]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/method/probe.rs
Rollup merge of #104864 - chenyukang:yukang/fix-104700-binding, r=estebank
[rust.git] / compiler / rustc_hir_typeck / src / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::errors::MethodCallOnUnknownType;
7 use crate::FnCtxt;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_infer::infer::canonical::OriginalQueryValues;
13 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
14 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
15 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
16 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
17 use rustc_middle::middle::stability;
18 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
19 use rustc_middle::ty::AssocItem;
20 use rustc_middle::ty::GenericParamDefKind;
21 use rustc_middle::ty::ToPredicate;
22 use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeFoldable, TypeVisitable};
23 use rustc_middle::ty::{InternalSubsts, SubstsRef};
24 use rustc_session::lint;
25 use rustc_span::def_id::DefId;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::NormalizeExt;
40 use rustc_trait_selection::traits::{self, ObligationCause};
41 use std::cell::RefCell;
42 use std::cmp::max;
43 use std::iter;
44 use std::ops::Deref;
45
46 use smallvec::{smallvec, SmallVec};
47
48 use self::CandidateKind::*;
49 pub use self::PickKind::*;
50
51 /// Boolean flag used to indicate if this search is for a suggestion
52 /// or not. If true, we can allow ambiguity and so forth.
53 #[derive(Clone, Copy, Debug)]
54 pub struct IsSuggestion(pub bool);
55
56 struct ProbeContext<'a, 'tcx> {
57     fcx: &'a FnCtxt<'a, 'tcx>,
58     span: Span,
59     mode: Mode,
60     method_name: Option<Ident>,
61     return_type: Option<Ty<'tcx>>,
62
63     /// This is the OriginalQueryValues for the steps queries
64     /// that are answered in steps.
65     orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
66     steps: &'tcx [CandidateStep<'tcx>],
67
68     inherent_candidates: Vec<Candidate<'tcx>>,
69     extension_candidates: Vec<Candidate<'tcx>>,
70     impl_dups: FxHashSet<DefId>,
71
72     /// When probing for names, include names that are close to the
73     /// requested name (by Levenshtein distance)
74     allow_similar_names: bool,
75
76     /// Some(candidate) if there is a private candidate
77     private_candidate: Option<(DefKind, DefId)>,
78
79     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
80     /// used for error reporting
81     static_candidates: RefCell<Vec<CandidateSource>>,
82
83     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
84     /// for error reporting
85     unsatisfied_predicates: RefCell<
86         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
87     >,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213
214     /// Unstable candidates alongside the stable ones.
215     unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
216 }
217
218 #[derive(Clone, Debug, PartialEq, Eq)]
219 pub enum PickKind<'tcx> {
220     InherentImplPick,
221     ObjectPick,
222     TraitPick,
223     WhereClausePick(
224         // Trait
225         ty::PolyTraitRef<'tcx>,
226     ),
227 }
228
229 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
230
231 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
232 pub enum Mode {
233     // An expression of the form `receiver.method_name(...)`.
234     // Autoderefs are performed on `receiver`, lookup is done based on the
235     // `self` argument  of the method, and static methods aren't considered.
236     MethodCall,
237     // An expression of the form `Type::item` or `<T>::item`.
238     // No autoderefs are performed, lookup is done based on the type each
239     // implementation is for, and static methods are included.
240     Path,
241 }
242
243 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
244 pub enum ProbeScope {
245     // Assemble candidates coming only from traits in scope.
246     TraitsInScope,
247
248     // Assemble candidates coming from all traits.
249     AllTraits,
250 }
251
252 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
253     /// This is used to offer suggestions to users. It returns methods
254     /// that could have been called which have the desired return
255     /// type. Some effort is made to rule out methods that, if called,
256     /// would result in an error (basically, the same criteria we
257     /// would use to decide if a method is a plausible fit for
258     /// ambiguity purposes).
259     #[instrument(level = "debug", skip(self, candidate_filter))]
260     pub fn probe_for_return_type(
261         &self,
262         span: Span,
263         mode: Mode,
264         return_type: Ty<'tcx>,
265         self_ty: Ty<'tcx>,
266         scope_expr_id: hir::HirId,
267         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
268     ) -> Vec<ty::AssocItem> {
269         let method_names = self
270             .probe_op(
271                 span,
272                 mode,
273                 None,
274                 Some(return_type),
275                 IsSuggestion(true),
276                 self_ty,
277                 scope_expr_id,
278                 ProbeScope::AllTraits,
279                 |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
280             )
281             .unwrap_or_default();
282         method_names
283             .iter()
284             .flat_map(|&method_name| {
285                 self.probe_op(
286                     span,
287                     mode,
288                     Some(method_name),
289                     Some(return_type),
290                     IsSuggestion(true),
291                     self_ty,
292                     scope_expr_id,
293                     ProbeScope::AllTraits,
294                     |probe_cx| probe_cx.pick(),
295                 )
296                 .ok()
297                 .map(|pick| pick.item)
298             })
299             .collect()
300     }
301
302     #[instrument(level = "debug", skip(self))]
303     pub fn probe_for_name(
304         &self,
305         mode: Mode,
306         item_name: Ident,
307         is_suggestion: IsSuggestion,
308         self_ty: Ty<'tcx>,
309         scope_expr_id: hir::HirId,
310         scope: ProbeScope,
311     ) -> PickResult<'tcx> {
312         self.probe_op(
313             item_name.span,
314             mode,
315             Some(item_name),
316             None,
317             is_suggestion,
318             self_ty,
319             scope_expr_id,
320             scope,
321             |probe_cx| probe_cx.pick(),
322         )
323     }
324
325     fn probe_op<OP, R>(
326         &'a self,
327         span: Span,
328         mode: Mode,
329         method_name: Option<Ident>,
330         return_type: Option<Ty<'tcx>>,
331         is_suggestion: IsSuggestion,
332         self_ty: Ty<'tcx>,
333         scope_expr_id: hir::HirId,
334         scope: ProbeScope,
335         op: OP,
336     ) -> Result<R, MethodError<'tcx>>
337     where
338         OP: FnOnce(ProbeContext<'_, 'tcx>) -> Result<R, MethodError<'tcx>>,
339     {
340         let mut orig_values = OriginalQueryValues::default();
341         let param_env_and_self_ty = self.canonicalize_query(
342             ParamEnvAnd { param_env: self.param_env, value: self_ty },
343             &mut orig_values,
344         );
345
346         let steps = match mode {
347             Mode::MethodCall => self.tcx.method_autoderef_steps(param_env_and_self_ty),
348             Mode::Path => self.probe(|_| {
349                 // Mode::Path - the deref steps is "trivial". This turns
350                 // our CanonicalQuery into a "trivial" QueryResponse. This
351                 // is a bit inefficient, but I don't think that writing
352                 // special handling for this "trivial case" is a good idea.
