]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
Rollup merge of #106856 - vadorovsky:fix-atomic-annotations, r=joshtriplett
[rust.git] / compiler / rustc_hir_typeck / src / fn_ctxt / checks.rs
1 use crate::coercion::CoerceMany;
2 use crate::fn_ctxt::arg_matrix::{ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx};
3 use crate::gather_locals::Declaration;
4 use crate::method::MethodCallee;
5 use crate::Expectation::*;
6 use crate::TupleArgumentsFlag::*;
7 use crate::{
8     struct_span_err, BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy, Needs, RawTy,
9     TupleArgumentsFlag,
10 };
11 use rustc_ast as ast;
12 use rustc_data_structures::fx::FxIndexSet;
13 use rustc_errors::{pluralize, Applicability, Diagnostic, DiagnosticId, MultiSpan};
14 use rustc_hir as hir;
15 use rustc_hir::def::{CtorOf, DefKind, Res};
16 use rustc_hir::def_id::DefId;
17 use rustc_hir::{ExprKind, Node, QPath};
18 use rustc_hir_analysis::astconv::AstConv;
19 use rustc_hir_analysis::check::intrinsicck::InlineAsmCtxt;
20 use rustc_hir_analysis::check::potentially_plural_count;
21 use rustc_hir_analysis::structured_errors::StructuredDiagnostic;
22 use rustc_index::vec::IndexVec;
23 use rustc_infer::infer::error_reporting::{FailureCode, ObligationCauseExt};
24 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
25 use rustc_infer::infer::InferOk;
26 use rustc_infer::infer::TypeTrace;
27 use rustc_middle::ty::adjustment::AllowTwoPhase;
28 use rustc_middle::ty::visit::TypeVisitable;
29 use rustc_middle::ty::{self, DefIdTree, IsSuggestable, Ty, TypeSuperVisitable, TypeVisitor};
30 use rustc_session::Session;
31 use rustc_span::symbol::{kw, Ident};
32 use rustc_span::{self, sym, Span};
33 use rustc_trait_selection::traits::{self, ObligationCauseCode, SelectionContext};
34
35 use std::iter;
36 use std::mem;
37 use std::ops::ControlFlow;
38 use std::slice;
39
40 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
41     pub(in super::super) fn check_casts(&mut self) {
42         // don't hold the borrow to deferred_cast_checks while checking to avoid borrow checker errors
43         // when writing to `self.param_env`.
44         let mut deferred_cast_checks = mem::take(&mut *self.deferred_cast_checks.borrow_mut());
45
46         debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
47         for cast in deferred_cast_checks.drain(..) {
48             let prev_env = self.param_env;
49             self.param_env = self.param_env.with_constness(cast.constness);
50
51             cast.check(self);
52
53             self.param_env = prev_env;
54         }
55
56         *self.deferred_cast_checks.borrow_mut() = deferred_cast_checks;
57     }
58
59     pub(in super::super) fn check_transmutes(&self) {
60         let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
61         debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
62         for (from, to, hir_id) in deferred_transmute_checks.drain(..) {
63             self.check_transmute(from, to, hir_id);
64         }
65     }
66
67     pub(in super::super) fn check_asms(&self) {
68         let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
69         debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
70         for (asm, hir_id) in deferred_asm_checks.drain(..) {
71             let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
72             let get_operand_ty = |expr| {
73                 let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
74                 let ty = self.resolve_vars_if_possible(ty);
75                 if ty.has_non_region_infer() {
76                     self.tcx.ty_error()
77                 } else {
78                     self.tcx.erase_regions(ty)
79                 }
80             };
81             InlineAsmCtxt::new_in_fn(self.tcx, self.param_env, get_operand_ty)
82                 .check_asm(asm, self.tcx.hir().local_def_id_to_hir_id(enclosing_id));
83         }
84     }
85
86     pub(in super::super) fn check_method_argument_types(
87         &self,
88         sp: Span,
89         expr: &'tcx hir::Expr<'tcx>,
90         method: Result<MethodCallee<'tcx>, ()>,
91         args_no_rcvr: &'tcx [hir::Expr<'tcx>],
92         tuple_arguments: TupleArgumentsFlag,
93         expected: Expectation<'tcx>,
94     ) -> Ty<'tcx> {
95         let has_error = match method {
96             Ok(method) => method.substs.references_error() || method.sig.references_error(),
97             Err(_) => true,
98         };
99         if has_error {
100             let err_inputs = self.err_args(args_no_rcvr.len());
101
102             let err_inputs = match tuple_arguments {
103                 DontTupleArguments => err_inputs,
104                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs)],
105             };
106
107             self.check_argument_types(
108                 sp,
109                 expr,
110                 &err_inputs,
111                 None,
112                 args_no_rcvr,
113                 false,
114                 tuple_arguments,
115                 method.ok().map(|method| method.def_id),
116             );
117             return self.tcx.ty_error();
118         }
119
120         let method = method.unwrap();
121         // HACK(eddyb) ignore self in the definition (see above).
122         let expected_input_tys = self.expected_inputs_for_expected_output(
123             sp,
124             expected,
125             method.sig.output(),
126             &method.sig.inputs()[1..],
127         );
128         self.check_argument_types(
129             sp,
130             expr,
131             &method.sig.inputs()[1..],
132             expected_input_tys,
133             args_no_rcvr,
134             method.sig.c_variadic,
135             tuple_arguments,
136             Some(method.def_id),
137         );
138
139         method.sig.output()
140     }
141
142     /// Generic function that factors out common logic from function calls,
143     /// method calls and overloaded operators.
144     pub(in super::super) fn check_argument_types(
145         &self,
146         // Span enclosing the call site
147         call_span: Span,
148         // Expression of the call site
149         call_expr: &'tcx hir::Expr<'tcx>,
150         // Types (as defined in the *signature* of the target function)
151         formal_input_tys: &[Ty<'tcx>],
152         // More specific expected types, after unifying with caller output types
153         expected_input_tys: Option<Vec<Ty<'tcx>>>,
154         // The expressions for each provided argument
155         provided_args: &'tcx [hir::Expr<'tcx>],
156         // Whether the function is variadic, for example when imported from C
157         c_variadic: bool,
158         // Whether the arguments have been bundled in a tuple (ex: closures)
159         tuple_arguments: TupleArgumentsFlag,
160         // The DefId for the function being called, for better error messages
161         fn_def_id: Option<DefId>,
162     ) {
163         let tcx = self.tcx;
164
165         // Conceptually, we've got some number of expected inputs, and some number of provided arguments
166         // and we can form a grid of whether each argument could satisfy a given input:
167         //      in1 | in2 | in3 | ...
168         // arg1  ?  |     |     |
169         // arg2     |  ?  |     |
170         // arg3     |     |  ?  |
171         // ...
172         // Initially, we just check the diagonal, because in the case of correct code
173         // these are the only checks that matter
174         // However, in the unhappy path, we'll fill in this whole grid to attempt to provide
175         // better error messages about invalid method calls.
176
177         // All the input types from the fn signature must outlive the call
178         // so as to validate implied bounds.
179         for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
180             self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation);
181         }
182
183         let mut err_code = "E0061";
184
185         // If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
186         let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
187             let tuple_type = self.structurally_resolved_type(call_span, formal_input_tys[0]);
188             match tuple_type.kind() {
189                 // We expected a tuple and got a tuple
190                 ty::Tuple(arg_types) => {
191                     // Argument length differs
192                     if arg_types.len() != provided_args.len() {
193                         err_code = "E0057";
194                     }
195                     let expected_input_tys = match expected_input_tys {
196                         Some(expected_input_tys) => match expected_input_tys.get(0) {
197                             Some(ty) => match ty.kind() {
198                                 ty::Tuple(tys) => Some(tys.iter().collect()),
199                                 _ => None,
200                             },
201                             None => None,
202                         },
203                         None => None,
204                     };
205                     (arg_types.iter().collect(), expected_input_tys)
206                 }
207                 _ => {
208                     // Otherwise, there's a mismatch, so clear out what we're expecting, and set
209                     // our input types to err_args so we don't blow up the error messages
210                     struct_span_err!(
211                         tcx.sess,
212                         call_span,
213                         E0059,
214                         "cannot use call notation; the first type parameter \
215                          for the function trait is neither a tuple nor unit"
216                     )
217                     .emit();
218                     (self.err_args(provided_args.len()), None)
219                 }
220             }
221         } else {
222             (formal_input_tys.to_vec(), expected_input_tys)
223         };
224
225         // If there are no external expectations at the call site, just use the types from the function defn
226         let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
227             assert_eq!(expected_input_tys.len(), formal_input_tys.len());
228             expected_input_tys
229         } else {
230             formal_input_tys.clone()
231         };
232
233         let minimum_input_count = expected_input_tys.len();
234         let provided_arg_count = provided_args.len();
235
236         let is_const_eval_select = matches!(fn_def_id, Some(def_id) if
237             self.tcx.def_kind(def_id) == hir::def::DefKind::Fn
238             && self.tcx.is_intrinsic(def_id)
239             && self.tcx.item_name(def_id) == sym::const_eval_select);
240
241         // We introduce a helper function to demand that a given argument satisfy a given input
242         // This is more complicated than just checking type equality, as arguments could be coerced
243         // This version writes those types back so further type checking uses the narrowed types
244         let demand_compatible = |idx| {
245             let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
246             let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
247             let provided_arg = &provided_args[idx];
248
249             debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);
250
251             // We're on the happy path here, so we'll do a more involved check and write back types
252             // To check compatibility, we'll do 3 things:
253             // 1. Unify the provided argument with the expected type
254             let expectation = Expectation::rvalue_hint(self, expected_input_ty);
255
256             let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);
257
258             // 2. Coerce to the most detailed type that could be coerced
259             //    to, which is `expected_ty` if `rvalue_hint` returns an
260             //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
261             let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
262
263             // Cause selection errors caused by resolving a single argument to point at the
264             // argument and not the call. This lets us customize the span pointed to in the
265             // fulfillment error to be more accurate.
