]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/method/probe.rs
Convert predicates into Predicate in the Obligation constructor
[rust.git] / compiler / rustc_hir_typeck / src / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::errors::MethodCallOnUnknownType;
7 use crate::FnCtxt;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_hir::def::Namespace;
13 use rustc_infer::infer::canonical::OriginalQueryValues;
14 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
15 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
16 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
17 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
18 use rustc_middle::middle::stability;
19 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
20 use rustc_middle::ty::GenericParamDefKind;
21 use rustc_middle::ty::ToPredicate;
22 use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeFoldable, TypeVisitable};
23 use rustc_middle::ty::{InternalSubsts, SubstsRef};
24 use rustc_session::lint;
25 use rustc_span::def_id::DefId;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     is_suggestion: IsSuggestion,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, PartialEq, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213 }
214
215 #[derive(Clone, Debug, PartialEq, Eq)]
216 pub enum PickKind<'tcx> {
217     InherentImplPick,
218     ObjectPick,
219     TraitPick,
220     WhereClausePick(
221         // Trait
222         ty::PolyTraitRef<'tcx>,
223     ),
224 }
225
226 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
227
228 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
229 pub enum Mode {
230     // An expression of the form `receiver.method_name(...)`.
231     // Autoderefs are performed on `receiver`, lookup is done based on the
232     // `self` argument  of the method, and static methods aren't considered.
233     MethodCall,
234     // An expression of the form `Type::item` or `<T>::item`.
235     // No autoderefs are performed, lookup is done based on the type each
236     // implementation is for, and static methods are included.
237     Path,
238 }
239
240 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
241 pub enum ProbeScope {
242     // Assemble candidates coming only from traits in scope.
243     TraitsInScope,
244
245     // Assemble candidates coming from all traits.
246     AllTraits,
247 }
248
249 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
250     /// This is used to offer suggestions to users. It returns methods
251     /// that could have been called which have the desired return
252     /// type. Some effort is made to rule out methods that, if called,
253     /// would result in an error (basically, the same criteria we
254     /// would use to decide if a method is a plausible fit for
255     /// ambiguity purposes).
256     #[instrument(level = "debug", skip(self, candidate_filter))]
257     pub fn probe_for_return_type(
258         &self,
259         span: Span,
260         mode: Mode,
261         return_type: Ty<'tcx>,
262         self_ty: Ty<'tcx>,
263         scope_expr_id: hir::HirId,
264         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
265     ) -> Vec<ty::AssocItem> {
266         let method_names = self
267             .probe_op(
268                 span,
269                 mode,
270                 None,
271                 Some(return_type),
272                 IsSuggestion(true),
273                 self_ty,
274                 scope_expr_id,
275                 ProbeScope::AllTraits,
276                 |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
277             )
278             .unwrap_or_default();
279         method_names
280             .iter()
281             .flat_map(|&method_name| {
282                 self.probe_op(
283                     span,
284                     mode,
285                     Some(method_name),
286                     Some(return_type),
287                     IsSuggestion(true),
288                     self_ty,
289                     scope_expr_id,
290                     ProbeScope::AllTraits,
291                     |probe_cx| probe_cx.pick(),
292                 )
293                 .ok()
294                 .map(|pick| pick.item)
295             })
296             .collect()
297     }
298
299     #[instrument(level = "debug", skip(self))]
300     pub fn probe_for_name(
301         &self,
302         span: Span,
303         mode: Mode,
304         item_name: Ident,
305         is_suggestion: IsSuggestion,
306         self_ty: Ty<'tcx>,
307         scope_expr_id: hir::HirId,
308         scope: ProbeScope,
309     ) -> PickResult<'tcx> {
310         self.probe_op(
311             span,
312             mode,
313             Some(item_name),
314             None,
315             is_suggestion,
316             self_ty,
317             scope_expr_id,
318             scope,
319             |probe_cx| probe_cx.pick(),
320         )
321     }
322
323     fn probe_op<OP, R>(
324         &'a self,
325         span: Span,
326         mode: Mode,
327         method_name: Option<Ident>,
328         return_type: Option<Ty<'tcx>>,
329         is_suggestion: IsSuggestion,
330         self_ty: Ty<'tcx>,
331         scope_expr_id: hir::HirId,
332         scope: ProbeScope,
333         op: OP,
334     ) -> Result<R, MethodError<'tcx>>
335     where
336         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
337     {
338         let mut orig_values = OriginalQueryValues::default();
339         let param_env_and_self_ty = self.canonicalize_query(
340             ParamEnvAnd { param_env: self.param_env, value: self_ty },
341             &mut orig_values,
342         );
343
344         let steps = if mode == Mode::MethodCall {
345             self.tcx.method_autoderef_steps(param_env_and_self_ty)
346         } else {
347             self.probe(|_| {
348                 // Mode::Path - the deref steps is "trivial". This turns
349                 // our CanonicalQuery into a "trivial" QueryResponse. This
350                 // is a bit inefficient, but I don't think that writing
351                 // special handling for this "trivial case" is a good idea.
352
353                 let infcx = &self.infcx;
354                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
355                     infcx.instantiate_canonical_with_fresh_inference_vars(
356                         span,
357                         &param_env_and_self_ty,
358                     );
359                 debug!(
360                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
361                     param_env_and_self_ty, self_ty
362                 );
363                 MethodAutoderefStepsResult {
364                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
365                         self_ty: self.make_query_response_ignoring_pending_obligations(
366                             canonical_inference_vars,
367                             self_ty,
368                         ),
369                         autoderefs: 0,
370                         from_unsafe_deref: false,
371                         unsize: false,
372                     }]),
373                     opt_bad_ty: None,
374                     reached_recursion_limit: false,
375                 }
376             })
377         };
378
379         // If our autoderef loop had reached the recursion limit,
380         // report an overflow error, but continue going on with
381         // the truncated autoderef list.
382         if steps.reached_recursion_limit {
383             self.probe(|_| {
384                 let ty = &steps
385                     .steps
386                     .last()
387                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
388                     .self_ty;
389                 let ty = self
390                     .probe_instantiate_query_response(span, &orig_values, ty)
391                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
392                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
393             });
394         }
395
396         // If we encountered an `_` type or an error type during autoderef, this is
397         // ambiguous.
398         if let Some(bad_ty) = &steps.opt_bad_ty {
399             if is_suggestion.0 {
400                 // Ambiguity was encountered during a suggestion. Just keep going.
