1138                 pick.autoderefs = step.autoderefs;
1139
1140                 // Insert a `&*` or `&mut *` if this is a reference type:
1141                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1142                     pick.autoderefs += 1;
1143                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1144                         mutbl,
1145                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1146                     })
1147                 }
1148
1149                 pick
1150             })
1151         })
1152     }
1153
1154     fn pick_autorefd_method(
1155         &mut self,
1156         step: &CandidateStep<'tcx>,
1157         self_ty: Ty<'tcx>,
1158         mutbl: hir::Mutability,
1159         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1160     ) -> Option<PickResult<'tcx>> {
1161         let tcx = self.tcx;
1162
1163         // In general, during probing we erase regions.
1164         let region = tcx.lifetimes.re_erased;
1165
1166         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1167         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1168             r.map(|mut pick| {
1169                 pick.autoderefs = step.autoderefs;
1170                 pick.autoref_or_ptr_adjustment =
1171                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1172                 pick
1173             })
1174         })
1175     }
1176
1177     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1178     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1179     /// autorefs would require dereferencing the pointer, which is not safe.
1180     fn pick_const_ptr_method(
1181         &mut self,
1182         step: &CandidateStep<'tcx>,
1183         self_ty: Ty<'tcx>,
1184         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1185     ) -> Option<PickResult<'tcx>> {
1186         // Don't convert an unsized reference to ptr
1187         if step.unsize {
1188             return None;
1189         }
1190
1191         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1192             return None;
1193         };
1194
1195         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1196         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1197         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1198             r.map(|mut pick| {
1199                 pick.autoderefs = step.autoderefs;
1200                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1201                 pick
1202             })
1203         })
1204     }
1205
1206     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1207         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1208
1209         let mut possibly_unsatisfied_predicates = Vec::new();
1210
1211         for (kind, candidates) in
1212             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1213         {
1214             debug!("searching {} candidates", kind);
1215             let res = self.consider_candidates(
1216                 self_ty,
1217                 candidates.iter(),
1218                 &mut possibly_unsatisfied_predicates,
1219                 Some(&mut vec![]),
1220             );
1221             if res.is_some() {
1222                 return res;
1223             }
1224         }
1225
1226         debug!("searching unstable candidates");
1227         let res = self.consider_candidates(
1228             self_ty,
1229             self.inherent_candidates.iter().chain(&self.extension_candidates),
1230             &mut possibly_unsatisfied_predicates,
1231             None,
1232         );
1233         if res.is_none() {
1234             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1235         }
1236         res
1237     }
1238
1239     fn pick_method(
1240         &mut self,
1241         self_ty: Ty<'tcx>,
1242         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1243     ) -> Option<PickResult<'tcx>> {
1244         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1245             return self.pick_method_with_unstable(self_ty);
1246         }
1247
1248         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1249
1250         let mut possibly_unsatisfied_predicates = Vec::new();
1251
1252         for (kind, candidates) in
1253             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1254         {
1255             debug!("searching {} candidates", kind);
1256             let res = self.consider_candidates(
1257                 self_ty,
1258                 candidates.iter(),
1259                 &mut possibly_unsatisfied_predicates,
1260                 unstable_candidates.as_deref_mut(),
1261             );
1262             if let Some(pick) = res {
1263                 return Some(pick);
1264             }
1265         }
1266
1267         // `pick_method` may be called twice for the same self_ty if no stable methods
1268         // match. Only extend once.