353
354                 let infcx = &self.infcx;
355                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
356                     infcx.instantiate_canonical_with_fresh_inference_vars(
357                         span,
358                         &param_env_and_self_ty,
359                     );
360                 debug!(
361                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
362                     param_env_and_self_ty, self_ty
363                 );
364                 MethodAutoderefStepsResult {
365                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
366                         self_ty: self.make_query_response_ignoring_pending_obligations(
367                             canonical_inference_vars,
368                             self_ty,
369                         ),
370                         autoderefs: 0,
371                         from_unsafe_deref: false,
372                         unsize: false,
373                     }]),
374                     opt_bad_ty: None,
375                     reached_recursion_limit: false,
376                 }
377             }),
378         };
379
380         // If our autoderef loop had reached the recursion limit,
381         // report an overflow error, but continue going on with
382         // the truncated autoderef list.
383         if steps.reached_recursion_limit {
384             self.probe(|_| {
385                 let ty = &steps
386                     .steps
387                     .last()
388                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
389                     .self_ty;
390                 let ty = self
391                     .probe_instantiate_query_response(span, &orig_values, ty)
392                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
393                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
394             });
395         }
396
397         // If we encountered an `_` type or an error type during autoderef, this is
398         // ambiguous.
399         if let Some(bad_ty) = &steps.opt_bad_ty {
400             if is_suggestion.0 {
401                 // Ambiguity was encountered during a suggestion. Just keep going.
402                 debug!("ProbeContext: encountered ambiguity in suggestion");
403             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
404                 // this case used to be allowed by the compiler,
405                 // so we do a future-compat lint here for the 2015 edition
406                 // (see https://github.com/rust-lang/rust/issues/46906)
407                 if self.tcx.sess.rust_2018() {
408                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
409                 } else {
410                     self.tcx.struct_span_lint_hir(
411                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
412                         scope_expr_id,
413                         span,
414                         "type annotations needed",
415                         |lint| lint,
416                     );
417                 }
418             } else {
419                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
420                 // an `Err`, report the right "type annotations needed" error pointing
421                 // to it.
422                 let ty = &bad_ty.ty;
423                 let ty = self
424                     .probe_instantiate_query_response(span, &orig_values, ty)
425                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
426                 let ty = self.structurally_resolved_type(span, ty.value);
427                 assert!(matches!(ty.kind(), ty::Error(_)));
428                 return Err(MethodError::NoMatch(NoMatchData {
429                     static_candidates: Vec::new(),
430                     unsatisfied_predicates: Vec::new(),
431                     out_of_scope_traits: Vec::new(),
432                     lev_candidate: None,
433                     mode,
434                 }));
435             }
436         }
437
438         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
439
440         // this creates one big transaction so that all type variables etc
441         // that we create during the probe process are removed later
442         self.probe(|_| {
443             let mut probe_cx = ProbeContext::new(
444                 self,
445                 span,
446                 mode,
447                 method_name,
448                 return_type,
449                 &orig_values,
450                 steps.steps,
451                 scope_expr_id,
452             );
453
454             probe_cx.assemble_inherent_candidates();
455             match scope {
456                 ProbeScope::TraitsInScope => {
457                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
458                 }
459                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
460             };
461             op(probe_cx)
462         })
463     }
464 }
465
466 pub fn provide(providers: &mut ty::query::Providers) {
467     providers.method_autoderef_steps = method_autoderef_steps;
468 }
469
470 fn method_autoderef_steps<'tcx>(
471     tcx: TyCtxt<'tcx>,
472     goal: CanonicalTyGoal<'tcx>,
473 ) -> MethodAutoderefStepsResult<'tcx> {
474     debug!("method_autoderef_steps({:?})", goal);
475
476     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
477     let ParamEnvAnd { param_env, value: self_ty } = goal;
478
479     let mut autoderef = Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty)
480         .include_raw_pointers()
481         .silence_errors();
482     let mut reached_raw_pointer = false;
483     let mut steps: Vec<_> = autoderef
484         .by_ref()
485         .map(|(ty, d)| {
486             let step = CandidateStep {
487                 self_ty: infcx
488                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
489                 autoderefs: d,
490                 from_unsafe_deref: reached_raw_pointer,
491                 unsize: false,
492             };
493             if let ty::RawPtr(_) = ty.kind() {
494                 // all the subsequent steps will be from_unsafe_deref
495                 reached_raw_pointer = true;
496             }
497             step
498         })
499         .collect();
500
501     let final_ty = autoderef.final_ty(true);
502     let opt_bad_ty = match final_ty.kind() {
503         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
504             reached_raw_pointer,
505             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
506         }),
507         ty::Array(elem_ty, _) => {
508             let dereferences = steps.len() - 1;
509
510             steps.push(CandidateStep {
511                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
512                     inference_vars,
513                     infcx.tcx.mk_slice(*elem_ty),
514                 ),
515                 autoderefs: dereferences,
516                 // this could be from an unsafe deref if we had
517                 // a *mut/const [T; N]
518                 from_unsafe_deref: reached_raw_pointer,
519                 unsize: true,
520             });
521
522             None
523         }
524         _ => None,
525     };
526
527     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
528
529     MethodAutoderefStepsResult {
530         steps: tcx.arena.alloc_from_iter(steps),
531         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
532         reached_recursion_limit: autoderef.reached_recursion_limit(),
533     }
534 }
535
536 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
537     fn new(
538         fcx: &'a FnCtxt<'a, 'tcx>,
539         span: Span,
540         mode: Mode,
541         method_name: Option<Ident>,
542         return_type: Option<Ty<'tcx>>,
543         orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
544         steps: &'tcx [CandidateStep<'tcx>],
545         scope_expr_id: hir::HirId,
546     ) -> ProbeContext<'a, 'tcx> {
547         ProbeContext {
548             fcx,
549             span,
550             mode,
551             method_name,
552             return_type,
553             inherent_candidates: Vec::new(),
554             extension_candidates: Vec::new(),
555             impl_dups: FxHashSet::default(),
556             orig_steps_var_values,
557             steps,
558             allow_similar_names: false,
559             private_candidate: None,
560             static_candidates: RefCell::new(Vec::new()),
561             unsatisfied_predicates: RefCell::new(Vec::new()),
562             scope_expr_id,
563         }
564     }
565
566     fn reset(&mut self) {
567         self.inherent_candidates.clear();
568         self.extension_candidates.clear();
569         self.impl_dups.clear();
570         self.private_candidate = None;
571         self.static_candidates.borrow_mut().clear();
572         self.unsatisfied_predicates.borrow_mut().clear();
573     }
574
575     ///////////////////////////////////////////////////////////////////////////
576     // CANDIDATE ASSEMBLY
577
578     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
579         let is_accessible = if let Some(name) = self.method_name {
580             let item = candidate.item;
581             let def_scope = self
582                 .tcx
583                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
584                 .1;
585             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
586         } else {
587             true
588         };
589         if is_accessible {
590             if is_inherent {
591                 self.inherent_candidates.push(candidate);
592             } else {
593                 self.extension_candidates.push(candidate);
594             }
595         } else if self.private_candidate.is_none() {
596             self.private_candidate =
597                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
598         }
599     }
600
601     fn assemble_inherent_candidates(&mut self) {
602         for step in self.steps.iter() {
603             self.assemble_probe(&step.self_ty);
604         }
605     }
606
607     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
608         debug!("assemble_probe: self_ty={:?}", self_ty);
609         let raw_self_ty = self_ty.value.value;
610         match *raw_self_ty.kind() {
611             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
612                 // Subtle: we can't use `instantiate_query_response` here: using it will
613                 // commit to all of the type equalities assumed by inference going through
614                 // autoderef (see the `method-probe-no-guessing` test).