266             let coerced_ty = self.resolve_vars_with_obligations(coerced_ty);
267
268             let coerce_error = self
269                 .try_coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None)
270                 .err();
271
272             if coerce_error.is_some() {
273                 return Compatibility::Incompatible(coerce_error);
274             }
275
276             // Check that second and third argument of `const_eval_select` must be `FnDef`, and additionally that
277             // the second argument must be `const fn`. The first argument must be a tuple, but this is already expressed
278             // in the function signature (`F: FnOnce<ARG>`), so I did not bother to add another check here.
279             //
280             // This check is here because there is currently no way to express a trait bound for `FnDef` types only.
281             if is_const_eval_select && (1..=2).contains(&idx) {
282                 if let ty::FnDef(def_id, _) = checked_ty.kind() {
283                     if idx == 1 && !self.tcx.is_const_fn_raw(*def_id) {
284                         self.tcx
285                             .sess
286                             .struct_span_err(provided_arg.span, "this argument must be a `const fn`")
287                             .help("consult the documentation on `const_eval_select` for more information")
288                             .emit();
289                     }
290                 } else {
291                     self.tcx
292                         .sess
293                         .struct_span_err(provided_arg.span, "this argument must be a function item")
294                         .note(format!("expected a function item, found {checked_ty}"))
295                         .help(
296                             "consult the documentation on `const_eval_select` for more information",
297                         )
298                         .emit();
299                 }
300             }
301
302             // 3. Check if the formal type is a supertype of the checked one
303             //    and register any such obligations for future type checks
304             let supertype_error = self
305                 .at(&self.misc(provided_arg.span), self.param_env)
306                 .sup(formal_input_ty, coerced_ty);
307             let subtyping_error = match supertype_error {
308                 Ok(InferOk { obligations, value: () }) => {
309                     self.register_predicates(obligations);
310                     None
311                 }
312                 Err(err) => Some(err),
313             };
314
315             // If neither check failed, the types are compatible
316             match subtyping_error {
317                 None => Compatibility::Compatible,
318                 Some(_) => Compatibility::Incompatible(subtyping_error),
319             }
320         };
321
322         // To start, we only care "along the diagonal", where we expect every
323         // provided arg to be in the right spot
324         let mut compatibility_diagonal =
325             vec![Compatibility::Incompatible(None); provided_args.len()];
326
327         // Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
328         // if the wrong number of arguments were supplied, we CAN'T be satisfied,
329         // and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
330         // otherwise, they need to be identical, because rust doesn't currently support variadic functions
331         let mut call_appears_satisfied = if c_variadic {
332             provided_arg_count >= minimum_input_count
333         } else {
334             provided_arg_count == minimum_input_count
335         };
336
337         // Check the arguments.
338         // We do this in a pretty awful way: first we type-check any arguments
339         // that are not closures, then we type-check the closures. This is so
340         // that we have more information about the types of arguments when we
341         // type-check the functions. This isn't really the right way to do this.
342         for check_closures in [false, true] {
343             // More awful hacks: before we check argument types, try to do
344             // an "opportunistic" trait resolution of any trait bounds on
345             // the call. This helps coercions.
346             if check_closures {
347                 self.select_obligations_where_possible(|_| {})
348             }
349
350             // Check each argument, to satisfy the input it was provided for
351             // Visually, we're traveling down the diagonal of the compatibility matrix
352             for (idx, arg) in provided_args.iter().enumerate() {
353                 // Warn only for the first loop (the "no closures" one).
354                 // Closure arguments themselves can't be diverging, but
355                 // a previous argument can, e.g., `foo(panic!(), || {})`.
356                 if !check_closures {
357                     self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
358                 }
359
360                 // For C-variadic functions, we don't have a declared type for all of
361                 // the arguments hence we only do our usual type checking with
362                 // the arguments who's types we do know. However, we *can* check
363                 // for unreachable expressions (see above).
364                 // FIXME: unreachable warning current isn't emitted
365                 if idx >= minimum_input_count {
366                     continue;
367                 }
368
369                 let is_closure = matches!(arg.kind, ExprKind::Closure { .. });
370                 if is_closure != check_closures {
371                     continue;
372                 }
373
374                 let compatible = demand_compatible(idx);
375                 let is_compatible = matches!(compatible, Compatibility::Compatible);
376                 compatibility_diagonal[idx] = compatible;
377
378                 if !is_compatible {
379                     call_appears_satisfied = false;
380                 }
381             }
382         }
383
384         if c_variadic && provided_arg_count < minimum_input_count {
385             err_code = "E0060";
386         }
387
388         for arg in provided_args.iter().skip(minimum_input_count) {
389             // Make sure we've checked this expr at least once.
390             let arg_ty = self.check_expr(&arg);
391
392             // If the function is c-style variadic, we skipped a bunch of arguments
393             // so we need to check those, and write out the types
394             // Ideally this would be folded into the above, for uniform style
395             // but c-variadic is already a corner case
396             if c_variadic {
397                 fn variadic_error<'tcx>(
398                     sess: &'tcx Session,
399                     span: Span,
400                     ty: Ty<'tcx>,
401                     cast_ty: &str,
402                 ) {
403                     use rustc_hir_analysis::structured_errors::MissingCastForVariadicArg;
404
405                     MissingCastForVariadicArg { sess, span, ty, cast_ty }.diagnostic().emit();
406                 }
407
408                 // There are a few types which get autopromoted when passed via varargs
409                 // in C but we just error out instead and require explicit casts.
410                 let arg_ty = self.structurally_resolved_type(arg.span, arg_ty);
411                 match arg_ty.kind() {
412                     ty::Float(ty::FloatTy::F32) => {
413                         variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
414                     }
415                     ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
416                         variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
417                     }
418                     ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
419                         variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
420                     }
421                     ty::FnDef(..) => {
422                         let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx));
423                         let ptr_ty = self.resolve_vars_if_possible(ptr_ty);
424                         variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string());
425                     }
426                     _ => {}
427                 }
428             }
429         }
430
431         if !call_appears_satisfied {
432             let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
433             let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
434                 minimum_input_count
435             } else {
436                 provided_arg_count
437             }));
438             debug_assert_eq!(
439                 formal_input_tys.len(),
440                 expected_input_tys.len(),
441                 "expected formal_input_tys to be the same size as expected_input_tys"
442             );
443             let formal_and_expected_inputs = IndexVec::from_iter(
444                 formal_input_tys
445                     .iter()
446                     .copied()
447                     .zip(expected_input_tys.iter().copied())
448                     .map(|vars| self.resolve_vars_if_possible(vars)),
449             );
450
451             self.report_arg_errors(
452                 compatibility_diagonal,
453                 formal_and_expected_inputs,
454                 provided_args,
455                 c_variadic,
456                 err_code,
457                 fn_def_id,
458                 call_span,
459                 call_expr,
460             );
461         }
462     }
463
464     fn report_arg_errors(
465         &self,
466         compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
467         formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
468         provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
469         c_variadic: bool,
470         err_code: &str,
471         fn_def_id: Option<DefId>,
472         call_span: Span,
473         call_expr: &hir::Expr<'tcx>,
474     ) {
475         // Next, let's construct the error
476         let (error_span, full_call_span, call_name, is_method) = match &call_expr.kind {
477             hir::ExprKind::Call(
478                 hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
479                 _,
480             ) => {
481                 if let Res::Def(DefKind::Ctor(of, _), _) =
482                     self.typeck_results.borrow().qpath_res(qpath, *hir_id)
483                 {
484                     let name = match of {
485                         CtorOf::Struct => "struct",
486                         CtorOf::Variant => "enum variant",
487                     };
488                     (call_span, *span, name, false)
489                 } else {
490                     (call_span, *span, "function", false)
491                 }
492             }
493             hir::ExprKind::Call(hir::Expr { span, .. }, _) => (call_span, *span, "function", false),
494             hir::ExprKind::MethodCall(path_segment, _, _, span) => {
495                 let ident_span = path_segment.ident.span;
496                 let ident_span = if let Some(args) = path_segment.args {
497                     ident_span.with_hi(args.span_ext.hi())
498                 } else {
499                     ident_span
500                 };
501                 (*span, ident_span, "method", true)
502             }
503             k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
504         };
505         let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);
506
507         // Don't print if it has error types or is just plain `_`
508         fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
509             tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
510         }
511
512         let tcx = self.tcx;
513         // FIXME: taint after emitting errors and pass through an `ErrorGuaranteed`
514         self.set_tainted_by_errors(
515             tcx.sess.delay_span_bug(call_span, "no errors reported for args"),
516         );
517
518         // Get the argument span in the context of the call span so that
519         // suggestions and labels are (more) correct when an arg is a
520         // macro invocation.
521         let normalize_span = |span: Span| -> Span {
522             let normalized_span = span.find_ancestor_inside(error_span).unwrap_or(span);
523             // Sometimes macros mess up the spans, so do not normalize the
524             // arg span to equal the error span, because that's less useful
525             // than pointing out the arg expr in the wrong context.
526             if normalized_span.source_equal(error_span) { span } else { normalized_span }
527         };
528
529         // Precompute the provided types and spans, since that's all we typically need for below
530         let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
531             .iter()
532             .map(|expr| {
533                 let ty = self
534                     .typeck_results
535                     .borrow()
536                     .expr_ty_adjusted_opt(*expr)
537                     .unwrap_or_else(|| tcx.ty_error());
538                 (self.resolve_vars_if_possible(ty), normalize_span(expr.span))
539             })
540             .collect();
541         let callee_expr = match &call_expr.peel_blocks().kind {
542             hir::ExprKind::Call(callee, _) => Some(*callee),
543             hir::ExprKind::MethodCall(_, receiver, ..) => {
544                 if let Some((DefKind::AssocFn, def_id)) =
545                     self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
546                     && let Some(assoc) = tcx.opt_associated_item(def_id)
547                     && assoc.fn_has_self_parameter
548                 {
549                     Some(*receiver)
550                 } else {
551                     None
552                 }
553             }
554             _ => None,
555         };
556         let callee_ty = callee_expr
557             .and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));
558
559         // A "softer" version of the `demand_compatible`, which checks types without persisting them,
560         // and treats error types differently
561         // This will allow us to "probe" for other argument orders that would likely have been correct
562         let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
563             if provided_idx.as_usize() == expected_idx.as_usize() {
564                 return compatibility_diagonal[provided_idx].clone();
565             }
566
567             let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
568             // If either is an error type, we defy the usual convention and consider them to *not* be
569             // coercible. This prevents our error message heuristic from trying to pass errors into
570             // every argument.