1269         if unstable_candidates.is_some() {
1270             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1271         }
1272         None
1273     }
1274
1275     fn consider_candidates<'b, ProbesIter>(
1276         &self,
1277         self_ty: Ty<'tcx>,
1278         probes: ProbesIter,
1279         possibly_unsatisfied_predicates: &mut Vec<(
1280             ty::Predicate<'tcx>,
1281             Option<ty::Predicate<'tcx>>,
1282             Option<ObligationCause<'tcx>>,
1283         )>,
1284         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1285     ) -> Option<PickResult<'tcx>>
1286     where
1287         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1288         'tcx: 'b,
1289     {
1290         let mut applicable_candidates: Vec<_> = probes
1291             .clone()
1292             .map(|probe| {
1293                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1294             })
1295             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1296             .collect();
1297
1298         debug!("applicable_candidates: {:?}", applicable_candidates);
1299
1300         if applicable_candidates.len() > 1 {
1301             if let Some(pick) =
1302                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1303             {
1304                 return Some(Ok(pick));
1305             }
1306         }
1307
1308         if let Some(uc) = &mut unstable_candidates {
1309             applicable_candidates.retain(|&(p, _)| {
1310                 if let stability::EvalResult::Deny { feature, .. } =
1311                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1312                 {
1313                     uc.push((p.clone(), feature));
1314                     return false;
1315                 }
1316                 true
1317             });
1318         }
1319
1320         if applicable_candidates.len() > 1 {
1321             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1322             return Some(Err(MethodError::Ambiguity(sources)));
1323         }
1324
1325         applicable_candidates.pop().map(|(probe, status)| {
1326             if status == ProbeResult::Match {
1327                 Ok(probe
1328                     .to_unadjusted_pick(self_ty, unstable_candidates.cloned().unwrap_or_default()))
1329             } else {
1330                 Err(MethodError::BadReturnType)
1331             }
1332         })
1333     }
1334 }
1335
1336 impl<'tcx> Pick<'tcx> {
1337     /// In case there were unstable name collisions, emit them as a lint.
1338     /// Checks whether two picks do not refer to the same trait item for the same `Self` type.
1339     /// Only useful for comparisons of picks in order to improve diagnostics.
1340     /// Do not use for type checking.
1341     pub fn differs_from(&self, other: &Self) -> bool {
1342         let Self {
1343             item:
1344                 AssocItem {
1345                     def_id,
1346                     name: _,
1347                     kind: _,
1348                     container: _,
1349                     trait_item_def_id: _,
1350                     fn_has_self_parameter: _,
1351                 },
1352             kind: _,
1353             import_ids: _,
1354             autoderefs: _,
1355             autoref_or_ptr_adjustment: _,
1356             self_ty,
1357             unstable_candidates: _,
1358         } = *self;
1359         self_ty != other.self_ty || def_id != other.item.def_id
1360     }
1361
1362     /// In case there were unstable name collisions, emit them as a lint.
1363     pub fn maybe_emit_unstable_name_collision_hint(
1364         &self,
1365         tcx: TyCtxt<'tcx>,
1366         span: Span,
1367         scope_expr_id: hir::HirId,
1368     ) {
1369         if self.unstable_candidates.is_empty() {
1370             return;
1371         }
1372         let def_kind = self.item.kind.as_def_kind();
1373         tcx.struct_span_lint_hir(
1374             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1375             scope_expr_id,
1376             span,
1377             format!(
1378                 "{} {} with this name may be added to the standard library in the future",
1379                 def_kind.article(),
1380                 def_kind.descr(self.item.def_id),
1381             ),
1382             |lint| {
1383                 match (self.item.kind, self.item.container) {
1384                     (ty::AssocKind::Fn, _) => {
1385                         // FIXME: This should be a `span_suggestion` instead of `help`
1386                         // However `self.span` only
1387                         // highlights the method name, so we can't use it. Also consider reusing
1388                         // the code from `report_method_error()`.
1389                         lint.help(&format!(
1390                             "call with fully qualified syntax `{}(...)` to keep using the current \
1391                              method",
1392                             tcx.def_path_str(self.item.def_id),
1393                         ));
1394                     }
1395                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1396                         let def_id = self.item.container_id(tcx);
1397                         lint.span_suggestion(
1398                             span,
1399                             "use the fully qualified path to the associated const",
1400                             format!(
1401                                 "<{} as {}>::{}",
1402                                 self.self_ty,
1403                                 tcx.def_path_str(def_id),
1404                                 self.item.name
1405                             ),
1406                             Applicability::MachineApplicable,
1407                         );
1408                     }
1409                     _ => {}
1410                 }
1411                 if tcx.sess.is_nightly_build() {
1412                     for (candidate, feature) in &self.unstable_candidates {
1413                         lint.help(&format!(
1414                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1415                             feature,
1416                             tcx.def_path_str(candidate.item.def_id),
1417                         ));
1418                     }
1419                 }
1420
1421                 lint
1422             },
1423         );
1424     }
1425 }
1426
1427 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
1428     fn select_trait_candidate(
1429         &self,
1430         trait_ref: ty::TraitRef<'tcx>,
1431     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1432         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1433         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1434         let obligation = traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1435         traits::SelectionContext::new(self).select(&obligation)
1436     }
1437
1438     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1439         match candidate.kind {
1440             InherentImplCandidate(..) => {
1441                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1442             }
1443             ObjectCandidate | WhereClauseCandidate(_) => {
1444                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1445             }
1446             TraitCandidate(trait_ref) => self.probe(|_| {
1447                 let _ = self
1448                     .at(&ObligationCause::dummy(), self.param_env)
1449                     .define_opaque_types(false)
1450                     .sup(candidate.xform_self_ty, self_ty);
1451                 match self.select_trait_candidate(trait_ref) {
1452                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1453                         // If only a single impl matches, make the error message point
1454                         // to that impl.