615                 //
616                 // However, in this code, it is OK if we end up with an object type that is
617                 // "more general" than the object type that we are evaluating. For *every*
618                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
619                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
620                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
621                 // of the iterations in the autoderef loop, so there is no problem with it
622                 // being discoverable in another one of these iterations.
623                 //
624                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
625                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
626                 // `CanonicalVarValues` will exactly give us such a generalization - it
627                 // will still match the original object type, but it won't pollute our
628                 // type variables in any form, so just do that!
629                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
630                     self.fcx
631                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
632
633                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
634                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
635                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
636                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
637                 }
638             }
639             ty::Adt(def, _) => {
640                 let def_id = def.did();
641                 self.assemble_inherent_impl_candidates_for_type(def_id);
642                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
643                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
644                 }
645             }
646             ty::Foreign(did) => {
647                 self.assemble_inherent_impl_candidates_for_type(did);
648                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
649                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
650                 }
651             }
652             ty::Param(p) => {
653                 self.assemble_inherent_candidates_from_param(p);
654             }
655             ty::Bool
656             | ty::Char
657             | ty::Int(_)
658             | ty::Uint(_)
659             | ty::Float(_)
660             | ty::Str
661             | ty::Array(..)
662             | ty::Slice(_)
663             | ty::RawPtr(_)
664             | ty::Ref(..)
665             | ty::Never
666             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
667             _ => {}
668         }
669     }
670
671     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
672         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
673             bug!("unexpected incoherent type: {:?}", self_ty)
674         };
675         for &impl_def_id in self.tcx.incoherent_impls(simp) {
676             self.assemble_inherent_impl_probe(impl_def_id);
677         }
678     }
679
680     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
681         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
682         for &impl_def_id in impl_def_ids.iter() {
683             self.assemble_inherent_impl_probe(impl_def_id);
684         }
685     }
686
687     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
688         if !self.impl_dups.insert(impl_def_id) {
689             return; // already visited
690         }
691
692         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
693
694         for item in self.impl_or_trait_item(impl_def_id) {
695             if !self.has_applicable_self(&item) {
696                 // No receiver declared. Not a candidate.
697                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
698                 continue;
699             }
700
701             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
702             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
703
704             debug!("impl_ty: {:?}", impl_ty);
705
706             // Determine the receiver type that the method itself expects.
707             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
708             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
709
710             // We can't use normalize_associated_types_in as it will pollute the
711             // fcx's fulfillment context after this probe is over.
712             // Note: we only normalize `xform_self_ty` here since the normalization
713             // of the return type can lead to inference results that prohibit
714             // valid candidates from being found, see issue #85671
715             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
716             // which might be caused by the `param_env` itself. The clauses of the `param_env`
717             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
718             // see issue #89650
719             let cause = traits::ObligationCause::misc(self.span, self.body_id);
720             let InferOk { value: xform_self_ty, obligations } =
721                 self.fcx.at(&cause, self.param_env).normalize(xform_self_ty);
722
723             debug!(
724                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
725                 xform_self_ty, xform_ret_ty
726             );
727
728             self.push_candidate(
729                 Candidate {
730                     xform_self_ty,
731                     xform_ret_ty,
732                     item,
733                     kind: InherentImplCandidate(impl_substs, obligations),
734                     import_ids: smallvec![],
735                 },
736                 true,
737             );
738         }
739     }
740
741     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
742         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
743
744         let principal = match self_ty.kind() {
745             ty::Dynamic(ref data, ..) => Some(data),
746             _ => None,
747         }
748         .and_then(|data| data.principal())
749         .unwrap_or_else(|| {
750             span_bug!(
751                 self.span,
752                 "non-object {:?} in assemble_inherent_candidates_from_object",
753                 self_ty
754             )
755         });
756
757         // It is illegal to invoke a method on a trait instance that refers to
758         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
759         // will be reported by `object_safety.rs` if the method refers to the
760         // `Self` type anywhere other than the receiver. Here, we use a
761         // substitution that replaces `Self` with the object type itself. Hence,
762         // a `&self` method will wind up with an argument type like `&dyn Trait`.
763         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
764         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
765             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
766
767             let (xform_self_ty, xform_ret_ty) =
768                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
769             this.push_candidate(
770                 Candidate {
771                     xform_self_ty,
772                     xform_ret_ty,
773                     item,
774                     kind: ObjectCandidate,
775                     import_ids: smallvec![],
776                 },
777                 true,
778             );
779         });
780     }
781
782     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
783         // FIXME: do we want to commit to this behavior for param bounds?
784         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
785
786         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
787             let bound_predicate = predicate.kind();
788             match bound_predicate.skip_binder() {
789                 ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
790                     match *trait_predicate.trait_ref.self_ty().kind() {
791                         ty::Param(p) if p == param_ty => {
792                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
793                         }
794                         _ => None,
795                     }
796                 }
797                 ty::PredicateKind::Subtype(..)
798                 | ty::PredicateKind::Coerce(..)
799                 | ty::PredicateKind::Clause(ty::Clause::Projection(..))
800                 | ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..))
801                 | ty::PredicateKind::WellFormed(..)
802                 | ty::PredicateKind::ObjectSafe(..)
803                 | ty::PredicateKind::ClosureKind(..)
804                 | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..))
805                 | ty::PredicateKind::ConstEvaluatable(..)
806                 | ty::PredicateKind::ConstEquate(..)
807                 | ty::PredicateKind::Ambiguous
808                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
809             }
810         });
811
812         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
813             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
814
815             let (xform_self_ty, xform_ret_ty) =
816                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
817
818             // Because this trait derives from a where-clause, it
819             // should not contain any inference variables or other
820             // artifacts. This means it is safe to put into the
821             // `WhereClauseCandidate` and (eventually) into the
822             // `WhereClausePick`.
823             assert!(!trait_ref.substs.needs_infer());
824
825             this.push_candidate(
826                 Candidate {
827                     xform_self_ty,
828                     xform_ret_ty,
829                     item,
830                     kind: WhereClauseCandidate(poly_trait_ref),
831                     import_ids: smallvec![],
832                 },
833                 true,
834             );
835         });
836     }
837
838     // Do a search through a list of bounds, using a callback to actually
839     // create the candidates.