571             if (formal_input_ty, expected_input_ty).references_error() {
572                 return Compatibility::Incompatible(None);
573             }
574
575             let (arg_ty, arg_span) = provided_arg_tys[provided_idx];
576
577             let expectation = Expectation::rvalue_hint(self, expected_input_ty);
578             let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
579             let can_coerce = self.can_coerce(arg_ty, coerced_ty);
580             if !can_coerce {
581                 return Compatibility::Incompatible(Some(ty::error::TypeError::Sorts(
582                     ty::error::ExpectedFound::new(true, coerced_ty, arg_ty),
583                 )));
584             }
585
586             // Using probe here, since we don't want this subtyping to affect inference.
587             let subtyping_error = self.probe(|_| {
588                 self.at(&self.misc(arg_span), self.param_env).sup(formal_input_ty, coerced_ty).err()
589             });
590
591             // Same as above: if either the coerce type or the checked type is an error type,
592             // consider them *not* compatible.
593             let references_error = (coerced_ty, arg_ty).references_error();
594             match (references_error, subtyping_error) {
595                 (false, None) => Compatibility::Compatible,
596                 (_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
597             }
598         };
599
600         let mk_trace = |span, (formal_ty, expected_ty), provided_ty| {
601             let mismatched_ty = if expected_ty == provided_ty {
602                 // If expected == provided, then we must have failed to sup
603                 // the formal type. Avoid printing out "expected Ty, found Ty"
604                 // in that case.
605                 formal_ty
606             } else {
607                 expected_ty
608             };
609             TypeTrace::types(&self.misc(span), true, mismatched_ty, provided_ty)
610         };
611
612         // The algorithm here is inspired by levenshtein distance and longest common subsequence.
613         // We'll try to detect 4 different types of mistakes:
614         // - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
615         // - An input is missing, which isn't satisfied by *any* of the other arguments
616         // - Some number of arguments have been provided in the wrong order
617         // - A type is straight up invalid
618
619         // First, let's find the errors
620         let (mut errors, matched_inputs) =
621             ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
622                 .find_errors();
623
624         // First, check if we just need to wrap some arguments in a tuple.
625         if let Some((mismatch_idx, terr)) =
626             compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
627                 if let Compatibility::Incompatible(Some(terr)) = c {
628                     Some((i, *terr))
629                 } else {
630                     None
631                 }
632             })
633         {
634             // Is the first bad expected argument a tuple?
635             // Do we have as many extra provided arguments as the tuple's length?
636             // If so, we might have just forgotten to wrap some args in a tuple.
637             if let Some(ty::Tuple(tys)) =
638                 formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
639                 // If the tuple is unit, we're not actually wrapping any arguments.
640                 && !tys.is_empty()
641                 && provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
642             {
643                 // Wrap up the N provided arguments starting at this position in a tuple.
644                 let provided_as_tuple = tcx.mk_tup(
645                     provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
646                 );
647
648                 let mut satisfied = true;
649                 // Check if the newly wrapped tuple + rest of the arguments are compatible.
650                 for ((_, expected_ty), provided_ty) in std::iter::zip(
651                     formal_and_expected_inputs.iter().skip(mismatch_idx),
652                     [provided_as_tuple].into_iter().chain(
653                         provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
654                     ),
655                 ) {
656                     if !self.can_coerce(provided_ty, *expected_ty) {
657                         satisfied = false;
658                         break;
659                     }
660                 }
661
662                 // If they're compatible, suggest wrapping in an arg, and we're done!
663                 // Take some care with spans, so we don't suggest wrapping a macro's
664                 // innards in parenthesis, for example.
665                 if satisfied
666                     && let Some((_, lo)) =
667                         provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
668                     && let Some((_, hi)) =
669                         provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
670                 {
671                     let mut err;
672                     if tys.len() == 1 {
673                         // A tuple wrap suggestion actually occurs within,
674                         // so don't do anything special here.
675                         err = self.err_ctxt().report_and_explain_type_error(
676                             mk_trace(
677                                 *lo,
678                                 formal_and_expected_inputs[mismatch_idx.into()],
679                                 provided_arg_tys[mismatch_idx.into()].0,
680                             ),
681                             terr,
682                         );
683                         err.span_label(
684                             full_call_span,
685                             format!("arguments to this {} are incorrect", call_name),
686                         );
687                     } else {
688                         err = tcx.sess.struct_span_err_with_code(
689                             full_call_span,
690                             &format!(
691                                 "{call_name} takes {}{} but {} {} supplied",
692                                 if c_variadic { "at least " } else { "" },
693                                 potentially_plural_count(
694                                     formal_and_expected_inputs.len(),
695                                     "argument"
696                                 ),
697                                 potentially_plural_count(provided_args.len(), "argument"),
698                                 pluralize!("was", provided_args.len())
699                             ),
700                             DiagnosticId::Error(err_code.to_owned()),
701                         );
702                         err.multipart_suggestion_verbose(
703                             "wrap these arguments in parentheses to construct a tuple",
704                             vec![
705                                 (lo.shrink_to_lo(), "(".to_string()),
706                                 (hi.shrink_to_hi(), ")".to_string()),
707                             ],
708                             Applicability::MachineApplicable,
709                         );
710                     };
711                     self.label_fn_like(
712                         &mut err,
713                         fn_def_id,
714                         callee_ty,
715                         Some(mismatch_idx),
716                         is_method,
717                     );
718                     err.emit();
719                     return;
720                 }
721             }
722         }
723
724         // Okay, so here's where it gets complicated in regards to what errors
725         // we emit and how.
726         // There are 3 different "types" of errors we might encounter.
727         //   1) Missing/extra/swapped arguments
728         //   2) Valid but incorrect arguments
729         //   3) Invalid arguments
730         //      - Currently I think this only comes up with `CyclicTy`
731         //
732         // We first need to go through, remove those from (3) and emit those
733         // as their own error, particularly since they're error code and
734         // message is special. From what I can tell, we *must* emit these
735         // here (vs somewhere prior to this function) since the arguments
736         // become invalid *because* of how they get used in the function.
737         // It is what it is.
738
739         if errors.is_empty() {
740             if cfg!(debug_assertions) {
741                 span_bug!(error_span, "expected errors from argument matrix");
742             } else {
743                 tcx.sess
744                     .struct_span_err(
745                         error_span,
746                         "argument type mismatch was detected, \
747                         but rustc had trouble determining where",
748                     )
749                     .note(
750                         "we would appreciate a bug report: \
751                         https://github.com/rust-lang/rust/issues/new",
752                     )
753                     .emit();
754             }
755             return;
756         }
757
758         errors.drain_filter(|error| {
759                 let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(e))) = error else { return false };
760                 let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
761                 let trace = mk_trace(provided_span, formal_and_expected_inputs[*expected_idx], provided_ty);
762                 if !matches!(trace.cause.as_failure_code(*e), FailureCode::Error0308(_)) {
763                     self.err_ctxt().report_and_explain_type_error(trace, *e).emit();
764                     return true;
765                 }
766                 false
767             });
768
769         // We're done if we found errors, but we already emitted them.
770         if errors.is_empty() {
771             return;
772         }
773
774         // Okay, now that we've emitted the special errors separately, we
775         // are only left missing/extra/swapped and mismatched arguments, both
776         // can be collated pretty easily if needed.
777
778         // Next special case: if there is only one "Incompatible" error, just emit that
779         if let [
780             Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
781         ] = &errors[..]
782         {
783             let (formal_ty, expected_ty) = formal_and_expected_inputs[*expected_idx];
784             let (provided_ty, provided_arg_span) = provided_arg_tys[*provided_idx];
785             let trace = mk_trace(provided_arg_span, (formal_ty, expected_ty), provided_ty);
786             let mut err = self.err_ctxt().report_and_explain_type_error(trace, *err);
787             self.emit_coerce_suggestions(
788                 &mut err,
789                 &provided_args[*provided_idx],
790                 provided_ty,
791                 Expectation::rvalue_hint(self, expected_ty)
792                     .only_has_type(self)
793                     .unwrap_or(formal_ty),
794                 None,
795                 None,
796             );
797             err.span_label(
798                 full_call_span,
799                 format!("arguments to this {} are incorrect", call_name),
800             );
801             if let (Some(callee_ty), hir::ExprKind::MethodCall(_, rcvr, _, _)) =
802                 (callee_ty, &call_expr.kind)
803             {
804                 // Type that would have accepted this argument if it hadn't been inferred earlier.
805                 // FIXME: We leave an inference variable for now, but it'd be nice to get a more
806                 // specific type to increase the accuracy of the diagnostic.