1455                         CandidateSource::Impl(impl_data.impl_def_id)
1456                     }
1457                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1458                 }
1459             }),
1460         }
1461     }
1462
1463     fn consider_probe(
1464         &self,
1465         self_ty: Ty<'tcx>,
1466         probe: &Candidate<'tcx>,
1467         possibly_unsatisfied_predicates: &mut Vec<(
1468             ty::Predicate<'tcx>,
1469             Option<ty::Predicate<'tcx>>,
1470             Option<ObligationCause<'tcx>>,
1471         )>,
1472     ) -> ProbeResult {
1473         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1474
1475         self.probe(|_| {
1476             // First check that the self type can be related.
1477             let sub_obligations = match self
1478                 .at(&ObligationCause::dummy(), self.param_env)
1479                 .define_opaque_types(false)
1480                 .sup(probe.xform_self_ty, self_ty)
1481             {
1482                 Ok(InferOk { obligations, value: () }) => obligations,
1483                 Err(err) => {
1484                     debug!("--> cannot relate self-types {:?}", err);
1485                     return ProbeResult::NoMatch;
1486                 }
1487             };
1488
1489             let mut result = ProbeResult::Match;
1490             let mut xform_ret_ty = probe.xform_ret_ty;
1491             debug!(?xform_ret_ty);
1492
1493             let selcx = &mut traits::SelectionContext::new(self);
1494             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1495
1496             let mut parent_pred = None;
1497
1498             // If so, impls may carry other conditions (e.g., where
1499             // clauses) that must be considered. Make sure that those
1500             // match as well (or at least may match, sometimes we
1501             // don't have enough information to fully evaluate).
1502             match probe.kind {
1503                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1504                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1505                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1506                     // for why this is necessary
1507                     let traits::Normalized {
1508                         value: normalized_xform_ret_ty,
1509                         obligations: normalization_obligations,
1510                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1511                     xform_ret_ty = normalized_xform_ret_ty;
1512                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1513
1514                     // Check whether the impl imposes obligations we have to worry about.
1515                     let impl_def_id = probe.item.container_id(self.tcx);
1516                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1517                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1518                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1519                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1520
1521                     // Convert the bounds into obligations.
1522                     let impl_obligations = traits::predicates_for_generics(
1523                         move |_, _| cause.clone(),
1524                         self.param_env,
1525                         impl_bounds,
1526                     );
1527
1528                     let candidate_obligations = impl_obligations
1529                         .chain(norm_obligations.into_iter())
1530                         .chain(ref_obligations.iter().cloned())
1531                         .chain(normalization_obligations.into_iter());
1532
1533                     // Evaluate those obligations to see if they might possibly hold.
1534                     for o in candidate_obligations {
1535                         let o = self.resolve_vars_if_possible(o);
1536                         if !self.predicate_may_hold(&o) {
1537                             result = ProbeResult::NoMatch;
1538                             possibly_unsatisfied_predicates.push((
1539                                 o.predicate,
1540                                 None,
1541                                 Some(o.cause),
1542                             ));
1543                         }
1544                     }
1545                 }
1546
1547                 ObjectCandidate | WhereClauseCandidate(..) => {
1548                     // These have no additional conditions to check.
1549                 }
1550
1551                 TraitCandidate(trait_ref) => {
1552                     if let Some(method_name) = self.method_name {
1553                         // Some trait methods are excluded for arrays before 2021.