840     fn elaborate_bounds<F>(
841         &mut self,
842         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
843         mut mk_cand: F,
844     ) where
845         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
846     {
847         let tcx = self.tcx;
848         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
849             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
850             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
851                 if !self.has_applicable_self(&item) {
852                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
853                 } else {
854                     mk_cand(self, bound_trait_ref, item);
855                 }
856             }
857         }
858     }
859
860     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
861         let mut duplicates = FxHashSet::default();
862         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
863         if let Some(applicable_traits) = opt_applicable_traits {
864             for trait_candidate in applicable_traits.iter() {
865                 let trait_did = trait_candidate.def_id;
866                 if duplicates.insert(trait_did) {
867                     self.assemble_extension_candidates_for_trait(
868                         &trait_candidate.import_ids,
869                         trait_did,
870                     );
871                 }
872             }
873         }
874     }
875
876     fn assemble_extension_candidates_for_all_traits(&mut self) {
877         let mut duplicates = FxHashSet::default();
878         for trait_info in suggest::all_traits(self.tcx) {
879             if duplicates.insert(trait_info.def_id) {
880                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
881             }
882         }
883     }
884
885     fn matches_return_type(
886         &self,
887         method: &ty::AssocItem,
888         self_ty: Option<Ty<'tcx>>,
889         expected: Ty<'tcx>,
890     ) -> bool {
891         match method.kind {
892             ty::AssocKind::Fn => {
893                 let fty = self.tcx.bound_fn_sig(method.def_id);
894                 self.probe(|_| {
895                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
896                     let fty = fty.subst(self.tcx, substs);
897                     let fty =
898                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
899
900                     if let Some(self_ty) = self_ty {
901                         if self
902                             .at(&ObligationCause::dummy(), self.param_env)
903                             .sup(fty.inputs()[0], self_ty)
904                             .is_err()
905                         {
906                             return false;
907                         }
908                     }
909                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
910                 })
911             }
912             _ => false,
913         }
914     }
915
916     fn assemble_extension_candidates_for_trait(
917         &mut self,
918         import_ids: &SmallVec<[LocalDefId; 1]>,
919         trait_def_id: DefId,
920     ) {
921         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
922         let trait_substs = self.fresh_item_substs(trait_def_id);
923         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
924
925         if self.tcx.is_trait_alias(trait_def_id) {
926             // For trait aliases, assume all supertraits are relevant.
927             let bounds = iter::once(ty::Binder::dummy(trait_ref));
928             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
929                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
930
931                 let (xform_self_ty, xform_ret_ty) =
932                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
933                 this.push_candidate(
934                     Candidate {
935                         xform_self_ty,
936                         xform_ret_ty,
937                         item,
938                         import_ids: import_ids.clone(),
939                         kind: TraitCandidate(new_trait_ref),
940                     },
941                     false,
942                 );
943             });
944         } else {
945             debug_assert!(self.tcx.is_trait(trait_def_id));
946             for item in self.impl_or_trait_item(trait_def_id) {
947                 // Check whether `trait_def_id` defines a method with suitable name.
948                 if !self.has_applicable_self(&item) {
949                     debug!("method has inapplicable self");
950                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
951                     continue;
952                 }
953
954                 let (xform_self_ty, xform_ret_ty) =
955                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
956                 self.push_candidate(
957                     Candidate {
958                         xform_self_ty,
959                         xform_ret_ty,
960                         item,
961                         import_ids: import_ids.clone(),
962                         kind: TraitCandidate(trait_ref),
963                     },
964                     false,
965                 );
966             }
967         }
968     }
969
970     fn candidate_method_names(
971         &self,
972         candidate_filter: impl Fn(&ty::AssocItem) -> bool,
973     ) -> Vec<Ident> {
974         let mut set = FxHashSet::default();
975         let mut names: Vec<_> = self
976             .inherent_candidates
977             .iter()
978             .chain(&self.extension_candidates)
979             .filter(|candidate| candidate_filter(&candidate.item))
980             .filter(|candidate| {
981                 if let Some(return_ty) = self.return_type {
982                     self.matches_return_type(&candidate.item, None, return_ty)
983                 } else {
984                     true
985                 }
986             })
987             .map(|candidate| candidate.item.ident(self.tcx))
988             .filter(|&name| set.insert(name))
989             .collect();
990
991         // Sort them by the name so we have a stable result.
992         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
993         names
994     }
995
996     ///////////////////////////////////////////////////////////////////////////
997     // THE ACTUAL SEARCH
998
999     fn pick(mut self) -> PickResult<'tcx> {
1000         assert!(self.method_name.is_some());
1001
1002         if let Some(r) = self.pick_core() {
1003             return r;
1004         }
1005
1006         debug!("pick: actual search failed, assemble diagnostics");
1007
1008         let static_candidates = std::mem::take(self.static_candidates.get_mut());
1009         let private_candidate = self.private_candidate.take();
1010         let unsatisfied_predicates = std::mem::take(self.unsatisfied_predicates.get_mut());
1011
1012         // things failed, so lets look at all traits, for diagnostic purposes now:
1013         self.reset();
1014
1015         let span = self.span;
1016         let tcx = self.tcx;
1017
1018         self.assemble_extension_candidates_for_all_traits();
1019
1020         let out_of_scope_traits = match self.pick_core() {
1021             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1022             Some(Err(MethodError::Ambiguity(v))) => v
1023                 .into_iter()
1024                 .map(|source| match source {
1025                     CandidateSource::Trait(id) => id,
1026                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1027                         Some(id) => id,
1028                         None => span_bug!(span, "found inherent method when looking at traits"),
1029                     },
1030                 })
1031                 .collect(),
1032             Some(Err(MethodError::NoMatch(NoMatchData {
1033                 out_of_scope_traits: others, ..
1034             }))) => {
1035                 assert!(others.is_empty());
1036                 vec![]
1037             }
1038             _ => vec![],
1039         };
1040
1041         if let Some((kind, def_id)) = private_candidate {
1042             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1043         }
1044         let lev_candidate = self.probe_for_lev_candidate()?;
1045
1046         Err(MethodError::NoMatch(NoMatchData {
1047             static_candidates,
1048             unsatisfied_predicates,
1049             out_of_scope_traits,
1050             lev_candidate,
1051             mode: self.mode,
1052         }))
1053     }
1054
1055     fn pick_core(&self) -> Option<PickResult<'tcx>> {
1056         let pick = self.pick_all_method(Some(&mut vec![]));
1057
1058         // In this case unstable picking is done by `pick_method`.