807                 let expected = self.infcx.next_ty_var(TypeVariableOrigin {
808                     kind: TypeVariableOriginKind::MiscVariable,
809                     span: full_call_span,
810                 });
811                 self.point_at_expr_source_of_inferred_type(
812                     &mut err,
813                     rcvr,
814                     expected,
815                     callee_ty,
816                     provided_arg_span,
817                 );
818             }
819             // Call out where the function is defined
820             self.label_fn_like(
821                 &mut err,
822                 fn_def_id,
823                 callee_ty,
824                 Some(expected_idx.as_usize()),
825                 is_method,
826             );
827             err.emit();
828             return;
829         }
830
831         let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
832             struct_span_err!(
833                 tcx.sess,
834                 full_call_span,
835                 E0308,
836                 "arguments to this {} are incorrect",
837                 call_name,
838             )
839         } else {
840             tcx.sess.struct_span_err_with_code(
841                 full_call_span,
842                 &format!(
843                     "this {} takes {}{} but {} {} supplied",
844                     call_name,
845                     if c_variadic { "at least " } else { "" },
846                     potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
847                     potentially_plural_count(provided_args.len(), "argument"),
848                     pluralize!("was", provided_args.len())
849                 ),
850                 DiagnosticId::Error(err_code.to_owned()),
851             )
852         };
853
854         // As we encounter issues, keep track of what we want to provide for the suggestion
855         let mut labels = vec![];
856         // If there is a single error, we give a specific suggestion; otherwise, we change to
857         // "did you mean" with the suggested function call
858         enum SuggestionText {
859             None,
860             Provide(bool),
861             Remove(bool),
862             Swap,
863             Reorder,
864             DidYouMean,
865         }
866         let mut suggestion_text = SuggestionText::None;
867
868         let mut errors = errors.into_iter().peekable();
869         while let Some(error) = errors.next() {
870             match error {
871                 Error::Invalid(provided_idx, expected_idx, compatibility) => {
872                     let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
873                     let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
874                     if let Compatibility::Incompatible(error) = compatibility {
875                         let trace = mk_trace(provided_span, (formal_ty, expected_ty), provided_ty);
876                         if let Some(e) = error {
877                             self.err_ctxt().note_type_err(
878                                 &mut err,
879                                 &trace.cause,
880                                 None,
881                                 Some(trace.values),
882                                 e,
883                                 false,
884                                 true,
885                             );
886                         }
887                     }
888
889                     self.emit_coerce_suggestions(
890                         &mut err,
891                         &provided_args[provided_idx],
892                         provided_ty,
893                         Expectation::rvalue_hint(self, expected_ty)
894                             .only_has_type(self)
895                             .unwrap_or(formal_ty),
896                         None,
897                         None,
898                     );
899                 }
900                 Error::Extra(arg_idx) => {
901                     let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
902                     let provided_ty_name = if !has_error_or_infer([provided_ty]) {
903                         // FIXME: not suggestable, use something else
904                         format!(" of type `{}`", provided_ty)
905                     } else {
906                         "".to_string()
907                     };
908                     labels
909                         .push((provided_span, format!("argument{} unexpected", provided_ty_name)));
910                     suggestion_text = match suggestion_text {
911                         SuggestionText::None => SuggestionText::Remove(false),
912                         SuggestionText::Remove(_) => SuggestionText::Remove(true),
913                         _ => SuggestionText::DidYouMean,
914                     };
915                 }
916                 Error::Missing(expected_idx) => {
917                     // If there are multiple missing arguments adjacent to each other,
918                     // then we can provide a single error.
919
920                     let mut missing_idxs = vec![expected_idx];
921                     while let Some(e) = errors.next_if(|e| {
922                         matches!(e, Error::Missing(next_expected_idx)
923                             if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
924                     }) {
925                         match e {
926                             Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
927                             _ => unreachable!(),
928                         }
929                     }
930
931                     // NOTE: Because we might be re-arranging arguments, might have extra
932                     // arguments, etc. it's hard to *really* know where we should provide
933                     // this error label, so as a heuristic, we point to the provided arg, or
934                     // to the call if the missing inputs pass the provided args.
935                     match &missing_idxs[..] {
936                         &[expected_idx] => {
937                             let (_, input_ty) = formal_and_expected_inputs[expected_idx];
938                             let span = if let Some((_, arg_span)) =
939                                 provided_arg_tys.get(expected_idx.to_provided_idx())
940                             {
941                                 *arg_span
942                             } else {
943                                 args_span
944                             };
945                             let rendered = if !has_error_or_infer([input_ty]) {
946                                 format!(" of type `{}`", input_ty)
947                             } else {
948                                 "".to_string()
949                             };
950                             labels.push((span, format!("an argument{} is missing", rendered)));
951                             suggestion_text = match suggestion_text {
952                                 SuggestionText::None => SuggestionText::Provide(false),
953                                 SuggestionText::Provide(_) => SuggestionText::Provide(true),
954                                 _ => SuggestionText::DidYouMean,
955                             };
956                         }
957                         &[first_idx, second_idx] => {
958                             let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
959                             let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
960                             let span = if let (Some((_, first_span)), Some((_, second_span))) = (
961                                 provided_arg_tys.get(first_idx.to_provided_idx()),
962                                 provided_arg_tys.get(second_idx.to_provided_idx()),
963                             ) {
964                                 first_span.to(*second_span)
965                             } else {
966                                 args_span
967                             };
968                             let rendered =
969                                 if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
970                                     format!(
971                                         " of type `{}` and `{}`",
972                                         first_expected_ty, second_expected_ty
973                                     )
974                                 } else {
975                                     "".to_string()
976                                 };
977                             labels.push((span, format!("two arguments{} are missing", rendered)));
978                             suggestion_text = match suggestion_text {
979                                 SuggestionText::None | SuggestionText::Provide(_) => {
980                                     SuggestionText::Provide(true)
981                                 }
982                                 _ => SuggestionText::DidYouMean,
983                             };
984                         }
985                         &[first_idx, second_idx, third_idx] => {
986                             let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
987                             let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
988                             let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
989                             let span = if let (Some((_, first_span)), Some((_, third_span))) = (
990                                 provided_arg_tys.get(first_idx.to_provided_idx()),
991                                 provided_arg_tys.get(third_idx.to_provided_idx()),
992                             ) {
993                                 first_span.to(*third_span)
994                             } else {
995                                 args_span
996                             };
997                             let rendered = if !has_error_or_infer([
998                                 first_expected_ty,
999                                 second_expected_ty,
1000                                 third_expected_ty,
1001                             ]) {
1002                                 format!(
1003                                     " of type `{}`, `{}`, and `{}`",
1004                                     first_expected_ty, second_expected_ty, third_expected_ty
1005                                 )
1006                             } else {
1007                                 "".to_string()
1008                             };
1009                             labels.push((span, format!("three arguments{} are missing", rendered)));
1010                             suggestion_text = match suggestion_text {
1011                                 SuggestionText::None | SuggestionText::Provide(_) => {
1012                                     SuggestionText::Provide(true)
1013                                 }
1014                                 _ => SuggestionText::DidYouMean,
1015                             };
1016                         }
1017                         missing_idxs => {
1018                             let first_idx = *missing_idxs.first().unwrap();
1019                             let last_idx = *missing_idxs.last().unwrap();
1020                             // NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
1021                             // It's hard to *really* know where we should provide this error label, so this is a
1022                             // decent heuristic
1023                             let span = if let (Some((_, first_span)), Some((_, last_span))) = (
1024                                 provided_arg_tys.get(first_idx.to_provided_idx()),
1025                                 provided_arg_tys.get(last_idx.to_provided_idx()),
1026                             ) {
1027                                 first_span.to(*last_span)
1028                             } else {
1029                                 args_span
1030                             };
1031                             labels.push((span, "multiple arguments are missing".to_string()));
1032                             suggestion_text = match suggestion_text {
1033                                 SuggestionText::None | SuggestionText::Provide(_) => {
1034                                     SuggestionText::Provide(true)
1035                                 }
1036                                 _ => SuggestionText::DidYouMean,
1037                             };
1038                         }
1039                     }
1040                 }
1041                 Error::Swap(
1042                     first_provided_idx,
1043                     second_provided_idx,
1044                     first_expected_idx,
1045                     second_expected_idx,
1046                 ) => {
1047                     let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
1048                     let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
1049                     let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
1050                         format!(", found `{}`", first_provided_ty)
1051                     } else {
1052                         String::new()
1053                     };
1054                     labels.push((
1055                         first_span,
1056                         format!("expected `{}`{}", first_expected_ty, first_provided_ty_name),
1057                     ));
1058
1059                     let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
1060                     let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
1061                     let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
1062                         format!(", found `{}`", second_provided_ty)
1063                     } else {
1064                         String::new()
1065                     };
1066                     labels.push((
1067                         second_span,
1068                         format!("expected `{}`{}", second_expected_ty, second_provided_ty_name),
1069                     ));
1070
1071                     suggestion_text = match suggestion_text {
1072                         SuggestionText::None => SuggestionText::Swap,
1073                         _ => SuggestionText::DidYouMean,
1074                     };
1075                 }
1076                 Error::Permutation(args) => {