401                 debug!("ProbeContext: encountered ambiguity in suggestion");
402             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
403                 // this case used to be allowed by the compiler,
404                 // so we do a future-compat lint here for the 2015 edition
405                 // (see https://github.com/rust-lang/rust/issues/46906)
406                 if self.tcx.sess.rust_2018() {
407                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
408                 } else {
409                     self.tcx.struct_span_lint_hir(
410                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
411                         scope_expr_id,
412                         span,
413                         "type annotations needed",
414                         |lint| lint,
415                     );
416                 }
417             } else {
418                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
419                 // an `Err`, report the right "type annotations needed" error pointing
420                 // to it.
421                 let ty = &bad_ty.ty;
422                 let ty = self
423                     .probe_instantiate_query_response(span, &orig_values, ty)
424                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
425                 let ty = self.structurally_resolved_type(span, ty.value);
426                 assert!(matches!(ty.kind(), ty::Error(_)));
427                 return Err(MethodError::NoMatch(NoMatchData {
428                     static_candidates: Vec::new(),
429                     unsatisfied_predicates: Vec::new(),
430                     out_of_scope_traits: Vec::new(),
431                     lev_candidate: None,
432                     mode,
433                 }));
434             }
435         }
436
437         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
438
439         // this creates one big transaction so that all type variables etc
440         // that we create during the probe process are removed later
441         self.probe(|_| {
442             let mut probe_cx = ProbeContext::new(
443                 self,
444                 span,
445                 mode,
446                 method_name,
447                 return_type,
448                 orig_values,
449                 steps.steps,
450                 is_suggestion,
451                 scope_expr_id,
452             );
453
454             probe_cx.assemble_inherent_candidates();
455             match scope {
456                 ProbeScope::TraitsInScope => {
457                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
458                 }
459                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
460             };
461             op(probe_cx)
462         })
463     }
464 }
465
466 pub fn provide(providers: &mut ty::query::Providers) {
467     providers.method_autoderef_steps = method_autoderef_steps;
468 }
469
470 fn method_autoderef_steps<'tcx>(
471     tcx: TyCtxt<'tcx>,
472     goal: CanonicalTyGoal<'tcx>,
473 ) -> MethodAutoderefStepsResult<'tcx> {
474     debug!("method_autoderef_steps({:?})", goal);
475
476     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
477     let ParamEnvAnd { param_env, value: self_ty } = goal;
478
479     let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
480         .include_raw_pointers()
481         .silence_errors();
482     let mut reached_raw_pointer = false;
483     let mut steps: Vec<_> = autoderef
484         .by_ref()
485         .map(|(ty, d)| {
486             let step = CandidateStep {
487                 self_ty: infcx
488                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
489                 autoderefs: d,
490                 from_unsafe_deref: reached_raw_pointer,
491                 unsize: false,
492             };
493             if let ty::RawPtr(_) = ty.kind() {
494                 // all the subsequent steps will be from_unsafe_deref
495                 reached_raw_pointer = true;
496             }
497             step
498         })
499         .collect();
500
501     let final_ty = autoderef.final_ty(true);
502     let opt_bad_ty = match final_ty.kind() {
503         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
504             reached_raw_pointer,
505             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
506         }),
507         ty::Array(elem_ty, _) => {
508             let dereferences = steps.len() - 1;
509
510             steps.push(CandidateStep {
511                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
512                     inference_vars,
513                     infcx.tcx.mk_slice(*elem_ty),
514                 ),
515                 autoderefs: dereferences,
516                 // this could be from an unsafe deref if we had
517                 // a *mut/const [T; N]
518                 from_unsafe_deref: reached_raw_pointer,
519                 unsize: true,
520             });
521
522             None
523         }
524         _ => None,
525     };
526
527     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
528
529     MethodAutoderefStepsResult {
530         steps: tcx.arena.alloc_from_iter(steps),
531         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
532         reached_recursion_limit: autoderef.reached_recursion_limit(),
533     }
534 }
535
536 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
537     fn new(
538         fcx: &'a FnCtxt<'a, 'tcx>,
539         span: Span,
540         mode: Mode,
541         method_name: Option<Ident>,
542         return_type: Option<Ty<'tcx>>,
543         orig_steps_var_values: OriginalQueryValues<'tcx>,
544         steps: &'tcx [CandidateStep<'tcx>],
545         is_suggestion: IsSuggestion,
546         scope_expr_id: hir::HirId,
547     ) -> ProbeContext<'a, 'tcx> {
548         ProbeContext {
549             fcx,
550             span,
551             mode,
552             method_name,
553             return_type,
554             inherent_candidates: Vec::new(),
555             extension_candidates: Vec::new(),
556             impl_dups: FxHashSet::default(),
557             orig_steps_var_values,
558             steps,
559             static_candidates: Vec::new(),
560             allow_similar_names: false,
561             private_candidate: None,
562             unsatisfied_predicates: Vec::new(),
563             is_suggestion,
564             scope_expr_id,
565         }
566     }
567
568     fn reset(&mut self) {
569         self.inherent_candidates.clear();
570         self.extension_candidates.clear();
571         self.impl_dups.clear();
572         self.static_candidates.clear();
573         self.private_candidate = None;
574     }
575
576     ///////////////////////////////////////////////////////////////////////////
577     // CANDIDATE ASSEMBLY
578
579     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
580         let is_accessible = if let Some(name) = self.method_name {
581             let item = candidate.item;
582             let def_scope = self
583                 .tcx
584                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
585                 .1;
586             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
587         } else {
588             true
589         };
590         if is_accessible {
591             if is_inherent {
592                 self.inherent_candidates.push(candidate);
593             } else {
594                 self.extension_candidates.push(candidate);
595             }
596         } else if self.private_candidate.is_none() {
597             self.private_candidate =
598                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
599         }
600     }
601
602     fn assemble_inherent_candidates(&mut self) {
603         for step in self.steps.iter() {
604             self.assemble_probe(&step.self_ty);
605         }
606     }
607
608     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
609         debug!("assemble_probe: self_ty={:?}", self_ty);
610         let raw_self_ty = self_ty.value.value;
611         match *raw_self_ty.kind() {
612             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
613                 // Subtle: we can't use `instantiate_query_response` here: using it will
614                 // commit to all of the type equalities assumed by inference going through
615                 // autoderef (see the `method-probe-no-guessing` test).
616                 //
617                 // However, in this code, it is OK if we end up with an object type that is
618                 // "more general" than the object type that we are evaluating. For *every*
619                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
620                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
621                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
622                 // of the iterations in the autoderef loop, so there is no problem with it
623                 // being discoverable in another one of these iterations.