1059         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1060             return pick;
1061         }
1062
1063         if pick.is_none() {
1064             return self.pick_all_method(None);
1065         }
1066         pick
1067     }
1068
1069     fn pick_all_method(
1070         &self,
1071         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1072     ) -> Option<PickResult<'tcx>> {
1073         self.steps
1074             .iter()
1075             .filter(|step| {
1076                 debug!("pick_all_method: step={:?}", step);
1077                 // skip types that are from a type error or that would require dereferencing
1078                 // a raw pointer
1079                 !step.self_ty.references_error() && !step.from_unsafe_deref
1080             })
1081             .flat_map(|step| {
1082                 let InferOk { value: self_ty, obligations: _ } = self
1083                     .fcx
1084                     .probe_instantiate_query_response(
1085                         self.span,
1086                         &self.orig_steps_var_values,
1087                         &step.self_ty,
1088                     )
1089                     .unwrap_or_else(|_| {
1090                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1091                     });
1092                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1093                     .or_else(|| {
1094                         self.pick_autorefd_method(
1095                             step,
1096                             self_ty,
1097                             hir::Mutability::Not,
1098                             unstable_candidates.as_deref_mut(),
1099                         )
1100                         .or_else(|| {
1101                             self.pick_autorefd_method(
1102                                 step,
1103                                 self_ty,
1104                                 hir::Mutability::Mut,
1105                                 unstable_candidates.as_deref_mut(),
1106                             )
1107                         })
1108                         .or_else(|| {
1109                             self.pick_const_ptr_method(
1110                                 step,
1111                                 self_ty,
1112                                 unstable_candidates.as_deref_mut(),
1113                             )
1114                         })
1115                     })
1116             })
1117             .next()
1118     }
1119
1120     /// For each type `T` in the step list, this attempts to find a method where
1121     /// the (transformed) self type is exactly `T`. We do however do one
1122     /// transformation on the adjustment: if we are passing a region pointer in,
1123     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1124     /// to transparently pass `&mut` pointers, in particular, without consuming
1125     /// them for their entire lifetime.
1126     fn pick_by_value_method(
1127         &self,
1128         step: &CandidateStep<'tcx>,
1129         self_ty: Ty<'tcx>,
1130         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1131     ) -> Option<PickResult<'tcx>> {
1132         if step.unsize {
1133             return None;
1134         }
1135
1136         self.pick_method(self_ty, unstable_candidates).map(|r| {
1137             r.map(|mut pick| {
1138                 pick.autoderefs = step.autoderefs;
1139
1140                 // Insert a `&*` or `&mut *` if this is a reference type:
1141                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1142                     pick.autoderefs += 1;
1143                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1144                         mutbl,
1145                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1146                     })
1147                 }
1148
1149                 pick
1150             })
1151         })
1152     }
1153
1154     fn pick_autorefd_method(
1155         &self,
1156         step: &CandidateStep<'tcx>,
1157         self_ty: Ty<'tcx>,
1158         mutbl: hir::Mutability,
1159         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1160     ) -> Option<PickResult<'tcx>> {
1161         let tcx = self.tcx;
1162
1163         // In general, during probing we erase regions.
1164         let region = tcx.lifetimes.re_erased;
1165
1166         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1167         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1168             r.map(|mut pick| {
1169                 pick.autoderefs = step.autoderefs;
1170                 pick.autoref_or_ptr_adjustment =
1171                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1172                 pick
1173             })
1174         })
1175     }
1176
1177     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1178     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1179     /// autorefs would require dereferencing the pointer, which is not safe.
1180     fn pick_const_ptr_method(
1181         &self,
1182         step: &CandidateStep<'tcx>,
1183         self_ty: Ty<'tcx>,
1184         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1185     ) -> Option<PickResult<'tcx>> {
1186         // Don't convert an unsized reference to ptr
1187         if step.unsize {
1188             return None;
1189         }
1190
1191         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1192             return None;
1193         };
1194
1195         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1196         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1197         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1198             r.map(|mut pick| {
1199                 pick.autoderefs = step.autoderefs;
1200                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1201                 pick
1202             })
1203         })
1204     }
1205
1206     fn pick_method_with_unstable(&self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1207         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1208
1209         let mut possibly_unsatisfied_predicates = Vec::new();
1210
1211         for (kind, candidates) in
1212             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1213         {
1214             debug!("searching {} candidates", kind);
1215             let res = self.consider_candidates(
1216                 self_ty,
1217                 candidates,
1218                 &mut possibly_unsatisfied_predicates,
1219                 Some(&mut vec![]),
1220             );
1221             if res.is_some() {
1222                 return res;
1223             }
1224         }
1225
1226         for (kind, candidates) in
1227             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1228         {
1229             debug!("searching unstable {kind} candidates");
1230             let res = self.consider_candidates(
1231                 self_ty,
1232                 candidates,
1233                 &mut possibly_unsatisfied_predicates,
1234                 None,
1235             );
1236             if res.is_some() {
1237                 return res;
1238             }
1239         }
1240
1241         self.unsatisfied_predicates.borrow_mut().extend(possibly_unsatisfied_predicates);
1242         None
1243     }
1244
1245     fn pick_method(
1246         &self,
1247         self_ty: Ty<'tcx>,
1248         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1249     ) -> Option<PickResult<'tcx>> {
1250         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1251             return self.pick_method_with_unstable(self_ty);
1252         }
1253
1254         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1255
1256         let mut possibly_unsatisfied_predicates = Vec::new();
1257
1258         for (kind, candidates) in
1259             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1260         {
1261             debug!("searching {} candidates", kind);
1262             let res = self.consider_candidates(
1263                 self_ty,
1264                 candidates,
1265                 &mut possibly_unsatisfied_predicates,
1266                 unstable_candidates.as_deref_mut(),
1267             );
1268             if let Some(pick) = res {
1269                 return Some(pick);
1270             }
1271         }
1272
1273         // `pick_method` may be called twice for the same self_ty if no stable methods
1274         // match. Only extend once.
1275         if unstable_candidates.is_some() {
1276             self.unsatisfied_predicates.borrow_mut().extend(possibly_unsatisfied_predicates);
1277         }
1278         None
1279     }
1280
1281     fn consider_candidates(
1282         &self,
1283         self_ty: Ty<'tcx>,
1284         candidates: &[Candidate<'tcx>],
1285         possibly_unsatisfied_predicates: &mut Vec<(
1286             ty::Predicate<'tcx>,
1287             Option<ty::Predicate<'tcx>>,
1288             Option<ObligationCause<'tcx>>,
1289         )>,
1290         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1291     ) -> Option<PickResult<'tcx>> {
1292         let mut applicable_candidates: Vec<_> = candidates
1293             .iter()
1294             .map(|probe| {
1295                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1296             })
1297             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1298             .collect();
1299
1300         debug!("applicable_candidates: {:?}", applicable_candidates);
1301
1302         if applicable_candidates.len() > 1 {
1303             if let Some(pick) =
1304                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1305             {
1306                 return Some(Ok(pick));
1307             }
1308         }
1309
1310         if let Some(uc) = &mut unstable_candidates {
1311             applicable_candidates.retain(|&(candidate, _)| {
1312                 if let stability::EvalResult::Deny { feature, .. } =
1313                     self.tcx.eval_stability(candidate.item.def_id, None, self.span, None)
1314                 {
1315                     uc.push((candidate.clone(), feature));
1316                     return false;
1317                 }
1318                 true
1319             });
1320         }
1321
1322         if applicable_candidates.len() > 1 {
1323             let sources = candidates.iter().map(|p| self.candidate_source(p, self_ty)).collect();
1324             return Some(Err(MethodError::Ambiguity(sources)));
1325         }
1326
1327         applicable_candidates.pop().map(|(probe, status)| {
1328             if status == ProbeResult::Match {
1329                 Ok(probe
1330                     .to_unadjusted_pick(self_ty, unstable_candidates.cloned().unwrap_or_default()))
1331             } else {
1332                 Err(MethodError::BadReturnType)
1333             }
1334         })
1335     }
1336 }
1337
1338 impl<'tcx> Pick<'tcx> {
1339     /// In case there were unstable name collisions, emit them as a lint.