1077                     for (dst_arg, dest_input) in args {
1078                         let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
1079                         let (provided_ty, provided_span) = provided_arg_tys[dest_input];
1080                         let provided_ty_name = if !has_error_or_infer([provided_ty]) {
1081                             format!(", found `{}`", provided_ty)
1082                         } else {
1083                             String::new()
1084                         };
1085                         labels.push((
1086                             provided_span,
1087                             format!("expected `{}`{}", expected_ty, provided_ty_name),
1088                         ));
1089                     }
1090
1091                     suggestion_text = match suggestion_text {
1092                         SuggestionText::None => SuggestionText::Reorder,
1093                         _ => SuggestionText::DidYouMean,
1094                     };
1095                 }
1096             }
1097         }
1098
1099         // If we have less than 5 things to say, it would be useful to call out exactly what's wrong
1100         if labels.len() <= 5 {
1101             for (span, label) in labels {
1102                 err.span_label(span, label);
1103             }
1104         }
1105
1106         // Call out where the function is defined
1107         self.label_fn_like(&mut err, fn_def_id, callee_ty, None, is_method);
1108
1109         // And add a suggestion block for all of the parameters
1110         let suggestion_text = match suggestion_text {
1111             SuggestionText::None => None,
1112             SuggestionText::Provide(plural) => {
1113                 Some(format!("provide the argument{}", if plural { "s" } else { "" }))
1114             }
1115             SuggestionText::Remove(plural) => {
1116                 Some(format!("remove the extra argument{}", if plural { "s" } else { "" }))
1117             }
1118             SuggestionText::Swap => Some("swap these arguments".to_string()),
1119             SuggestionText::Reorder => Some("reorder these arguments".to_string()),
1120             SuggestionText::DidYouMean => Some("did you mean".to_string()),
1121         };
1122         if let Some(suggestion_text) = suggestion_text {
1123             let source_map = self.sess().source_map();
1124             let (mut suggestion, suggestion_span) =
1125                 if let Some(call_span) = full_call_span.find_ancestor_inside(error_span) {
1126                     ("(".to_string(), call_span.shrink_to_hi().to(error_span.shrink_to_hi()))
1127                 } else {
1128                     (
1129                         format!(
1130                             "{}(",
1131                             source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| {
1132                                 fn_def_id.map_or("".to_string(), |fn_def_id| {
1133                                     tcx.item_name(fn_def_id).to_string()
1134                                 })
1135                             })
1136                         ),
1137                         error_span,
1138                     )
1139                 };
1140             let mut needs_comma = false;
1141             for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
1142                 if needs_comma {
1143                     suggestion += ", ";
1144                 } else {
1145                     needs_comma = true;
1146                 }
1147                 let suggestion_text = if let Some(provided_idx) = provided_idx
1148                     && let (_, provided_span) = provided_arg_tys[*provided_idx]
1149                     && let Ok(arg_text) = source_map.span_to_snippet(provided_span)
1150                 {
1151                     arg_text
1152                 } else {
1153                     // Propose a placeholder of the correct type
1154                     let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
1155                     if expected_ty.is_unit() {
1156                         "()".to_string()
1157                     } else if expected_ty.is_suggestable(tcx, false) {
1158                         format!("/* {} */", expected_ty)
1159                     } else if let Some(fn_def_id) = fn_def_id
1160                         && self.tcx.def_kind(fn_def_id).is_fn_like()
1161                         && let self_implicit = matches!(call_expr.kind, hir::ExprKind::MethodCall(..)) as usize
1162                         && let Some(arg) = self.tcx.fn_arg_names(fn_def_id).get(expected_idx.as_usize() + self_implicit)
1163                         && arg.name != kw::SelfLower
1164                     {
1165                         format!("/* {} */", arg.name)
1166                     } else {
1167                         "/* value */".to_string()
1168                     }
1169                 };
1170                 suggestion += &suggestion_text;
1171             }
1172             suggestion += ")";
1173             err.span_suggestion_verbose(
1174                 suggestion_span,
1175                 &suggestion_text,
1176                 suggestion,
1177                 Applicability::HasPlaceholders,
1178             );
1179         }
1180
1181         err.emit();
1182     }
1183
1184     // AST fragment checking
1185     pub(in super::super) fn check_lit(
1186         &self,
1187         lit: &hir::Lit,
1188         expected: Expectation<'tcx>,
1189     ) -> Ty<'tcx> {
1190         let tcx = self.tcx;
1191
1192         match lit.node {
1193             ast::LitKind::Str(..) => tcx.mk_static_str(),
1194             ast::LitKind::ByteStr(ref v, _) => {
1195                 tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64))
1196             }
1197             ast::LitKind::Byte(_) => tcx.types.u8,
1198             ast::LitKind::Char(_) => tcx.types.char,
1199             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(ty::int_ty(t)),
1200             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(ty::uint_ty(t)),
1201             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
1202                 let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
1203                     ty::Int(_) | ty::Uint(_) => Some(ty),
1204                     ty::Char => Some(tcx.types.u8),
1205                     ty::RawPtr(..) => Some(tcx.types.usize),
1206                     ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize),
1207                     _ => None,
1208                 });
1209                 opt_ty.unwrap_or_else(|| self.next_int_var())
1210             }
1211             ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
1212                 tcx.mk_mach_float(ty::float_ty(t))
1213             }
1214             ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
1215                 let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
1216                     ty::Float(_) => Some(ty),
1217                     _ => None,
1218                 });
1219                 opt_ty.unwrap_or_else(|| self.next_float_var())
1220             }
1221             ast::LitKind::Bool(_) => tcx.types.bool,
1222             ast::LitKind::Err => tcx.ty_error(),
1223         }
1224     }
1225
1226     pub fn check_struct_path(
1227         &self,
1228         qpath: &QPath<'_>,
1229         hir_id: hir::HirId,
1230     ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> {
1231         let path_span = qpath.span();
1232         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
1233         let variant = match def {
1234             Res::Err => {
1235                 self.set_tainted_by_errors(
1236                     self.tcx.sess.delay_span_bug(path_span, "`Res::Err` but no error emitted"),
1237                 );
1238                 return None;
1239             }
1240             Res::Def(DefKind::Variant, _) => match ty.normalized.ty_adt_def() {
1241                 Some(adt) => {
1242                     Some((adt.variant_of_res(def), adt.did(), Self::user_substs_for_adt(ty)))
1243                 }
1244                 _ => bug!("unexpected type: {:?}", ty.normalized),
1245             },
1246             Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
1247             | Res::SelfTyParam { .. }
1248             | Res::SelfTyAlias { .. } => match ty.normalized.ty_adt_def() {
1249                 Some(adt) if !adt.is_enum() => {
1250                     Some((adt.non_enum_variant(), adt.did(), Self::user_substs_for_adt(ty)))
1251                 }
1252                 _ => None,
1253             },
1254             _ => bug!("unexpected definition: {:?}", def),
1255         };
1256
1257         if let Some((variant, did, ty::UserSubsts { substs, user_self_ty })) = variant {
1258             debug!("check_struct_path: did={:?} substs={:?}", did, substs);
1259
1260             // Register type annotation.
1261             self.write_user_type_annotation_from_substs(hir_id, did, substs, user_self_ty);
1262
1263             // Check bounds on type arguments used in the path.
1264             self.add_required_obligations_for_hir(path_span, did, substs, hir_id);
1265
1266             Some((variant, ty.normalized))
1267         } else {
1268             match ty.normalized.kind() {
1269                 ty::Error(_) => {
1270                     // E0071 might be caused by a spelling error, which will have
1271                     // already caused an error message and probably a suggestion
1272                     // elsewhere. Refrain from emitting more unhelpful errors here
1273                     // (issue #88844).
1274                 }
1275                 _ => {
1276                     struct_span_err!(
1277                         self.tcx.sess,
1278                         path_span,
1279                         E0071,
1280                         "expected struct, variant or union type, found {}",
1281                         ty.normalized.sort_string(self.tcx)
1282                     )
1283                     .span_label(path_span, "not a struct")
1284                     .emit();
1285                 }
1286             }
1287             None
1288         }
1289     }
1290
1291     pub fn check_decl_initializer(
1292         &self,
1293         hir_id: hir::HirId,
1294         pat: &'tcx hir::Pat<'tcx>,
1295         init: &'tcx hir::Expr<'tcx>,
1296     ) -> Ty<'tcx> {
1297         // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
1298         // for #42640 (default match binding modes).
1299         //
1300         // See #44848.
1301         let ref_bindings = pat.contains_explicit_ref_binding();
1302
1303         let local_ty = self.local_ty(init.span, hir_id).revealed_ty;
1304         if let Some(m) = ref_bindings {
1305             // Somewhat subtle: if we have a `ref` binding in the pattern,
1306             // we want to avoid introducing coercions for the RHS. This is
1307             // both because it helps preserve sanity and, in the case of
1308             // ref mut, for soundness (issue #23116). In particular, in
1309             // the latter case, we need to be clear that the type of the
1310             // referent for the reference that results is *equal to* the
1311             // type of the place it is referencing, and not some
1312             // supertype thereof.
1313             let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
1314             self.demand_eqtype(init.span, local_ty, init_ty);
1315             init_ty
1316         } else {
1317             self.check_expr_coercable_to_type(init, local_ty, None)
1318         }
1319     }
1320
1321     pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
1322         // Determine and write the type which we'll check the pattern against.
1323         let decl_ty = self.local_ty(decl.span, decl.hir_id).decl_ty;
1324         self.write_ty(decl.hir_id, decl_ty);
1325
1326         // Type check the initializer.
1327         if let Some(ref init) = decl.init {
1328             let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, &init);
1329             self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, init_ty);
1330         }
1331
1332         // Does the expected pattern type originate from an expression and what is the span?
1333         let (origin_expr, ty_span) = match (decl.ty, decl.init) {
1334             (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type.
1335             (_, Some(init)) => {
1336                 (true, Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
1337             } // No explicit type; so use the scrutinee.
1338             _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained.
1339         };
1340
1341         // Type check the pattern. Override if necessary to avoid knock-on errors.
1342         self.check_pat_top(&decl.pat, decl_ty, ty_span, origin_expr);
1343         let pat_ty = self.node_ty(decl.pat.hir_id);
1344         self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, pat_ty);
1345
1346         if let Some(blk) = decl.els {
1347             let previous_diverges = self.diverges.get();
1348             let else_ty = self.check_block_with_expected(blk, NoExpectation);
1349             let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
1350             if let Some(mut err) =
1351                 self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
1352             {
1353                 err.emit();
1354             }
1355             self.diverges.set(previous_diverges);
1356         }
1357     }
1358
1359     /// Type check a `let` statement.
1360     pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) {
1361         self.check_decl(local.into());
1362     }
1363
1364     pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>, is_last: bool) {
1365         // Don't do all the complex logic below for `DeclItem`.
1366         match stmt.kind {
1367             hir::StmtKind::Item(..) => return,
1368             hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
1369         }
1370
1371         self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");
1372
1373         // Hide the outer diverging and `has_errors` flags.
1374         let old_diverges = self.diverges.replace(Diverges::Maybe);
1375
1376         match stmt.kind {
1377             hir::StmtKind::Local(l) => {
1378                 self.check_decl_local(l);
1379             }
1380             // Ignore for now.