624                 //
625                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
626                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
627                 // `CanonicalVarValues` will exactly give us such a generalization - it
628                 // will still match the original object type, but it won't pollute our
629                 // type variables in any form, so just do that!
630                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
631                     self.fcx
632                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
633
634                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
635                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
636                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
637                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
638                 }
639             }
640             ty::Adt(def, _) => {
641                 let def_id = def.did();
642                 self.assemble_inherent_impl_candidates_for_type(def_id);
643                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
644                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
645                 }
646             }
647             ty::Foreign(did) => {
648                 self.assemble_inherent_impl_candidates_for_type(did);
649                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
650                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
651                 }
652             }
653             ty::Param(p) => {
654                 self.assemble_inherent_candidates_from_param(p);
655             }
656             ty::Bool
657             | ty::Char
658             | ty::Int(_)
659             | ty::Uint(_)
660             | ty::Float(_)
661             | ty::Str
662             | ty::Array(..)
663             | ty::Slice(_)
664             | ty::RawPtr(_)
665             | ty::Ref(..)
666             | ty::Never
667             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
668             _ => {}
669         }
670     }
671
672     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
673         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
674             bug!("unexpected incoherent type: {:?}", self_ty)
675         };
676         for &impl_def_id in self.tcx.incoherent_impls(simp) {
677             self.assemble_inherent_impl_probe(impl_def_id);
678         }
679     }
680
681     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
682         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
683         for &impl_def_id in impl_def_ids.iter() {
684             self.assemble_inherent_impl_probe(impl_def_id);
685         }
686     }
687
688     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
689         if !self.impl_dups.insert(impl_def_id) {
690             return; // already visited
691         }
692
693         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
694
695         for item in self.impl_or_trait_item(impl_def_id) {
696             if !self.has_applicable_self(&item) {
697                 // No receiver declared. Not a candidate.
698                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
699                 continue;
700             }
701
702             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
703             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
704
705             debug!("impl_ty: {:?}", impl_ty);
706
707             // Determine the receiver type that the method itself expects.
708             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
709             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
710
711             // We can't use normalize_associated_types_in as it will pollute the
712             // fcx's fulfillment context after this probe is over.
713             // Note: we only normalize `xform_self_ty` here since the normalization
714             // of the return type can lead to inference results that prohibit
715             // valid candidates from being found, see issue #85671
716             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
717             // which might be caused by the `param_env` itself. The clauses of the `param_env`
718             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
719             // see issue #89650
720             let cause = traits::ObligationCause::misc(self.span, self.body_id);
721             let selcx = &mut traits::SelectionContext::new(self.fcx);
722             let traits::Normalized { value: xform_self_ty, obligations } =
723                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
724             debug!(
725                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
726                 xform_self_ty, xform_ret_ty
727             );
728
729             self.push_candidate(
730                 Candidate {
731                     xform_self_ty,
732                     xform_ret_ty,
733                     item,
734                     kind: InherentImplCandidate(impl_substs, obligations),
735                     import_ids: smallvec![],
736                 },
737                 true,
738             );
739         }
740     }
741
742     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
743         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
744
745         let principal = match self_ty.kind() {
746             ty::Dynamic(ref data, ..) => Some(data),
747             _ => None,
748         }
749         .and_then(|data| data.principal())
750         .unwrap_or_else(|| {
751             span_bug!(
752                 self.span,
753                 "non-object {:?} in assemble_inherent_candidates_from_object",
754                 self_ty
755             )
756         });
757
758         // It is illegal to invoke a method on a trait instance that refers to
759         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
760         // will be reported by `object_safety.rs` if the method refers to the
761         // `Self` type anywhere other than the receiver. Here, we use a
762         // substitution that replaces `Self` with the object type itself. Hence,
763         // a `&self` method will wind up with an argument type like `&dyn Trait`.
764         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
765         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
766             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
767
768             let (xform_self_ty, xform_ret_ty) =
769                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
770             this.push_candidate(
771                 Candidate {
772                     xform_self_ty,
773                     xform_ret_ty,
774                     item,
775                     kind: ObjectCandidate,
776                     import_ids: smallvec![],
777                 },
778                 true,
779             );
780         });
781     }
782
783     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
784         // FIXME: do we want to commit to this behavior for param bounds?
785         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
786
787         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
788             let bound_predicate = predicate.kind();
789             match bound_predicate.skip_binder() {
790                 ty::PredicateKind::Trait(trait_predicate) => {
791                     match *trait_predicate.trait_ref.self_ty().kind() {
792                         ty::Param(p) if p == param_ty => {
793                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
794                         }
795                         _ => None,
796                     }
797                 }
798                 ty::PredicateKind::Subtype(..)
799                 | ty::PredicateKind::Coerce(..)
800                 | ty::PredicateKind::Projection(..)
801                 | ty::PredicateKind::RegionOutlives(..)
802                 | ty::PredicateKind::WellFormed(..)
803                 | ty::PredicateKind::ObjectSafe(..)
804                 | ty::PredicateKind::ClosureKind(..)
805                 | ty::PredicateKind::TypeOutlives(..)
806                 | ty::PredicateKind::ConstEvaluatable(..)
807                 | ty::PredicateKind::ConstEquate(..)
808                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
809             }
810         });
811
812         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
813             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
814
815             let (xform_self_ty, xform_ret_ty) =
816                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
817
818             // Because this trait derives from a where-clause, it
819             // should not contain any inference variables or other
820             // artifacts. This means it is safe to put into the
821             // `WhereClauseCandidate` and (eventually) into the
822             // `WhereClausePick`.
823             assert!(!trait_ref.substs.needs_infer());
824
825             this.push_candidate(
826                 Candidate {
827                     xform_self_ty,
828                     xform_ret_ty,
829                     item,
830                     kind: WhereClauseCandidate(poly_trait_ref),
831                     import_ids: smallvec![],
832                 },
833                 true,
834             );
835         });
836     }
837
838     // Do a search through a list of bounds, using a callback to actually
839     // create the candidates.