1340     /// Checks whether two picks do not refer to the same trait item for the same `Self` type.
1341     /// Only useful for comparisons of picks in order to improve diagnostics.
1342     /// Do not use for type checking.
1343     pub fn differs_from(&self, other: &Self) -> bool {
1344         let Self {
1345             item:
1346                 AssocItem {
1347                     def_id,
1348                     name: _,
1349                     kind: _,
1350                     container: _,
1351                     trait_item_def_id: _,
1352                     fn_has_self_parameter: _,
1353                 },
1354             kind: _,
1355             import_ids: _,
1356             autoderefs: _,
1357             autoref_or_ptr_adjustment: _,
1358             self_ty,
1359             unstable_candidates: _,
1360         } = *self;
1361         self_ty != other.self_ty || def_id != other.item.def_id
1362     }
1363
1364     /// In case there were unstable name collisions, emit them as a lint.
1365     pub fn maybe_emit_unstable_name_collision_hint(
1366         &self,
1367         tcx: TyCtxt<'tcx>,
1368         span: Span,
1369         scope_expr_id: hir::HirId,
1370     ) {
1371         if self.unstable_candidates.is_empty() {
1372             return;
1373         }
1374         let def_kind = self.item.kind.as_def_kind();
1375         tcx.struct_span_lint_hir(
1376             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1377             scope_expr_id,
1378             span,
1379             format!(
1380                 "{} {} with this name may be added to the standard library in the future",
1381                 def_kind.article(),
1382                 def_kind.descr(self.item.def_id),
1383             ),
1384             |lint| {
1385                 match (self.item.kind, self.item.container) {
1386                     (ty::AssocKind::Fn, _) => {
1387                         // FIXME: This should be a `span_suggestion` instead of `help`
1388                         // However `self.span` only
1389                         // highlights the method name, so we can't use it. Also consider reusing
1390                         // the code from `report_method_error()`.
1391                         lint.help(&format!(
1392                             "call with fully qualified syntax `{}(...)` to keep using the current \
1393                              method",
1394                             tcx.def_path_str(self.item.def_id),
1395                         ));
1396                     }
1397                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1398                         let def_id = self.item.container_id(tcx);
1399                         lint.span_suggestion(
1400                             span,
1401                             "use the fully qualified path to the associated const",
1402                             format!(
1403                                 "<{} as {}>::{}",
1404                                 self.self_ty,
1405                                 tcx.def_path_str(def_id),
1406                                 self.item.name
1407                             ),
1408                             Applicability::MachineApplicable,
1409                         );
1410                     }
1411                     _ => {}
1412                 }
1413                 if tcx.sess.is_nightly_build() {
1414                     for (candidate, feature) in &self.unstable_candidates {
1415                         lint.help(&format!(
1416                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1417                             feature,
1418                             tcx.def_path_str(candidate.item.def_id),
1419                         ));
1420                     }
1421                 }
1422
1423                 lint
1424             },
1425         );
1426     }
1427 }
1428
1429 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
1430     fn select_trait_candidate(
1431         &self,
1432         trait_ref: ty::TraitRef<'tcx>,
1433     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1434         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1435         let predicate = ty::Binder::dummy(trait_ref);
1436         let obligation = traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1437         traits::SelectionContext::new(self).select(&obligation)
1438     }
1439
1440     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1441         match candidate.kind {
1442             InherentImplCandidate(..) => {
1443                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1444             }
1445             ObjectCandidate | WhereClauseCandidate(_) => {
1446                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1447             }
1448             TraitCandidate(trait_ref) => self.probe(|_| {
1449                 let _ = self
1450                     .at(&ObligationCause::dummy(), self.param_env)
1451                     .define_opaque_types(false)
1452                     .sup(candidate.xform_self_ty, self_ty);
1453                 match self.select_trait_candidate(trait_ref) {
1454                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1455                         // If only a single impl matches, make the error message point
1456                         // to that impl.
1457                         CandidateSource::Impl(impl_data.impl_def_id)
1458                     }
1459                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1460                 }
1461             }),
1462         }
1463     }
1464
1465     fn consider_probe(
1466         &self,
1467         self_ty: Ty<'tcx>,
1468         probe: &Candidate<'tcx>,
1469         possibly_unsatisfied_predicates: &mut Vec<(
1470             ty::Predicate<'tcx>,
1471             Option<ty::Predicate<'tcx>>,
1472             Option<ObligationCause<'tcx>>,
1473         )>,
1474     ) -> ProbeResult {
1475         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1476
1477         self.probe(|_| {
1478             // First check that the self type can be related.
1479             let sub_obligations = match self
1480                 .at(&ObligationCause::dummy(), self.param_env)
1481                 .define_opaque_types(false)
1482                 .sup(probe.xform_self_ty, self_ty)
1483             {
1484                 Ok(InferOk { obligations, value: () }) => obligations,
1485                 Err(err) => {
1486                     debug!("--> cannot relate self-types {:?}", err);
1487                     return ProbeResult::NoMatch;
1488                 }
1489             };
1490
1491             let mut result = ProbeResult::Match;
1492             let mut xform_ret_ty = probe.xform_ret_ty;
1493             debug!(?xform_ret_ty);
1494
1495             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1496
1497             let mut parent_pred = None;
1498
1499             // If so, impls may carry other conditions (e.g., where
1500             // clauses) that must be considered. Make sure that those
1501             // match as well (or at least may match, sometimes we
1502             // don't have enough information to fully evaluate).
1503             match probe.kind {
1504                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1505                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1506                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1507                     // for why this is necessary
1508                     let InferOk {
1509                         value: normalized_xform_ret_ty,
1510                         obligations: normalization_obligations,
1511                     } = self.fcx.at(&cause, self.param_env).normalize(probe.xform_ret_ty);
1512                     xform_ret_ty = normalized_xform_ret_ty;
1513                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1514
1515                     // Check whether the impl imposes obligations we have to worry about.
1516                     let impl_def_id = probe.item.container_id(self.tcx);
1517                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1518                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1519
1520                     let InferOk { value: impl_bounds, obligations: norm_obligations } =
1521                         self.fcx.at(&cause, self.param_env).normalize(impl_bounds);
1522
1523                     // Convert the bounds into obligations.
1524                     let impl_obligations = traits::predicates_for_generics(
1525                         move |_, _| cause.clone(),
1526                         self.param_env,
1527                         impl_bounds,
1528                     );
1529
1530                     let candidate_obligations = impl_obligations
1531                         .chain(norm_obligations.into_iter())
1532                         .chain(ref_obligations.iter().cloned())
1533                         .chain(normalization_obligations.into_iter());
1534
1535                     // Evaluate those obligations to see if they might possibly hold.