1381             hir::StmtKind::Item(_) => {}
1382             hir::StmtKind::Expr(ref expr) => {
1383                 // Check with expected type of `()`.
1384                 self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| {
1385                     if expr.can_have_side_effects() {
1386                         self.suggest_semicolon_at_end(expr.span, err);
1387                     }
1388                 });
1389             }
1390             hir::StmtKind::Semi(ref expr) => {
1391                 // All of this is equivalent to calling `check_expr`, but it is inlined out here
1392                 // in order to capture the fact that this `match` is the last statement in its
1393                 // function. This is done for better suggestions to remove the `;`.
1394                 let expectation = match expr.kind {
1395                     hir::ExprKind::Match(..) if is_last => IsLast(stmt.span),
1396                     _ => NoExpectation,
1397                 };
1398                 self.check_expr_with_expectation(expr, expectation);
1399             }
1400         }
1401
1402         // Combine the diverging and `has_error` flags.
1403         self.diverges.set(self.diverges.get() | old_diverges);
1404     }
1405
1406     pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
1407         let unit = self.tcx.mk_unit();
1408         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
1409
1410         // if the block produces a `!` value, that can always be
1411         // (effectively) coerced to unit.
1412         if !ty.is_never() {
1413             self.demand_suptype(blk.span, unit, ty);
1414         }
1415     }
1416
1417     pub(in super::super) fn check_block_with_expected(
1418         &self,
1419         blk: &'tcx hir::Block<'tcx>,
1420         expected: Expectation<'tcx>,
1421     ) -> Ty<'tcx> {
1422         // In some cases, blocks have just one exit, but other blocks
1423         // can be targeted by multiple breaks. This can happen both
1424         // with labeled blocks as well as when we desugar
1425         // a `try { ... }` expression.
1426         //
1427         // Example 1:
1428         //
1429         //    'a: { if true { break 'a Err(()); } Ok(()) }
1430         //
1431         // Here we would wind up with two coercions, one from
1432         // `Err(())` and the other from the tail expression
1433         // `Ok(())`. If the tail expression is omitted, that's a
1434         // "forced unit" -- unless the block diverges, in which
1435         // case we can ignore the tail expression (e.g., `'a: {
1436         // break 'a 22; }` would not force the type of the block
1437         // to be `()`).
1438         let tail_expr = blk.expr.as_ref();
1439         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
1440         let coerce = if blk.targeted_by_break {
1441             CoerceMany::new(coerce_to_ty)
1442         } else {
1443             let tail_expr: &[&hir::Expr<'_>] = match tail_expr {
1444                 Some(e) => slice::from_ref(e),
1445                 None => &[],
1446             };
1447             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
1448         };
1449
1450         let prev_diverges = self.diverges.get();
1451         let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };
1452
1453         let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
1454             for (pos, s) in blk.stmts.iter().enumerate() {
1455                 self.check_stmt(s, blk.stmts.len() - 1 == pos);
1456             }
1457
1458             // check the tail expression **without** holding the
1459             // `enclosing_breakables` lock below.
1460             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
1461
1462             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1463             let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
1464             let coerce = ctxt.coerce.as_mut().unwrap();
1465             if let Some(tail_expr_ty) = tail_expr_ty {
1466                 let tail_expr = tail_expr.unwrap();
1467                 let span = self.get_expr_coercion_span(tail_expr);
1468                 let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id));
1469                 let ty_for_diagnostic = coerce.merged_ty();
1470                 // We use coerce_inner here because we want to augment the error
1471                 // suggesting to wrap the block in square brackets if it might've
1472                 // been mistaken array syntax
1473                 coerce.coerce_inner(
1474                     self,
1475                     &cause,
1476                     Some(tail_expr),
1477                     tail_expr_ty,
1478                     Some(&mut |diag: &mut Diagnostic| {
1479                         self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
1480                     }),
1481                     false,
1482                 );
1483             } else {
1484                 // Subtle: if there is no explicit tail expression,
1485                 // that is typically equivalent to a tail expression
1486                 // of `()` -- except if the block diverges. In that
1487                 // case, there is no value supplied from the tail
1488                 // expression (assuming there are no other breaks,
1489                 // this implies that the type of the block will be
1490                 // `!`).
1491                 //
1492                 // #41425 -- label the implicit `()` as being the
1493                 // "found type" here, rather than the "expected type".
1494                 if !self.diverges.get().is_always() {
1495                     // #50009 -- Do not point at the entire fn block span, point at the return type
1496                     // span, as it is the cause of the requirement, and
1497                     // `consider_hint_about_removing_semicolon` will point at the last expression
1498                     // if it were a relevant part of the error. This improves usability in editors
1499                     // that highlight errors inline.
1500                     let mut sp = blk.span;
1501                     let mut fn_span = None;
1502                     if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) {
1503                         let ret_sp = decl.output.span();
1504                         if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
1505                             // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
1506                             // output would otherwise be incorrect and even misleading. Make sure
1507                             // the span we're aiming at correspond to a `fn` body.
1508                             if block_sp == blk.span {
1509                                 sp = ret_sp;
1510                                 fn_span = Some(ident.span);
1511                             }
1512                         }
1513                     }
1514                     coerce.coerce_forced_unit(
1515                         self,
1516                         &self.misc(sp),
1517                         &mut |err| {
1518                             if let Some(expected_ty) = expected.only_has_type(self) {
1519                                 if !self.consider_removing_semicolon(blk, expected_ty, err) {
1520                                     self.err_ctxt().consider_returning_binding(
1521                                         blk,
1522                                         expected_ty,
1523                                         err,
1524                                     );
1525                                 }
1526                                 if expected_ty == self.tcx.types.bool {
1527                                     // If this is caused by a missing `let` in a `while let`,
1528                                     // silence this redundant error, as we already emit E0070.
1529
1530                                     // Our block must be a `assign desugar local; assignment`
1531                                     if let Some(hir::Node::Block(hir::Block {
1532                                         stmts:
1533                                             [
1534                                                 hir::Stmt {
1535                                                     kind:
1536                                                         hir::StmtKind::Local(hir::Local {
1537                                                             source:
1538                                                                 hir::LocalSource::AssignDesugar(_),
1539                                                             ..
1540                                                         }),
1541                                                     ..
1542                                                 },
1543                                                 hir::Stmt {
1544                                                     kind:
1545                                                         hir::StmtKind::Expr(hir::Expr {
1546                                                             kind: hir::ExprKind::Assign(..),
1547                                                             ..
1548                                                         }),
1549                                                     ..
1550                                                 },
1551                                             ],
1552                                         ..
1553                                     })) = self.tcx.hir().find(blk.hir_id)
1554                                     {
1555                                         self.comes_from_while_condition(blk.hir_id, |_| {
1556                                             err.downgrade_to_delayed_bug();
1557                                         })
1558                                     }
1559                                 }
1560                             }
1561                             if let Some(fn_span) = fn_span {
1562                                 err.span_label(
1563                                     fn_span,
1564                                     "implicitly returns `()` as its body has no tail or `return` \
1565                                      expression",
1566                                 );
1567                             }
1568                         },
1569                         false,
1570                     );
1571                 }
1572             }
1573         });
1574
1575         if ctxt.may_break {
1576             // If we can break from the block, then the block's exit is always reachable
1577             // (... as long as the entry is reachable) - regardless of the tail of the block.
1578             self.diverges.set(prev_diverges);
1579         }
1580
1581         let ty = ctxt.coerce.unwrap().complete(self);
1582
1583         self.write_ty(blk.hir_id, ty);
1584
1585         ty
1586     }
1587
1588     fn parent_item_span(&self, id: hir::HirId) -> Option<Span> {
1589         let node = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(id).def_id);
1590         match node {
1591             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
1592             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
1593                 let body = self.tcx.hir().body(body_id);
1594                 if let ExprKind::Block(block, _) = &body.value.kind {
1595                     return Some(block.span);
1596                 }
1597             }
1598             _ => {}
1599         }
1600         None
1601     }
1602
1603     /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise.
1604     fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> {
1605         let parent = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(blk_id).def_id);
1606         self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident))
1607     }
1608
1609     /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
1610     /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
1611     /// when given code like the following:
1612     /// ```text
1613     /// if false { return 0i32; } else { 1u32 }
1614     /// //                               ^^^^ point at this instead of the whole `if` expression
1615     /// ```
1616     fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
1617         let check_in_progress = |elem: &hir::Expr<'_>| {
1618             self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
1619                 |_| match elem.kind {
1620                     // Point at the tail expression when possible.
1621                     hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
1622                     _ => elem.span,
1623                 },
1624             )
1625         };
1626
1627         if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
1628             if let Some(rslt) = check_in_progress(el) {
1629                 return rslt;
1630             }
1631         }
1632
1633         if let hir::ExprKind::Match(_, arms, _) = expr.kind {
1634             let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
1635             if let Some(span) = iter.next() {
1636                 if iter.next().is_none() {
1637                     return span;
1638                 }
1639             }
1640         }
1641
1642         expr.span
1643     }
1644
1645     fn overwrite_local_ty_if_err(
1646         &self,
1647         hir_id: hir::HirId,
1648         pat: &'tcx hir::Pat<'tcx>,
1649         ty: Ty<'tcx>,
1650     ) {
1651         if ty.references_error() {
1652             // Override the types everywhere with `err()` to avoid knock on errors.
1653             let err = self.tcx.ty_error();
1654             self.write_ty(hir_id, err);
1655             self.write_ty(pat.hir_id, err);
1656             let local_ty = LocalTy { decl_ty: err, revealed_ty: err };
1657             self.locals.borrow_mut().insert(hir_id, local_ty);
1658             self.locals.borrow_mut().insert(pat.hir_id, local_ty);
1659         }
1660     }
1661
1662     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
1663     // The newly resolved definition is written into `type_dependent_defs`.