840     fn elaborate_bounds<F>(
841         &mut self,
842         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
843         mut mk_cand: F,
844     ) where
845         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
846     {
847         let tcx = self.tcx;
848         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
849             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
850             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
851                 if !self.has_applicable_self(&item) {
852                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
853                 } else {
854                     mk_cand(self, bound_trait_ref, item);
855                 }
856             }
857         }
858     }
859
860     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
861         let mut duplicates = FxHashSet::default();
862         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
863         if let Some(applicable_traits) = opt_applicable_traits {
864             for trait_candidate in applicable_traits.iter() {
865                 let trait_did = trait_candidate.def_id;
866                 if duplicates.insert(trait_did) {
867                     self.assemble_extension_candidates_for_trait(
868                         &trait_candidate.import_ids,
869                         trait_did,
870                     );
871                 }
872             }
873         }
874     }
875
876     fn assemble_extension_candidates_for_all_traits(&mut self) {
877         let mut duplicates = FxHashSet::default();
878         for trait_info in suggest::all_traits(self.tcx) {
879             if duplicates.insert(trait_info.def_id) {
880                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
881             }
882         }
883     }
884
885     pub fn matches_return_type(
886         &self,
887         method: &ty::AssocItem,
888         self_ty: Option<Ty<'tcx>>,
889         expected: Ty<'tcx>,
890     ) -> bool {
891         match method.kind {
892             ty::AssocKind::Fn => {
893                 let fty = self.tcx.bound_fn_sig(method.def_id);
894                 self.probe(|_| {
895                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
896                     let fty = fty.subst(self.tcx, substs);
897                     let fty =
898                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
899
900                     if let Some(self_ty) = self_ty {
901                         if self
902                             .at(&ObligationCause::dummy(), self.param_env)
903                             .sup(fty.inputs()[0], self_ty)
904                             .is_err()
905                         {
906                             return false;
907                         }
908                     }
909                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
910                 })
911             }
912             _ => false,
913         }
914     }
915
916     fn assemble_extension_candidates_for_trait(
917         &mut self,
918         import_ids: &SmallVec<[LocalDefId; 1]>,
919         trait_def_id: DefId,
920     ) {
921         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
922         let trait_substs = self.fresh_item_substs(trait_def_id);
923         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
924
925         if self.tcx.is_trait_alias(trait_def_id) {
926             // For trait aliases, assume all supertraits are relevant.
927             let bounds = iter::once(ty::Binder::dummy(trait_ref));
928             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
929                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
930
931                 let (xform_self_ty, xform_ret_ty) =
932                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
933                 this.push_candidate(
934                     Candidate {
935                         xform_self_ty,
936                         xform_ret_ty,
937                         item,
938                         import_ids: import_ids.clone(),
939                         kind: TraitCandidate(new_trait_ref),
940                     },
941                     false,
942                 );
943             });
944         } else {
945             debug_assert!(self.tcx.is_trait(trait_def_id));
946             for item in self.impl_or_trait_item(trait_def_id) {
947                 // Check whether `trait_def_id` defines a method with suitable name.
948                 if !self.has_applicable_self(&item) {
949                     debug!("method has inapplicable self");
950                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
951                     continue;
952                 }
953
954                 let (xform_self_ty, xform_ret_ty) =
955                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
956                 self.push_candidate(
957                     Candidate {
958                         xform_self_ty,
959                         xform_ret_ty,
960                         item,
961                         import_ids: import_ids.clone(),
962                         kind: TraitCandidate(trait_ref),
963                     },
964                     false,
965                 );
966             }
967         }
968     }
969
970     fn candidate_method_names(
971         &self,
972         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
973     ) -> Vec<Ident> {
974         let mut set = FxHashSet::default();
975         let mut names: Vec<_> = self
976             .inherent_candidates
977             .iter()
978             .chain(&self.extension_candidates)
979             .filter(|candidate| candidate_filter(&candidate.item))
980             .filter(|candidate| {
981                 if let Some(return_ty) = self.return_type {
982                     self.matches_return_type(&candidate.item, None, return_ty)
983                 } else {
984                     true
985                 }
986             })
987             .map(|candidate| candidate.item.ident(self.tcx))
988             .filter(|&name| set.insert(name))
989             .collect();
990
991         // Sort them by the name so we have a stable result.
992         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
993         names
994     }
995
996     ///////////////////////////////////////////////////////////////////////////
997     // THE ACTUAL SEARCH
998
999     fn pick(mut self) -> PickResult<'tcx> {
1000         assert!(self.method_name.is_some());
1001
1002         if let Some(r) = self.pick_core() {
1003             return r;
1004         }
1005
1006         debug!("pick: actual search failed, assemble diagnostics");
1007
1008         let static_candidates = mem::take(&mut self.static_candidates);
1009         let private_candidate = self.private_candidate.take();
1010         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1011
1012         // things failed, so lets look at all traits, for diagnostic purposes now:
1013         self.reset();
1014
1015         let span = self.span;
1016         let tcx = self.tcx;
1017
1018         self.assemble_extension_candidates_for_all_traits();
1019
1020         let out_of_scope_traits = match self.pick_core() {
1021             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1022             Some(Err(MethodError::Ambiguity(v))) => v
1023                 .into_iter()
1024                 .map(|source| match source {
1025                     CandidateSource::Trait(id) => id,
1026                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1027                         Some(id) => id,
1028                         None => span_bug!(span, "found inherent method when looking at traits"),
1029                     },
1030                 })
1031                 .collect(),
1032             Some(Err(MethodError::NoMatch(NoMatchData {
1033                 out_of_scope_traits: others, ..
1034             }))) => {
1035                 assert!(others.is_empty());
1036                 vec![]
1037             }
1038             _ => vec![],
1039         };
1040
1041         if let Some((kind, def_id)) = private_candidate {
1042             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1043         }
1044         let lev_candidate = self.probe_for_lev_candidate()?;
1045
1046         Err(MethodError::NoMatch(NoMatchData {
1047             static_candidates,
1048             unsatisfied_predicates,
1049             out_of_scope_traits,
1050             lev_candidate,
1051             mode: self.mode,
1052         }))
1053     }
1054
1055     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1056         let mut unstable_candidates = Vec::new();
1057         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1058
1059         // In this case unstable picking is done by `pick_method`.
1060         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1061             return pick;
1062         }
1063
1064         match pick {
1065             // Emit a lint if there are unstable candidates alongside the stable ones.
1066             //
1067             // We suppress warning if we're picking the method only because it is a
1068             // suggestion.