1536                     for o in candidate_obligations {
1537                         let o = self.resolve_vars_if_possible(o);
1538                         if !self.predicate_may_hold(&o) {
1539                             result = ProbeResult::NoMatch;
1540                             possibly_unsatisfied_predicates.push((
1541                                 o.predicate,
1542                                 None,
1543                                 Some(o.cause),
1544                             ));
1545                         }
1546                     }
1547                 }
1548
1549                 ObjectCandidate | WhereClauseCandidate(..) => {
1550                     // These have no additional conditions to check.
1551                 }
1552
1553                 TraitCandidate(trait_ref) => {
1554                     if let Some(method_name) = self.method_name {
1555                         // Some trait methods are excluded for arrays before 2021.
1556                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1557                         if self_ty.is_array() && !method_name.span.rust_2021() {
1558                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1559                             if trait_def.skip_array_during_method_dispatch {
1560                                 return ProbeResult::NoMatch;
1561                             }
1562                         }
1563                     }
1564                     let predicate =
1565                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1566                     parent_pred = Some(predicate);
1567                     let obligation =
1568                         traits::Obligation::new(self.tcx, cause, self.param_env, predicate);
1569                     if !self.predicate_may_hold(&obligation) {
1570                         result = ProbeResult::NoMatch;
1571                         if self.probe(|_| {
1572                             match self.select_trait_candidate(trait_ref) {
1573                                 Err(_) => return true,
1574                                 Ok(Some(impl_source))
1575                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1576                                 {
1577                                     for obligation in impl_source.borrow_nested_obligations() {
1578                                         // Determine exactly which obligation wasn't met, so
1579                                         // that we can give more context in the error.
1580                                         if !self.predicate_may_hold(obligation) {
1581                                             let nested_predicate =
1582                                                 self.resolve_vars_if_possible(obligation.predicate);
1583                                             let predicate =
1584                                                 self.resolve_vars_if_possible(predicate);
1585                                             let p = if predicate == nested_predicate {
1586                                                 // Avoid "`MyStruct: Foo` which is required by
1587                                                 // `MyStruct: Foo`" in E0599.
1588                                                 None
1589                                             } else {
1590                                                 Some(predicate)
1591                                             };
1592                                             possibly_unsatisfied_predicates.push((
1593                                                 nested_predicate,
1594                                                 p,
1595                                                 Some(obligation.cause.clone()),
1596                                             ));
1597                                         }
1598                                     }
1599                                 }
1600                                 _ => {
1601                                     // Some nested subobligation of this predicate
1602                                     // failed.
1603                                     let predicate = self.resolve_vars_if_possible(predicate);
1604                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1605                                 }
1606                             }
1607                             false
1608                         }) {
1609                             // This candidate's primary obligation doesn't even
1610                             // select - don't bother registering anything in
1611                             // `potentially_unsatisfied_predicates`.
1612                             return ProbeResult::NoMatch;
1613                         }
1614                     }
1615                 }
1616             }
1617
1618             // Evaluate those obligations to see if they might possibly hold.
1619             for o in sub_obligations {
1620                 let o = self.resolve_vars_if_possible(o);
1621                 if !self.predicate_may_hold(&o) {
1622                     result = ProbeResult::NoMatch;
1623                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1624                 }
1625             }
1626
1627             if let ProbeResult::Match = result {
1628                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1629                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1630                     debug!(
1631                         "comparing return_ty {:?} with xform ret ty {:?}",
1632                         return_ty, probe.xform_ret_ty
1633                     );
1634                     if self
1635                         .at(&ObligationCause::dummy(), self.param_env)
1636                         .define_opaque_types(false)
1637                         .sup(return_ty, xform_ret_ty)
1638                         .is_err()
1639                     {
1640                         return ProbeResult::BadReturnType;
1641                     }
1642                 }
1643             }
1644
1645             result
1646         })
1647     }
1648
1649     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1650     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1651     /// external interface of the method can be determined from the trait, it's ok not to decide.
1652     /// We can basically just collapse all of the probes for various impls into one where-clause
1653     /// probe. This will result in a pending obligation so when more type-info is available we can
1654     /// make the final decision.
1655     ///
1656     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1657     ///
1658     /// ```ignore (illustrative)
1659     /// trait Foo { ... }
1660     /// impl Foo for Vec<i32> { ... }
1661     /// impl Foo for Vec<usize> { ... }
1662     /// ```
1663     ///
1664     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1665     /// use, so it's ok to just commit to "using the method from the trait Foo".
1666     fn collapse_candidates_to_trait_pick(
1667         &self,
1668         self_ty: Ty<'tcx>,
1669         probes: &[(&Candidate<'tcx>, ProbeResult)],
1670     ) -> Option<Pick<'tcx>> {
1671         // Do all probes correspond to the same trait?
1672         let container = probes[0].0.item.trait_container(self.tcx)?;
1673         for (p, _) in &probes[1..] {
1674             let p_container = p.item.trait_container(self.tcx)?;
1675             if p_container != container {
1676                 return None;
1677             }
1678         }
1679
1680         // FIXME: check the return type here somehow.
1681         // If so, just use this trait and call it a day.
1682         Some(Pick {
1683             item: probes[0].0.item,
1684             kind: TraitPick,
1685             import_ids: probes[0].0.import_ids.clone(),
1686             autoderefs: 0,
1687             autoref_or_ptr_adjustment: None,
1688             self_ty,
1689             unstable_candidates: vec![],
1690         })
1691     }
1692
1693     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1694     /// candidate method where the method name may have been misspelled. Similarly to other
1695     /// Levenshtein based suggestions, we provide at most one such suggestion.
1696     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1697         debug!("probing for method names similar to {:?}", self.method_name);
1698
1699         let steps = self.steps.clone();
1700         self.probe(|_| {
1701             let mut pcx = ProbeContext::new(
1702                 self.fcx,
1703                 self.span,
1704                 self.mode,
1705                 self.method_name,
1706                 self.return_type,
1707                 &self.orig_steps_var_values,
1708                 steps,
1709                 self.scope_expr_id,
1710             );
1711             pcx.allow_similar_names = true;
1712             pcx.assemble_inherent_candidates();
1713
1714             let method_names = pcx.candidate_method_names(|_| true);
1715             pcx.allow_similar_names = false;
1716             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1717                 .iter()
1718                 .filter_map(|&method_name| {
1719                     pcx.reset();
1720                     pcx.method_name = Some(method_name);
1721                     pcx.assemble_inherent_candidates();
1722                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1723                 })
1724                 .collect();
1725
1726             if applicable_close_candidates.is_empty() {
1727                 Ok(None)
1728             } else {
1729                 let best_name = {
1730                     let names = applicable_close_candidates
1731                         .iter()
1732                         .map(|cand| cand.name)
1733                         .collect::<Vec<Symbol>>();
1734                     find_best_match_for_name_with_substrings(
1735                         &names,
1736                         self.method_name.unwrap().name,
1737                         None,
1738                     )
1739                 }
1740                 .unwrap();
1741                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1742             }
1743         })
1744     }
1745
1746     ///////////////////////////////////////////////////////////////////////////
1747     // MISCELLANY
1748     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1749         // "Fast track" -- check for usage of sugar when in method call
1750         // mode.