1664     fn finish_resolving_struct_path(
1665         &self,
1666         qpath: &QPath<'_>,
1667         path_span: Span,
1668         hir_id: hir::HirId,
1669     ) -> (Res, RawTy<'tcx>) {
1670         match *qpath {
1671             QPath::Resolved(ref maybe_qself, ref path) => {
1672                 let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself).raw);
1673                 let ty = self.astconv().res_to_ty(self_ty, path, true);
1674                 (path.res, self.handle_raw_ty(path_span, ty))
1675             }
1676             QPath::TypeRelative(ref qself, ref segment) => {
1677                 let ty = self.to_ty(qself);
1678
1679                 let result = self
1680                     .astconv()
1681                     .associated_path_to_ty(hir_id, path_span, ty.raw, qself, segment, true);
1682                 let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error());
1683                 let ty = self.handle_raw_ty(path_span, ty);
1684                 let result = result.map(|(_, kind, def_id)| (kind, def_id));
1685
1686                 // Write back the new resolution.
1687                 self.write_resolution(hir_id, result);
1688
1689                 (result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
1690             }
1691             QPath::LangItem(lang_item, span, id) => {
1692                 let (res, ty) = self.resolve_lang_item_path(lang_item, span, hir_id, id);
1693                 (res, self.handle_raw_ty(path_span, ty))
1694             }
1695         }
1696     }
1697
1698     /// Given a vector of fulfillment errors, try to adjust the spans of the
1699     /// errors to more accurately point at the cause of the failure.
1700     ///
1701     /// This applies to calls, methods, and struct expressions. This will also
1702     /// try to deduplicate errors that are due to the same cause but might
1703     /// have been created with different [`ObligationCause`][traits::ObligationCause]s.
1704     pub(super) fn adjust_fulfillment_errors_for_expr_obligation(
1705         &self,
1706         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
1707     ) {
1708         // Store a mapping from `(Span, Predicate) -> ObligationCause`, so that
1709         // other errors that have the same span and predicate can also get fixed,
1710         // even if their `ObligationCauseCode` isn't an `Expr*Obligation` kind.
1711         // This is important since if we adjust one span but not the other, then
1712         // we will have "duplicated" the error on the UI side.
1713         let mut remap_cause = FxIndexSet::default();
1714         let mut not_adjusted = vec![];
1715
1716         for error in errors {
1717             let before_span = error.obligation.cause.span;
1718             if self.adjust_fulfillment_error_for_expr_obligation(error)
1719                 || before_span != error.obligation.cause.span
1720             {
1721                 // Store both the predicate and the predicate *without constness*
1722                 // since sometimes we instantiate and check both of these in a
1723                 // method call, for example.
1724                 remap_cause.insert((
1725                     before_span,
1726                     error.obligation.predicate,
1727                     error.obligation.cause.clone(),
1728                 ));
1729                 remap_cause.insert((
1730                     before_span,
1731                     error.obligation.predicate.without_const(self.tcx),
1732                     error.obligation.cause.clone(),
1733                 ));
1734             } else {
1735                 // If it failed to be adjusted once around, it may be adjusted
1736                 // via the "remap cause" mapping the second time...
1737                 not_adjusted.push(error);
1738             }
1739         }
1740
1741         // Adjust any other errors that come from other cause codes, when these
1742         // errors are of the same predicate as one we successfully adjusted, and
1743         // when their spans overlap (suggesting they're due to the same root cause).
1744         //
1745         // This is because due to normalization, we often register duplicate
1746         // obligations with misc obligations that are basically impossible to
1747         // line back up with a useful ExprBindingObligation.
1748         for error in not_adjusted {
1749             for (span, predicate, cause) in &remap_cause {
1750                 if *predicate == error.obligation.predicate
1751                     && span.contains(error.obligation.cause.span)
1752                 {
1753                     error.obligation.cause = cause.clone();
1754                     continue;
1755                 }
1756             }
1757         }
1758     }
1759
1760     fn adjust_fulfillment_error_for_expr_obligation(
1761         &self,
1762         error: &mut traits::FulfillmentError<'tcx>,
1763     ) -> bool {
1764         let (traits::ExprItemObligation(def_id, hir_id, idx) | traits::ExprBindingObligation(def_id, _, hir_id, idx))
1765             = *error.obligation.cause.code().peel_derives() else { return false; };
1766         let hir = self.tcx.hir();
1767         let hir::Node::Expr(expr) = hir.get(hir_id) else { return false; };
1768
1769         let Some(unsubstituted_pred) =
1770             self.tcx.predicates_of(def_id).instantiate_identity(self.tcx).predicates.into_iter().nth(idx)
1771             else { return false; };
1772
1773         let generics = self.tcx.generics_of(def_id);
1774         let predicate_substs = match unsubstituted_pred.kind().skip_binder() {
1775             ty::PredicateKind::Clause(ty::Clause::Trait(pred)) => pred.trait_ref.substs,
1776             ty::PredicateKind::Clause(ty::Clause::Projection(pred)) => pred.projection_ty.substs,
1777             _ => ty::List::empty(),
1778         };
1779
1780         let find_param_matching = |matches: &dyn Fn(&ty::ParamTy) -> bool| {
1781             predicate_substs.types().find_map(|ty| {
1782                 ty.walk().find_map(|arg| {
1783                     if let ty::GenericArgKind::Type(ty) = arg.unpack()
1784                         && let ty::Param(param_ty) = ty.kind()
1785                         && matches(param_ty)
1786                     {
1787                         Some(arg)
1788                     } else {
1789                         None
1790                     }
1791                 })
1792             })
1793         };
1794
1795         // Prefer generics that are local to the fn item, since these are likely
1796         // to be the cause of the unsatisfied predicate.
1797         let mut param_to_point_at = find_param_matching(&|param_ty| {
1798             self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) == def_id
1799         });
1800         // Fall back to generic that isn't local to the fn item. This will come
1801         // from a trait or impl, for example.
1802         let mut fallback_param_to_point_at = find_param_matching(&|param_ty| {
1803             self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) != def_id
1804                 && param_ty.name != rustc_span::symbol::kw::SelfUpper
1805         });
1806         // Finally, the `Self` parameter is possibly the reason that the predicate
1807         // is unsatisfied. This is less likely to be true for methods, because
1808         // method probe means that we already kinda check that the predicates due
1809         // to the `Self` type are true.
1810         let mut self_param_to_point_at =
1811             find_param_matching(&|param_ty| param_ty.name == rustc_span::symbol::kw::SelfUpper);
1812
1813         // Finally, for ambiguity-related errors, we actually want to look
1814         // for a parameter that is the source of the inference type left
1815         // over in this predicate.
1816         if let traits::FulfillmentErrorCode::CodeAmbiguity = error.code {
1817             fallback_param_to_point_at = None;
1818             self_param_to_point_at = None;
1819             param_to_point_at =
1820                 self.find_ambiguous_parameter_in(def_id, error.root_obligation.predicate);
1821         }
1822
1823         if self.closure_span_overlaps_error(error, expr.span) {
1824             return false;
1825         }
1826
1827         match &expr.kind {
1828             hir::ExprKind::Path(qpath) => {
1829                 if let hir::Node::Expr(hir::Expr {
1830                     kind: hir::ExprKind::Call(callee, args),
1831                     hir_id: call_hir_id,
1832                     span: call_span,
1833                     ..
1834                 }) = hir.get_parent(expr.hir_id)
1835                     && callee.hir_id == expr.hir_id
1836                 {
1837                     if self.closure_span_overlaps_error(error, *call_span) {
1838                         return false;
1839                     }
1840
1841                     for param in
1842                         [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1843                         .into_iter()
1844                         .flatten()
1845                     {
1846                         if self.point_at_arg_if_possible(
1847                                 error,
1848                                 def_id,
1849                                 param,
1850                                 *call_hir_id,
1851                                 callee.span,
1852                                 None,
1853                                 args,
1854                             )
1855                         {
1856                             return true;
1857                         }
1858                     }
1859                 }
1860                 // Notably, we only point to params that are local to the
1861                 // item we're checking, since those are the ones we are able
1862                 // to look in the final `hir::PathSegment` for. Everything else
1863                 // would require a deeper search into the `qpath` than I think
1864                 // is worthwhile.
1865                 if let Some(param_to_point_at) = param_to_point_at
1866                     && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
1867                 {
1868                     return true;
1869                 }
1870             }
1871             hir::ExprKind::MethodCall(segment, receiver, args, ..) => {
1872                 for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1873                     .into_iter()
1874                     .flatten()
1875                 {
1876                     if self.point_at_arg_if_possible(
1877                         error,
1878                         def_id,
1879                         param,
1880                         hir_id,
1881                         segment.ident.span,
1882                         Some(receiver),
1883                         args,
1884                     ) {
1885                         return true;
1886                     }
1887                 }
1888                 if let Some(param_to_point_at) = param_to_point_at
1889                     && self.point_at_generic_if_possible(error, def_id, param_to_point_at, segment)
1890                 {
1891                     return true;
1892                 }
1893             }
1894             hir::ExprKind::Struct(qpath, fields, ..) => {
1895                 if let Res::Def(DefKind::Struct | DefKind::Variant, variant_def_id) =
1896                     self.typeck_results.borrow().qpath_res(qpath, hir_id)
1897                 {
1898                     for param in
1899                         [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1900                     {
1901                         if let Some(param) = param
1902                             && self.point_at_field_if_possible(
1903                                 error,
1904                                 def_id,
1905                                 param,
1906                                 variant_def_id,
1907                                 fields,
1908                             )
1909                         {
1910                             return true;
1911                         }
1912                     }
1913                 }
1914                 if let Some(param_to_point_at) = param_to_point_at
1915                     && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
1916                 {
1917                     return true;
1918                 }
1919             }
1920             _ => {}
1921         }
1922
1923         false
1924     }
1925
1926     fn closure_span_overlaps_error(
1927         &self,
1928         error: &traits::FulfillmentError<'tcx>,
1929         span: Span,
1930     ) -> bool {
1931         if let traits::FulfillmentErrorCode::CodeSelectionError(
1932             traits::SelectionError::OutputTypeParameterMismatch(_, expected, _),
1933         ) = error.code
1934             && let ty::Closure(def_id, _) | ty::Generator(def_id, ..) = expected.skip_binder().self_ty().kind()
1935             && span.overlaps(self.tcx.def_span(*def_id))
1936         {
1937             true
1938         } else {
1939             false
1940         }
1941     }
1942
1943     fn point_at_arg_if_possible(
1944         &self,
1945         error: &mut traits::FulfillmentError<'tcx>,
1946         def_id: DefId,
1947         param_to_point_at: ty::GenericArg<'tcx>,
1948         call_hir_id: hir::HirId,
1949         callee_span: Span,
1950         receiver: Option<&'tcx hir::Expr<'tcx>>,
1951         args: &'tcx [hir::Expr<'tcx>],
1952     ) -> bool {
1953         let ty = self.tcx.type_of(def_id);
1954         if !ty.is_fn() {
1955             return false;
1956         }
1957         let sig = ty.fn_sig(self.tcx).skip_binder();
1958         let args_referencing_param: Vec<_> = sig
1959             .inputs()
1960             .iter()
1961             .enumerate()
1962             .filter(|(_, ty)| find_param_in_ty(**ty, param_to_point_at))
1963             .collect();
1964         // If there's one field that references the given generic, great!