1554                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1555                         if self_ty.is_array() && !method_name.span.rust_2021() {
1556                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1557                             if trait_def.skip_array_during_method_dispatch {
1558                                 return ProbeResult::NoMatch;
1559                             }
1560                         }
1561                     }
1562                     let predicate =
1563                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1564                     parent_pred = Some(predicate);
1565                     let obligation =
1566                         traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1567                     if !self.predicate_may_hold(&obligation) {
1568                         result = ProbeResult::NoMatch;
1569                         if self.probe(|_| {
1570                             match self.select_trait_candidate(trait_ref) {
1571                                 Err(_) => return true,
1572                                 Ok(Some(impl_source))
1573                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1574                                 {
1575                                     for obligation in impl_source.borrow_nested_obligations() {
1576                                         // Determine exactly which obligation wasn't met, so
1577                                         // that we can give more context in the error.
1578                                         if !self.predicate_may_hold(obligation) {
1579                                             let nested_predicate =
1580                                                 self.resolve_vars_if_possible(obligation.predicate);
1581                                             let predicate =
1582                                                 self.resolve_vars_if_possible(predicate);
1583                                             let p = if predicate == nested_predicate {
1584                                                 // Avoid "`MyStruct: Foo` which is required by
1585                                                 // `MyStruct: Foo`" in E0599.
1586                                                 None
1587                                             } else {
1588                                                 Some(predicate)
1589                                             };
1590                                             possibly_unsatisfied_predicates.push((
1591                                                 nested_predicate,
1592                                                 p,
1593                                                 Some(obligation.cause.clone()),
1594                                             ));
1595                                         }
1596                                     }
1597                                 }
1598                                 _ => {
1599                                     // Some nested subobligation of this predicate
1600                                     // failed.
1601                                     let predicate = self.resolve_vars_if_possible(predicate);
1602                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1603                                 }
1604                             }
1605                             false
1606                         }) {
1607                             // This candidate's primary obligation doesn't even
1608                             // select - don't bother registering anything in
1609                             // `potentially_unsatisfied_predicates`.
1610                             return ProbeResult::NoMatch;
1611                         }
1612                     }
1613                 }
1614             }
1615
1616             // Evaluate those obligations to see if they might possibly hold.
1617             for o in sub_obligations {
1618                 let o = self.resolve_vars_if_possible(o);
1619                 if !self.predicate_may_hold(&o) {
1620                     result = ProbeResult::NoMatch;
1621                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1622                 }
1623             }
1624
1625             if let ProbeResult::Match = result {
1626                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1627                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1628                     debug!(
1629                         "comparing return_ty {:?} with xform ret ty {:?}",
1630                         return_ty, probe.xform_ret_ty
1631                     );
1632                     if self
1633                         .at(&ObligationCause::dummy(), self.param_env)
1634                         .define_opaque_types(false)
1635                         .sup(return_ty, xform_ret_ty)
1636                         .is_err()
1637                     {
1638                         return ProbeResult::BadReturnType;
1639                     }
1640                 }
1641             }
1642
1643             result
1644         })
1645     }
1646
1647     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1648     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1649     /// external interface of the method can be determined from the trait, it's ok not to decide.
1650     /// We can basically just collapse all of the probes for various impls into one where-clause
1651     /// probe. This will result in a pending obligation so when more type-info is available we can
1652     /// make the final decision.
1653     ///
1654     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1655     ///
1656     /// ```ignore (illustrative)
1657     /// trait Foo { ... }
1658     /// impl Foo for Vec<i32> { ... }
1659     /// impl Foo for Vec<usize> { ... }
1660     /// ```
1661     ///
1662     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1663     /// use, so it's ok to just commit to "using the method from the trait Foo".
1664     fn collapse_candidates_to_trait_pick(
1665         &self,
1666         self_ty: Ty<'tcx>,
1667         probes: &[(&Candidate<'tcx>, ProbeResult)],
1668     ) -> Option<Pick<'tcx>> {
1669         // Do all probes correspond to the same trait?
1670         let container = probes[0].0.item.trait_container(self.tcx)?;
1671         for (p, _) in &probes[1..] {
1672             let p_container = p.item.trait_container(self.tcx)?;
1673             if p_container != container {
1674                 return None;
1675             }
1676         }
1677
1678         // FIXME: check the return type here somehow.