1751         //
1752         // In Path mode (i.e., resolving a value like `T::next`), consider any
1753         // associated value (i.e., methods, constants) but not types.
1754         match self.mode {
1755             Mode::MethodCall => item.fn_has_self_parameter,
1756             Mode::Path => match item.kind {
1757                 ty::AssocKind::Type => false,
1758                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1759             },
1760         }
1761         // FIXME -- check for types that deref to `Self`,
1762         // like `Rc<Self>` and so on.
1763         //
1764         // Note also that the current code will break if this type
1765         // includes any of the type parameters defined on the method
1766         // -- but this could be overcome.
1767     }
1768
1769     fn record_static_candidate(&self, source: CandidateSource) {
1770         self.static_candidates.borrow_mut().push(source);
1771     }
1772
1773     #[instrument(level = "debug", skip(self))]
1774     fn xform_self_ty(
1775         &self,
1776         item: &ty::AssocItem,
1777         impl_ty: Ty<'tcx>,
1778         substs: SubstsRef<'tcx>,
1779     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1780         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1781             let sig = self.xform_method_sig(item.def_id, substs);
1782             (sig.inputs()[0], Some(sig.output()))
1783         } else {
1784             (impl_ty, None)
1785         }
1786     }
1787
1788     #[instrument(level = "debug", skip(self))]
1789     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1790         let fn_sig = self.tcx.bound_fn_sig(method);
1791         debug!(?fn_sig);
1792
1793         assert!(!substs.has_escaping_bound_vars());
1794
1795         // It is possible for type parameters or early-bound lifetimes
1796         // to appear in the signature of `self`. The substitutions we
1797         // are given do not include type/lifetime parameters for the
1798         // method yet. So create fresh variables here for those too,
1799         // if there are any.
1800         let generics = self.tcx.generics_of(method);
1801         assert_eq!(substs.len(), generics.parent_count as usize);
1802
1803         let xform_fn_sig = if generics.params.is_empty() {
1804             fn_sig.subst(self.tcx, substs)
1805         } else {
1806             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1807                 let i = param.index as usize;
1808                 if i < substs.len() {
1809                     substs[i]
1810                 } else {
1811                     match param.kind {
1812                         GenericParamDefKind::Lifetime => {
1813                             // In general, during probe we erase regions.
1814                             self.tcx.lifetimes.re_erased.into()
1815                         }
1816                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1817                             self.var_for_def(self.span, param)
1818                         }
1819                     }
1820                 }
1821             });
1822             fn_sig.subst(self.tcx, substs)
1823         };
1824
1825         self.erase_late_bound_regions(xform_fn_sig)
1826     }
1827
1828     /// Gets the type of an impl and generate substitutions with inference vars.
1829     fn impl_ty_and_substs(
1830         &self,
1831         impl_def_id: DefId,
1832     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1833         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1834     }
1835
1836     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1837         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1838             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1839             GenericParamDefKind::Type { .. } => self
1840                 .next_ty_var(TypeVariableOrigin {
1841                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1842                     span: self.tcx.def_span(def_id),
1843                 })
1844                 .into(),
1845             GenericParamDefKind::Const { .. } => {
1846                 let span = self.tcx.def_span(def_id);
1847                 let origin = ConstVariableOrigin {
1848                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1849                     span,
1850                 };
1851                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1852             }
1853         })
1854     }
1855
1856     /// Replaces late-bound-regions bound by `value` with `'static` using
1857     /// `ty::erase_late_bound_regions`.
1858     ///
1859     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1860     /// method matching. It is reasonable during the probe phase because we don't consider region
1861     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1862     /// rather than creating fresh region variables. This is nice for two reasons:
1863     ///
1864     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1865     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1866     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1867     ///
1868     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1869     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1870     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1871     ///    region got replaced with the same variable, which requires a bit more coordination
1872     ///    and/or tracking the substitution and
1873     ///    so forth.
1874     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1875     where
1876         T: TypeFoldable<'tcx>,
1877     {
1878         self.tcx.erase_late_bound_regions(value)
1879     }
1880
1881     /// Determine if the given associated item type is relevant in the current context.
1882     fn is_relevant_kind_for_mode(&self, kind: ty::AssocKind) -> bool {
1883         match (self.mode, kind) {
1884             (Mode::MethodCall, ty::AssocKind::Fn) => true,
1885             (Mode::Path, ty::AssocKind::Const | ty::AssocKind::Fn) => true,
1886             _ => false,
1887         }
1888     }
1889
1890     /// Finds the method with the appropriate name (or return type, as the case may be). If
1891     /// `allow_similar_names` is set, find methods with close-matching names.
1892     // The length of the returned iterator is nearly always 0 or 1 and this
1893     // method is fairly hot.
1894     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1895         if let Some(name) = self.method_name {
1896             if self.allow_similar_names {
1897                 let max_dist = max(name.as_str().len(), 3) / 3;
1898                 self.tcx
1899                     .associated_items(def_id)
1900                     .in_definition_order()
1901                     .filter(|x| {
1902                         if !self.is_relevant_kind_for_mode(x.kind) {
1903                             return false;
1904                         }
1905                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1906                         {
1907                             Some(d) => d > 0,
1908                             None => false,
1909                         }
1910                     })
1911                     .copied()
1912                     .collect()
1913             } else {
1914                 self.fcx
1915                     .associated_value(def_id, name)
1916                     .filter(|x| self.is_relevant_kind_for_mode(x.kind))
1917                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1918             }
1919         } else {
1920             self.tcx
1921                 .associated_items(def_id)
1922                 .in_definition_order()
1923                 .filter(|x| self.is_relevant_kind_for_mode(x.kind))
1924                 .copied()
1925                 .collect()
1926         }
1927     }
1928 }
1929
1930 impl<'tcx> Candidate<'tcx> {
1931     fn to_unadjusted_pick(
1932         &self,
1933         self_ty: Ty<'tcx>,
1934         unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
1935     ) -> Pick<'tcx> {
1936         Pick {
1937             item: self.item,
1938             kind: match self.kind {
1939                 InherentImplCandidate(..) => InherentImplPick,
1940                 ObjectCandidate => ObjectPick,
1941                 TraitCandidate(_) => TraitPick,
1942                 WhereClauseCandidate(ref trait_ref) => {
1943                     // Only trait derived from where-clauses should
1944                     // appear here, so they should not contain any
1945                     // inference variables or other artifacts. This
1946                     // means they are safe to put into the
1947                     // `WhereClausePick`.
1948                     assert!(
1949                         !trait_ref.skip_binder().substs.needs_infer()
1950                             && !trait_ref.skip_binder().substs.has_placeholders()
1951                     );
1952
1953                     WhereClausePick(*trait_ref)
1954                 }
1955             },
1956             import_ids: self.import_ids.clone(),
1957             autoderefs: 0,
1958             autoref_or_ptr_adjustment: None,
1959             self_ty,
1960             unstable_candidates,
1961         }
1962     }
1963 }