1069             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1070                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1071                 pick
1072             }
1073             Some(_) => pick,
1074             None => self.pick_all_method(None),
1075         }
1076     }
1077
1078     fn pick_all_method(
1079         &mut self,
1080         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1081     ) -> Option<PickResult<'tcx>> {
1082         let steps = self.steps.clone();
1083         steps
1084             .iter()
1085             .filter(|step| {
1086                 debug!("pick_all_method: step={:?}", step);
1087                 // skip types that are from a type error or that would require dereferencing
1088                 // a raw pointer
1089                 !step.self_ty.references_error() && !step.from_unsafe_deref
1090             })
1091             .flat_map(|step| {
1092                 let InferOk { value: self_ty, obligations: _ } = self
1093                     .fcx
1094                     .probe_instantiate_query_response(
1095                         self.span,
1096                         &self.orig_steps_var_values,
1097                         &step.self_ty,
1098                     )
1099                     .unwrap_or_else(|_| {
1100                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1101                     });
1102                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1103                     .or_else(|| {
1104                         self.pick_autorefd_method(
1105                             step,
1106                             self_ty,
1107                             hir::Mutability::Not,
1108                             unstable_candidates.as_deref_mut(),
1109                         )
1110                         .or_else(|| {
1111                             self.pick_autorefd_method(
1112                                 step,
1113                                 self_ty,
1114                                 hir::Mutability::Mut,
1115                                 unstable_candidates.as_deref_mut(),
1116                             )
1117                         })
1118                         .or_else(|| {
1119                             self.pick_const_ptr_method(
1120                                 step,
1121                                 self_ty,
1122                                 unstable_candidates.as_deref_mut(),
1123                             )
1124                         })
1125                     })
1126             })
1127             .next()
1128     }
1129
1130     /// For each type `T` in the step list, this attempts to find a method where
1131     /// the (transformed) self type is exactly `T`. We do however do one
1132     /// transformation on the adjustment: if we are passing a region pointer in,
1133     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1134     /// to transparently pass `&mut` pointers, in particular, without consuming
1135     /// them for their entire lifetime.
1136     fn pick_by_value_method(
1137         &mut self,
1138         step: &CandidateStep<'tcx>,
1139         self_ty: Ty<'tcx>,
1140         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1141     ) -> Option<PickResult<'tcx>> {
1142         if step.unsize {
1143             return None;
1144         }
1145
1146         self.pick_method(self_ty, unstable_candidates).map(|r| {
1147             r.map(|mut pick| {
1148                 pick.autoderefs = step.autoderefs;
1149
1150                 // Insert a `&*` or `&mut *` if this is a reference type:
1151                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1152                     pick.autoderefs += 1;
1153                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1154                         mutbl,
1155                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1156                     })
1157                 }
1158
1159                 pick
1160             })
1161         })
1162     }
1163
1164     fn pick_autorefd_method(
1165         &mut self,
1166         step: &CandidateStep<'tcx>,
1167         self_ty: Ty<'tcx>,
1168         mutbl: hir::Mutability,
1169         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1170     ) -> Option<PickResult<'tcx>> {
1171         let tcx = self.tcx;
1172
1173         // In general, during probing we erase regions.
1174         let region = tcx.lifetimes.re_erased;
1175
1176         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1177         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1178             r.map(|mut pick| {
1179                 pick.autoderefs = step.autoderefs;
1180                 pick.autoref_or_ptr_adjustment =
1181                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1182                 pick
1183             })
1184         })
1185     }
1186
1187     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1188     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1189     /// autorefs would require dereferencing the pointer, which is not safe.
1190     fn pick_const_ptr_method(
1191         &mut self,
1192         step: &CandidateStep<'tcx>,
1193         self_ty: Ty<'tcx>,
1194         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1195     ) -> Option<PickResult<'tcx>> {
1196         // Don't convert an unsized reference to ptr
1197         if step.unsize {
1198             return None;
1199         }
1200
1201         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1202             return None;
1203         };
1204
1205         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1206         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1207         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1208             r.map(|mut pick| {
1209                 pick.autoderefs = step.autoderefs;
1210                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1211                 pick
1212             })
1213         })
1214     }
1215
1216     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1217         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1218
1219         let mut possibly_unsatisfied_predicates = Vec::new();
1220         let mut unstable_candidates = Vec::new();
1221
1222         for (kind, candidates) in
1223             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1224         {
1225             debug!("searching {} candidates", kind);
1226             let res = self.consider_candidates(
1227                 self_ty,
1228                 candidates.iter(),
1229                 &mut possibly_unsatisfied_predicates,
1230                 Some(&mut unstable_candidates),
1231             );
1232             if let Some(pick) = res {
1233                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1234                     if let Ok(p) = &pick {
1235                         // Emit a lint if there are unstable candidates alongside the stable ones.
1236                         //
1237                         // We suppress warning if we're picking the method only because it is a
1238                         // suggestion.
1239                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1240                     }
1241                 }
1242                 return Some(pick);
1243             }
1244         }
1245
1246         debug!("searching unstable candidates");
1247         let res = self.consider_candidates(
1248             self_ty,
1249             unstable_candidates.iter().map(|(c, _)| c),
1250             &mut possibly_unsatisfied_predicates,
1251             None,
1252         );
1253         if res.is_none() {
1254             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1255         }
1256         res
1257     }
1258
1259     fn pick_method(
1260         &mut self,
1261         self_ty: Ty<'tcx>,
1262         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1263     ) -> Option<PickResult<'tcx>> {
1264         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1265             return self.pick_method_with_unstable(self_ty);
1266         }
1267
1268         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1269
1270         let mut possibly_unsatisfied_predicates = Vec::new();
1271
1272         for (kind, candidates) in
1273             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1274         {
1275             debug!("searching {} candidates", kind);
1276             let res = self.consider_candidates(
1277                 self_ty,
1278                 candidates.iter(),
1279                 &mut possibly_unsatisfied_predicates,
1280                 unstable_candidates.as_deref_mut(),
1281             );
1282             if let Some(pick) = res {
1283                 return Some(pick);
1284             }
1285         }
1286
1287         // `pick_method` may be called twice for the same self_ty if no stable methods
1288         // match. Only extend once.