1679         // If so, just use this trait and call it a day.
1680         Some(Pick {
1681             item: probes[0].0.item,
1682             kind: TraitPick,
1683             import_ids: probes[0].0.import_ids.clone(),
1684             autoderefs: 0,
1685             autoref_or_ptr_adjustment: None,
1686             self_ty,
1687             unstable_candidates: vec![],
1688         })
1689     }
1690
1691     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1692     /// candidate method where the method name may have been misspelled. Similarly to other
1693     /// Levenshtein based suggestions, we provide at most one such suggestion.
1694     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1695         debug!("probing for method names similar to {:?}", self.method_name);
1696
1697         let steps = self.steps.clone();
1698         self.probe(|_| {
1699             let mut pcx = ProbeContext::new(
1700                 self.fcx,
1701                 self.span,
1702                 self.mode,
1703                 self.method_name,
1704                 self.return_type,
1705                 self.orig_steps_var_values.clone(),
1706                 steps,
1707                 self.scope_expr_id,
1708             );
1709             pcx.allow_similar_names = true;
1710             pcx.assemble_inherent_candidates();
1711
1712             let method_names = pcx.candidate_method_names(|_| true);
1713             pcx.allow_similar_names = false;
1714             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1715                 .iter()
1716                 .filter_map(|&method_name| {
1717                     pcx.reset();
1718                     pcx.method_name = Some(method_name);
1719                     pcx.assemble_inherent_candidates();
1720                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1721                 })
1722                 .collect();
1723
1724             if applicable_close_candidates.is_empty() {
1725                 Ok(None)
1726             } else {
1727                 let best_name = {
1728                     let names = applicable_close_candidates
1729                         .iter()
1730                         .map(|cand| cand.name)
1731                         .collect::<Vec<Symbol>>();
1732                     find_best_match_for_name_with_substrings(
1733                         &names,
1734                         self.method_name.unwrap().name,
1735                         None,
1736                     )
1737                 }
1738                 .unwrap();
1739                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1740             }
1741         })
1742     }
1743
1744     ///////////////////////////////////////////////////////////////////////////
1745     // MISCELLANY
1746     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1747         // "Fast track" -- check for usage of sugar when in method call
1748         // mode.
1749         //
1750         // In Path mode (i.e., resolving a value like `T::next`), consider any
1751         // associated value (i.e., methods, constants) but not types.
1752         match self.mode {
1753             Mode::MethodCall => item.fn_has_self_parameter,
1754             Mode::Path => match item.kind {
1755                 ty::AssocKind::Type => false,
1756                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1757             },
1758         }
1759         // FIXME -- check for types that deref to `Self`,
1760         // like `Rc<Self>` and so on.
1761         //
1762         // Note also that the current code will break if this type
1763         // includes any of the type parameters defined on the method
1764         // -- but this could be overcome.
1765     }
1766
1767     fn record_static_candidate(&mut self, source: CandidateSource) {
1768         self.static_candidates.push(source);
1769     }
1770
1771     #[instrument(level = "debug", skip(self))]
1772     fn xform_self_ty(
1773         &self,
1774         item: &ty::AssocItem,
1775         impl_ty: Ty<'tcx>,
1776         substs: SubstsRef<'tcx>,
1777     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1778         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1779             let sig = self.xform_method_sig(item.def_id, substs);
1780             (sig.inputs()[0], Some(sig.output()))
1781         } else {
1782             (impl_ty, None)
1783         }
1784     }
1785
1786     #[instrument(level = "debug", skip(self))]
1787     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1788         let fn_sig = self.tcx.bound_fn_sig(method);
1789         debug!(?fn_sig);
1790
1791         assert!(!substs.has_escaping_bound_vars());
1792
1793         // It is possible for type parameters or early-bound lifetimes
1794         // to appear in the signature of `self`. The substitutions we
1795         // are given do not include type/lifetime parameters for the
1796         // method yet. So create fresh variables here for those too,
1797         // if there are any.
1798         let generics = self.tcx.generics_of(method);
1799         assert_eq!(substs.len(), generics.parent_count as usize);
1800
1801         let xform_fn_sig = if generics.params.is_empty() {
1802             fn_sig.subst(self.tcx, substs)
1803         } else {
1804             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1805                 let i = param.index as usize;
1806                 if i < substs.len() {
1807                     substs[i]
1808                 } else {
1809                     match param.kind {
1810                         GenericParamDefKind::Lifetime => {
1811                             // In general, during probe we erase regions.