1289         if unstable_candidates.is_some() {
1290             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1291         }
1292         None
1293     }
1294
1295     fn consider_candidates<'b, ProbesIter>(
1296         &self,
1297         self_ty: Ty<'tcx>,
1298         probes: ProbesIter,
1299         possibly_unsatisfied_predicates: &mut Vec<(
1300             ty::Predicate<'tcx>,
1301             Option<ty::Predicate<'tcx>>,
1302             Option<ObligationCause<'tcx>>,
1303         )>,
1304         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1305     ) -> Option<PickResult<'tcx>>
1306     where
1307         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1308         'tcx: 'b,
1309     {
1310         let mut applicable_candidates: Vec<_> = probes
1311             .clone()
1312             .map(|probe| {
1313                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1314             })
1315             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1316             .collect();
1317
1318         debug!("applicable_candidates: {:?}", applicable_candidates);
1319
1320         if applicable_candidates.len() > 1 {
1321             if let Some(pick) =
1322                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1323             {
1324                 return Some(Ok(pick));
1325             }
1326         }
1327
1328         if let Some(uc) = unstable_candidates {
1329             applicable_candidates.retain(|&(p, _)| {
1330                 if let stability::EvalResult::Deny { feature, .. } =
1331                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1332                 {
1333                     uc.push((p.clone(), feature));
1334                     return false;
1335                 }
1336                 true
1337             });
1338         }
1339
1340         if applicable_candidates.len() > 1 {
1341             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1342             return Some(Err(MethodError::Ambiguity(sources)));
1343         }
1344
1345         applicable_candidates.pop().map(|(probe, status)| {
1346             if status == ProbeResult::Match {
1347                 Ok(probe.to_unadjusted_pick(self_ty))
1348             } else {
1349                 Err(MethodError::BadReturnType)
1350             }
1351         })
1352     }
1353
1354     fn emit_unstable_name_collision_hint(
1355         &self,
1356         stable_pick: &Pick<'_>,
1357         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1358     ) {
1359         let def_kind = stable_pick.item.kind.as_def_kind();
1360         self.tcx.struct_span_lint_hir(
1361             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1362             self.scope_expr_id,
1363             self.span,
1364             format!(
1365                 "{} {} with this name may be added to the standard library in the future",
1366                 def_kind.article(),
1367                 def_kind.descr(stable_pick.item.def_id),
1368             ),
1369             |lint| {
1370                 match (stable_pick.item.kind, stable_pick.item.container) {
1371                     (ty::AssocKind::Fn, _) => {
1372                         // FIXME: This should be a `span_suggestion` instead of `help`
1373                         // However `self.span` only
1374                         // highlights the method name, so we can't use it. Also consider reusing
1375                         // the code from `report_method_error()`.
1376                         lint.help(&format!(
1377                             "call with fully qualified syntax `{}(...)` to keep using the current \
1378                              method",
1379                             self.tcx.def_path_str(stable_pick.item.def_id),
1380                         ));
1381                     }
1382                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1383                         let def_id = stable_pick.item.container_id(self.tcx);
1384                         lint.span_suggestion(
1385                             self.span,
1386                             "use the fully qualified path to the associated const",
1387                             format!(
1388                                 "<{} as {}>::{}",
1389                                 stable_pick.self_ty,
1390                                 self.tcx.def_path_str(def_id),
1391                                 stable_pick.item.name
1392                             ),
1393                             Applicability::MachineApplicable,
1394                         );
1395                     }
1396                     _ => {}
1397                 }
1398                 if self.tcx.sess.is_nightly_build() {
1399                     for (candidate, feature) in unstable_candidates {
1400                         lint.help(&format!(
1401                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1402                             feature,
1403                             self.tcx.def_path_str(candidate.item.def_id),
1404                         ));
1405                     }
1406                 }
1407
1408                 lint
1409             },
1410         );
1411     }
1412
1413     fn select_trait_candidate(
1414         &self,
1415         trait_ref: ty::TraitRef<'tcx>,
1416     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1417         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1418         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1419         let obligation = traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1420         traits::SelectionContext::new(self).select(&obligation)
1421     }
1422
1423     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1424         match candidate.kind {
1425             InherentImplCandidate(..) => {
1426                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1427             }
1428             ObjectCandidate | WhereClauseCandidate(_) => {
1429                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1430             }
1431             TraitCandidate(trait_ref) => self.probe(|_| {
1432                 let _ = self
1433                     .at(&ObligationCause::dummy(), self.param_env)
1434                     .define_opaque_types(false)
1435                     .sup(candidate.xform_self_ty, self_ty);
1436                 match self.select_trait_candidate(trait_ref) {
1437                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1438                         // If only a single impl matches, make the error message point
1439                         // to that impl.
1440                         CandidateSource::Impl(impl_data.impl_def_id)
1441                     }
1442                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1443                 }
1444             }),
1445         }
1446     }
1447
1448     fn consider_probe(
1449         &self,
1450         self_ty: Ty<'tcx>,
1451         probe: &Candidate<'tcx>,
1452         possibly_unsatisfied_predicates: &mut Vec<(
1453             ty::Predicate<'tcx>,
1454             Option<ty::Predicate<'tcx>>,
1455             Option<ObligationCause<'tcx>>,
1456         )>,
1457     ) -> ProbeResult {
1458         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1459
1460         self.probe(|_| {
1461             // First check that the self type can be related.
1462             let sub_obligations = match self
1463                 .at(&ObligationCause::dummy(), self.param_env)
1464                 .define_opaque_types(false)
1465                 .sup(probe.xform_self_ty, self_ty)
1466             {
1467                 Ok(InferOk { obligations, value: () }) => obligations,
1468                 Err(err) => {
1469                     debug!("--> cannot relate self-types {:?}", err);
1470                     return ProbeResult::NoMatch;
1471                 }
1472             };
1473
1474             let mut result = ProbeResult::Match;
1475             let mut xform_ret_ty = probe.xform_ret_ty;
1476             debug!(?xform_ret_ty);
1477
1478             let selcx = &mut traits::SelectionContext::new(self);
1479             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1480
1481             let mut parent_pred = None;
1482
1483             // If so, impls may carry other conditions (e.g., where
1484             // clauses) that must be considered. Make sure that those
1485             // match as well (or at least may match, sometimes we
1486             // don't have enough information to fully evaluate).
1487             match probe.kind {
1488                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1489                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1490                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1491                     // for why this is necessary
1492                     let traits::Normalized {
1493                         value: normalized_xform_ret_ty,
1494                         obligations: normalization_obligations,
1495                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1496                     xform_ret_ty = normalized_xform_ret_ty;
1497                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1498
1499                     // Check whether the impl imposes obligations we have to worry about.
1500                     let impl_def_id = probe.item.container_id(self.tcx);
1501                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1502                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1503                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1504                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1505
1506                     // Convert the bounds into obligations.
1507                     let impl_obligations = traits::predicates_for_generics(
1508                         move |_, _| cause.clone(),
1509                         self.param_env,
1510                         impl_bounds,
1511                     );
1512
1513                     let candidate_obligations = impl_obligations
1514                         .chain(norm_obligations.into_iter())
1515                         .chain(ref_obligations.iter().cloned())
1516                         .chain(normalization_obligations.into_iter());
1517
1518                     // Evaluate those obligations to see if they might possibly hold.
1519                     for o in candidate_obligations {
1520                         let o = self.resolve_vars_if_possible(o);
1521                         if !self.predicate_may_hold(&o) {
1522                             result = ProbeResult::NoMatch;
1523                             possibly_unsatisfied_predicates.push((
1524                                 o.predicate,
1525                                 None,
1526                                 Some(o.cause),
1527                             ));
1528                         }
1529                     }
1530                 }
1531
1532                 ObjectCandidate | WhereClauseCandidate(..) => {
1533                     // These have no additional conditions to check.
1534                 }
1535
1536                 TraitCandidate(trait_ref) => {
1537                     if let Some(method_name) = self.method_name {
1538                         // Some trait methods are excluded for arrays before 2021.
1539                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1540                         if self_ty.is_array() && !method_name.span.rust_2021() {
1541                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1542                             if trait_def.skip_array_during_method_dispatch {
1543                                 return ProbeResult::NoMatch;
1544                             }
1545                         }
1546                     }
1547                     let predicate =
1548                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1549                     parent_pred = Some(predicate);
1550                     let obligation =
1551                         traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1552                     if !self.predicate_may_hold(&obligation) {
1553                         result = ProbeResult::NoMatch;
1554                         if self.probe(|_| {
1555                             match self.select_trait_candidate(trait_ref) {
1556                                 Err(_) => return true,
1557                                 Ok(Some(impl_source))
1558                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1559                                 {
1560                                     for obligation in impl_source.borrow_nested_obligations() {
1561                                         // Determine exactly which obligation wasn't met, so
1562                                         // that we can give more context in the error.
1563                                         if !self.predicate_may_hold(obligation) {
1564                                             let nested_predicate =
1565                                                 self.resolve_vars_if_possible(obligation.predicate);
1566                                             let predicate =
1567                                                 self.resolve_vars_if_possible(predicate);
1568                                             let p = if predicate == nested_predicate {
1569                                                 // Avoid "`MyStruct: Foo` which is required by
1570                                                 // `MyStruct: Foo`" in E0599.
1571                                                 None
1572                                             } else {
1573                                                 Some(predicate)
1574                                             };
1575                                             possibly_unsatisfied_predicates.push((
1576                                                 nested_predicate,
1577                                                 p,
1578                                                 Some(obligation.cause.clone()),
1579                                             ));
1580                                         }
1581                                     }
1582                                 }
1583                                 _ => {
1584                                     // Some nested subobligation of this predicate
1585                                     // failed.
1586                                     let predicate = self.resolve_vars_if_possible(predicate);
1587                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1588                                 }
1589                             }
1590                             false
1591                         }) {
1592                             // This candidate's primary obligation doesn't even
1593                             // select - don't bother registering anything in
1594                             // `potentially_unsatisfied_predicates`.
1595                             return ProbeResult::NoMatch;
1596                         }
1597                     }
1598                 }
1599             }
1600
1601             // Evaluate those obligations to see if they might possibly hold.
1602             for o in sub_obligations {
1603                 let o = self.resolve_vars_if_possible(o);
1604                 if !self.predicate_may_hold(&o) {
1605                     result = ProbeResult::NoMatch;
1606                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1607                 }
1608             }
1609
1610             if let ProbeResult::Match = result {
1611                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1612                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1613                     debug!(
1614                         "comparing return_ty {:?} with xform ret ty {:?}",
1615                         return_ty, probe.xform_ret_ty
1616                     );
1617                     if self
1618                         .at(&ObligationCause::dummy(), self.param_env)
1619                         .define_opaque_types(false)
1620                         .sup(return_ty, xform_ret_ty)
1621                         .is_err()
1622                     {
1623                         return ProbeResult::BadReturnType;
1624                     }
1625                 }
1626             }
1627
1628             result
1629         })
1630     }
1631
1632     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1633     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1634     /// external interface of the method can be determined from the trait, it's ok not to decide.
1635     /// We can basically just collapse all of the probes for various impls into one where-clause
1636     /// probe. This will result in a pending obligation so when more type-info is available we can
1637     /// make the final decision.
1638     ///
1639     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1640     ///
1641     /// ```ignore (illustrative)
1642     /// trait Foo { ... }
1643     /// impl Foo for Vec<i32> { ... }
1644     /// impl Foo for Vec<usize> { ... }
1645     /// ```
1646     ///
1647     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1648     /// use, so it's ok to just commit to "using the method from the trait Foo".
1649     fn collapse_candidates_to_trait_pick(
1650         &self,
1651         self_ty: Ty<'tcx>,
1652         probes: &[(&Candidate<'tcx>, ProbeResult)],
1653     ) -> Option<Pick<'tcx>> {
1654         // Do all probes correspond to the same trait?
1655         let container = probes[0].0.item.trait_container(self.tcx)?;
1656         for (p, _) in &probes[1..] {
1657             let p_container = p.item.trait_container(self.tcx)?;
1658             if p_container != container {
1659                 return None;
1660             }
1661         }
1662
1663         // FIXME: check the return type here somehow.
1664         // If so, just use this trait and call it a day.
1665         Some(Pick {
1666             item: probes[0].0.item,
1667             kind: TraitPick,
1668             import_ids: probes[0].0.import_ids.clone(),
1669             autoderefs: 0,
1670             autoref_or_ptr_adjustment: None,
1671             self_ty,
1672         })
1673     }
1674
1675     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1676     /// candidate method where the method name may have been misspelled. Similarly to other
1677     /// Levenshtein based suggestions, we provide at most one such suggestion.
1678     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1679         debug!("probing for method names similar to {:?}", self.method_name);
1680
1681         let steps = self.steps.clone();
1682         self.probe(|_| {
1683             let mut pcx = ProbeContext::new(
1684                 self.fcx,
1685                 self.span,
1686                 self.mode,
1687                 self.method_name,
1688                 self.return_type,
1689                 self.orig_steps_var_values.clone(),
1690                 steps,
1691                 IsSuggestion(true),
1692                 self.scope_expr_id,
1693             );
1694             pcx.allow_similar_names = true;
1695             pcx.assemble_inherent_candidates();
1696
1697             let method_names = pcx.candidate_method_names(|_| true);
1698             pcx.allow_similar_names = false;
1699             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1700                 .iter()
1701                 .filter_map(|&method_name| {
1702                     pcx.reset();
1703                     pcx.method_name = Some(method_name);
1704                     pcx.assemble_inherent_candidates();
1705                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1706                 })
1707                 .collect();
1708
1709             if applicable_close_candidates.is_empty() {
1710                 Ok(None)
1711             } else {
1712                 let best_name = {
1713                     let names = applicable_close_candidates
1714                         .iter()
1715                         .map(|cand| cand.name)
1716                         .collect::<Vec<Symbol>>();
1717                     find_best_match_for_name_with_substrings(
1718                         &names,
1719                         self.method_name.unwrap().name,
1720                         None,
1721                     )
1722                 }
1723                 .unwrap();
1724                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1725             }
1726         })
1727     }
1728
1729     ///////////////////////////////////////////////////////////////////////////
1730     // MISCELLANY
1731     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1732         // "Fast track" -- check for usage of sugar when in method call
1733         // mode.