1812                             self.tcx.lifetimes.re_erased.into()
1813                         }
1814                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1815                             self.var_for_def(self.span, param)
1816                         }
1817                     }
1818                 }
1819             });
1820             fn_sig.subst(self.tcx, substs)
1821         };
1822
1823         self.erase_late_bound_regions(xform_fn_sig)
1824     }
1825
1826     /// Gets the type of an impl and generate substitutions with inference vars.
1827     fn impl_ty_and_substs(
1828         &self,
1829         impl_def_id: DefId,
1830     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1831         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1832     }
1833
1834     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1835         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1836             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1837             GenericParamDefKind::Type { .. } => self
1838                 .next_ty_var(TypeVariableOrigin {
1839                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1840                     span: self.tcx.def_span(def_id),
1841                 })
1842                 .into(),
1843             GenericParamDefKind::Const { .. } => {
1844                 let span = self.tcx.def_span(def_id);
1845                 let origin = ConstVariableOrigin {
1846                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1847                     span,
1848                 };
1849                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1850             }
1851         })
1852     }
1853
1854     /// Replaces late-bound-regions bound by `value` with `'static` using
1855     /// `ty::erase_late_bound_regions`.
1856     ///
1857     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1858     /// method matching. It is reasonable during the probe phase because we don't consider region
1859     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1860     /// rather than creating fresh region variables. This is nice for two reasons:
1861     ///
1862     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1863     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1864     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1865     ///
1866     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1867     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1868     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1869     ///    region got replaced with the same variable, which requires a bit more coordination
1870     ///    and/or tracking the substitution and
1871     ///    so forth.
1872     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1873     where
1874         T: TypeFoldable<'tcx>,
1875     {
1876         self.tcx.erase_late_bound_regions(value)
1877     }
1878
1879     /// Finds the method with the appropriate name (or return type, as the case may be). If
1880     /// `allow_similar_names` is set, find methods with close-matching names.
1881     // The length of the returned iterator is nearly always 0 or 1 and this
1882     // method is fairly hot.
1883     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1884         if let Some(name) = self.method_name {
1885             if self.allow_similar_names {
1886                 let max_dist = max(name.as_str().len(), 3) / 3;
1887                 self.tcx
1888                     .associated_items(def_id)
1889                     .in_definition_order()
1890                     .filter(|x| {
1891                         if x.kind.namespace() != Namespace::ValueNS {
1892                             return false;
1893                         }
1894                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1895                         {
1896                             Some(d) => d > 0,
1897                             None => false,
1898                         }
1899                     })
1900                     .copied()
1901                     .collect()
1902             } else {
1903                 self.fcx
1904                     .associated_value(def_id, name)
1905                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1906             }
1907         } else {
1908             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1909         }
1910     }
1911 }
1912
1913 impl<'tcx> Candidate<'tcx> {
1914     fn to_unadjusted_pick(
1915         &self,
1916         self_ty: Ty<'tcx>,
1917         unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
1918     ) -> Pick<'tcx> {
1919         Pick {
1920             item: self.item,
1921             kind: match self.kind {
1922                 InherentImplCandidate(..) => InherentImplPick,
1923                 ObjectCandidate => ObjectPick,
1924                 TraitCandidate(_) => TraitPick,
1925                 WhereClauseCandidate(ref trait_ref) => {
1926                     // Only trait derived from where-clauses should
1927                     // appear here, so they should not contain any
1928                     // inference variables or other artifacts. This
1929                     // means they are safe to put into the
1930                     // `WhereClausePick`.
1931                     assert!(
1932                         !trait_ref.skip_binder().substs.needs_infer()
1933                             && !trait_ref.skip_binder().substs.has_placeholders()
1934                     );
1935
1936                     WhereClausePick(*trait_ref)
1937                 }
1938             },
1939             import_ids: self.import_ids.clone(),
1940             autoderefs: 0,
1941             autoref_or_ptr_adjustment: None,
1942             self_ty,
1943             unstable_candidates,
1944         }
1945     }
1946 }