1734         //
1735         // In Path mode (i.e., resolving a value like `T::next`), consider any
1736         // associated value (i.e., methods, constants) but not types.
1737         match self.mode {
1738             Mode::MethodCall => item.fn_has_self_parameter,
1739             Mode::Path => match item.kind {
1740                 ty::AssocKind::Type => false,
1741                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1742             },
1743         }
1744         // FIXME -- check for types that deref to `Self`,
1745         // like `Rc<Self>` and so on.
1746         //
1747         // Note also that the current code will break if this type
1748         // includes any of the type parameters defined on the method
1749         // -- but this could be overcome.
1750     }
1751
1752     fn record_static_candidate(&mut self, source: CandidateSource) {
1753         self.static_candidates.push(source);
1754     }
1755
1756     #[instrument(level = "debug", skip(self))]
1757     fn xform_self_ty(
1758         &self,
1759         item: &ty::AssocItem,
1760         impl_ty: Ty<'tcx>,
1761         substs: SubstsRef<'tcx>,
1762     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1763         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1764             let sig = self.xform_method_sig(item.def_id, substs);
1765             (sig.inputs()[0], Some(sig.output()))
1766         } else {
1767             (impl_ty, None)
1768         }
1769     }
1770
1771     #[instrument(level = "debug", skip(self))]
1772     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1773         let fn_sig = self.tcx.bound_fn_sig(method);
1774         debug!(?fn_sig);
1775
1776         assert!(!substs.has_escaping_bound_vars());
1777
1778         // It is possible for type parameters or early-bound lifetimes
1779         // to appear in the signature of `self`. The substitutions we
1780         // are given do not include type/lifetime parameters for the
1781         // method yet. So create fresh variables here for those too,
1782         // if there are any.
1783         let generics = self.tcx.generics_of(method);
1784         assert_eq!(substs.len(), generics.parent_count as usize);
1785
1786         let xform_fn_sig = if generics.params.is_empty() {
1787             fn_sig.subst(self.tcx, substs)
1788         } else {
1789             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1790                 let i = param.index as usize;
1791                 if i < substs.len() {
1792                     substs[i]
1793                 } else {
1794                     match param.kind {
1795                         GenericParamDefKind::Lifetime => {
1796                             // In general, during probe we erase regions.
1797                             self.tcx.lifetimes.re_erased.into()
1798                         }
1799                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1800                             self.var_for_def(self.span, param)
1801                         }
1802                     }
1803                 }
1804             });
1805             fn_sig.subst(self.tcx, substs)
1806         };
1807
1808         self.erase_late_bound_regions(xform_fn_sig)
1809     }
1810
1811     /// Gets the type of an impl and generate substitutions with inference vars.
1812     fn impl_ty_and_substs(
1813         &self,
1814         impl_def_id: DefId,
1815     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1816         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1817     }
1818
1819     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1820         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1821             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1822             GenericParamDefKind::Type { .. } => self
1823                 .next_ty_var(TypeVariableOrigin {
1824                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1825                     span: self.tcx.def_span(def_id),
1826                 })
1827                 .into(),
1828             GenericParamDefKind::Const { .. } => {
1829                 let span = self.tcx.def_span(def_id);
1830                 let origin = ConstVariableOrigin {
1831                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1832                     span,
1833                 };
1834                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1835             }
1836         })
1837     }
1838
1839     /// Replaces late-bound-regions bound by `value` with `'static` using
1840     /// `ty::erase_late_bound_regions`.
1841     ///
1842     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1843     /// method matching. It is reasonable during the probe phase because we don't consider region
1844     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1845     /// rather than creating fresh region variables. This is nice for two reasons:
1846     ///
1847     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1848     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1849     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1850     ///
1851     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1852     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1853     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1854     ///    region got replaced with the same variable, which requires a bit more coordination
1855     ///    and/or tracking the substitution and
1856     ///    so forth.
1857     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1858     where
1859         T: TypeFoldable<'tcx>,
1860     {
1861         self.tcx.erase_late_bound_regions(value)
1862     }
1863
1864     /// Finds the method with the appropriate name (or return type, as the case may be). If
1865     /// `allow_similar_names` is set, find methods with close-matching names.
1866     // The length of the returned iterator is nearly always 0 or 1 and this
1867     // method is fairly hot.
1868     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1869         if let Some(name) = self.method_name {
1870             if self.allow_similar_names {
1871                 let max_dist = max(name.as_str().len(), 3) / 3;
1872                 self.tcx
1873                     .associated_items(def_id)
1874                     .in_definition_order()
1875                     .filter(|x| {
1876                         if x.kind.namespace() != Namespace::ValueNS {
1877                             return false;
1878                         }
1879                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1880                         {
1881                             Some(d) => d > 0,
1882                             None => false,
1883                         }
1884                     })
1885                     .copied()
1886                     .collect()
1887             } else {
1888                 self.fcx
1889                     .associated_value(def_id, name)
1890                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1891             }
1892         } else {
1893             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1894         }
1895     }
1896 }
1897
1898 impl<'tcx> Candidate<'tcx> {
1899     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1900         Pick {
1901             item: self.item,
1902             kind: match self.kind {
1903                 InherentImplCandidate(..) => InherentImplPick,
1904                 ObjectCandidate => ObjectPick,
1905                 TraitCandidate(_) => TraitPick,
1906                 WhereClauseCandidate(ref trait_ref) => {
1907                     // Only trait derived from where-clauses should
1908                     // appear here, so they should not contain any
1909                     // inference variables or other artifacts. This
1910                     // means they are safe to put into the
1911                     // `WhereClausePick`.
1912                     assert!(
1913                         !trait_ref.skip_binder().substs.needs_infer()
1914                             && !trait_ref.skip_binder().substs.has_placeholders()
1915                     );
1916
1917                     WhereClausePick(*trait_ref)
1918                 }
1919             },
1920             import_ids: self.import_ids.clone(),
1921             autoderefs: 0,
1922             autoref_or_ptr_adjustment: None,
1923             self_ty,
1924         }
1925     }
1926 }