1965         if let [(idx, _)] = args_referencing_param.as_slice()
1966             && let Some(arg) = receiver
1967                 .map_or(args.get(*idx), |rcvr| if *idx == 0 { Some(rcvr) } else { args.get(*idx - 1) }) {
1968             error.obligation.cause.span = arg.span.find_ancestor_in_same_ctxt(error.obligation.cause.span).unwrap_or(arg.span);
1969             error.obligation.cause.map_code(|parent_code| {
1970                 ObligationCauseCode::FunctionArgumentObligation {
1971                     arg_hir_id: arg.hir_id,
1972                     call_hir_id,
1973                     parent_code,
1974                 }
1975             });
1976             return true;
1977         } else if args_referencing_param.len() > 0 {
1978             // If more than one argument applies, then point to the callee span at least...
1979             // We have chance to fix this up further in `point_at_generics_if_possible`
1980             error.obligation.cause.span = callee_span;
1981         }
1982
1983         false
1984     }
1985
1986     fn point_at_field_if_possible(
1987         &self,
1988         error: &mut traits::FulfillmentError<'tcx>,
1989         def_id: DefId,
1990         param_to_point_at: ty::GenericArg<'tcx>,
1991         variant_def_id: DefId,
1992         expr_fields: &[hir::ExprField<'tcx>],
1993     ) -> bool {
1994         let def = self.tcx.adt_def(def_id);
1995
1996         let identity_substs = ty::InternalSubsts::identity_for_item(self.tcx, def_id);
1997         let fields_referencing_param: Vec<_> = def
1998             .variant_with_id(variant_def_id)
1999             .fields
2000             .iter()
2001             .filter(|field| {
2002                 let field_ty = field.ty(self.tcx, identity_substs);
2003                 find_param_in_ty(field_ty, param_to_point_at)
2004             })
2005             .collect();
2006
2007         if let [field] = fields_referencing_param.as_slice() {
2008             for expr_field in expr_fields {
2009                 // Look for the ExprField that matches the field, using the
2010                 // same rules that check_expr_struct uses for macro hygiene.
2011                 if self.tcx.adjust_ident(expr_field.ident, variant_def_id) == field.ident(self.tcx)
2012                 {
2013                     error.obligation.cause.span = expr_field
2014                         .expr
2015                         .span
2016                         .find_ancestor_in_same_ctxt(error.obligation.cause.span)
2017                         .unwrap_or(expr_field.span);
2018                     return true;
2019                 }
2020             }
2021         }
2022
2023         false
2024     }
2025
2026     fn point_at_path_if_possible(
2027         &self,
2028         error: &mut traits::FulfillmentError<'tcx>,
2029         def_id: DefId,
2030         param: ty::GenericArg<'tcx>,
2031         qpath: &QPath<'tcx>,
2032     ) -> bool {
2033         match qpath {
2034             hir::QPath::Resolved(_, path) => {
2035                 if let Some(segment) = path.segments.last()
2036                     && self.point_at_generic_if_possible(error, def_id, param, segment)
2037                 {
2038                     return true;
2039                 }
2040             }
2041             hir::QPath::TypeRelative(_, segment) => {
2042                 if self.point_at_generic_if_possible(error, def_id, param, segment) {
2043                     return true;
2044                 }
2045             }
2046             _ => {}
2047         }
2048
2049         false
2050     }
2051
2052     fn point_at_generic_if_possible(
2053         &self,
2054         error: &mut traits::FulfillmentError<'tcx>,
2055         def_id: DefId,
2056         param_to_point_at: ty::GenericArg<'tcx>,
2057         segment: &hir::PathSegment<'tcx>,
2058     ) -> bool {
2059         let own_substs = self
2060             .tcx
2061             .generics_of(def_id)
2062             .own_substs(ty::InternalSubsts::identity_for_item(self.tcx, def_id));
2063         let Some((index, _)) = own_substs
2064             .iter()
2065             .filter(|arg| matches!(arg.unpack(), ty::GenericArgKind::Type(_)))
2066             .enumerate()
2067             .find(|(_, arg)| **arg == param_to_point_at) else { return false };
2068         let Some(arg) = segment
2069             .args()
2070             .args
2071             .iter()
2072             .filter(|arg| matches!(arg, hir::GenericArg::Type(_)))
2073             .nth(index) else { return false; };
2074         error.obligation.cause.span = arg
2075             .span()
2076             .find_ancestor_in_same_ctxt(error.obligation.cause.span)
2077             .unwrap_or(arg.span());
2078         true
2079     }
2080
2081     fn find_ambiguous_parameter_in<T: TypeVisitable<'tcx>>(
2082         &self,
2083         item_def_id: DefId,
2084         t: T,
2085     ) -> Option<ty::GenericArg<'tcx>> {
2086         struct FindAmbiguousParameter<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, DefId);
2087         impl<'tcx> TypeVisitor<'tcx> for FindAmbiguousParameter<'_, 'tcx> {
2088             type BreakTy = ty::GenericArg<'tcx>;
2089             fn visit_ty(&mut self, ty: Ty<'tcx>) -> std::ops::ControlFlow<Self::BreakTy> {
2090                 if let Some(origin) = self.0.type_var_origin(ty)
2091                     && let TypeVariableOriginKind::TypeParameterDefinition(_, Some(def_id)) =
2092                         origin.kind
2093                     && let generics = self.0.tcx.generics_of(self.1)
2094                     && let Some(index) = generics.param_def_id_to_index(self.0.tcx, def_id)
2095                     && let Some(subst) = ty::InternalSubsts::identity_for_item(self.0.tcx, self.1)
2096                         .get(index as usize)
2097                 {
2098                     ControlFlow::Break(*subst)
2099                 } else {
2100                     ty.super_visit_with(self)
2101                 }
2102             }
2103         }
2104         t.visit_with(&mut FindAmbiguousParameter(self, item_def_id)).break_value()
2105     }
2106
2107     fn label_fn_like(
2108         &self,
2109         err: &mut Diagnostic,
2110         callable_def_id: Option<DefId>,
2111         callee_ty: Option<Ty<'tcx>>,
2112         // A specific argument should be labeled, instead of all of them
2113         expected_idx: Option<usize>,
2114         is_method: bool,
2115     ) {
2116         let Some(mut def_id) = callable_def_id else {
2117             return;
2118         };
2119
2120         if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
2121             // Possibly points at either impl or trait item, so try to get it
2122             // to point to trait item, then get the parent.
2123             // This parent might be an impl in the case of an inherent function,
2124             // but the next check will fail.
2125             && let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
2126             && let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
2127             // Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
2128             && let Some(call_kind) = self.tcx.fn_trait_kind_from_def_id(maybe_trait_def_id)
2129             && let Some(callee_ty) = callee_ty
2130         {
2131             let callee_ty = callee_ty.peel_refs();
2132             match *callee_ty.kind() {
2133                 ty::Param(param) => {
2134                     let param =
2135                         self.tcx.generics_of(self.body_id).type_param(&param, self.tcx);
2136                     if param.kind.is_synthetic() {
2137                         // if it's `impl Fn() -> ..` then just fall down to the def-id based logic
2138                         def_id = param.def_id;
2139                     } else {
2140                         // Otherwise, find the predicate that makes this generic callable,
2141                         // and point at that.
2142                         let instantiated = self
2143                             .tcx
2144                             .explicit_predicates_of(self.body_id)
2145                             .instantiate_identity(self.tcx);
2146                         // FIXME(compiler-errors): This could be problematic if something has two
2147                         // fn-like predicates with different args, but callable types really never
2148                         // do that, so it's OK.
2149                         for (predicate, span) in instantiated
2150                         {
2151                             if let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) = predicate.kind().skip_binder()
2152                                 && pred.self_ty().peel_refs() == callee_ty
2153                                 && self.tcx.is_fn_trait(pred.def_id())
2154                             {
2155                                 err.span_note(span, "callable defined here");
2156                                 return;
2157                             }
2158                         }
2159                     }
2160                 }
2161                 ty::Alias(ty::Opaque, ty::AliasTy { def_id: new_def_id, .. })
2162                 | ty::Closure(new_def_id, _)
2163                 | ty::FnDef(new_def_id, _) => {
2164                     def_id = new_def_id;
2165                 }
2166                 _ => {
2167                     // Look for a user-provided impl of a `Fn` trait, and point to it.
2168                     let new_def_id = self.probe(|_| {
2169                         let trait_ref = self.tcx.mk_trait_ref(
2170                             call_kind.to_def_id(self.tcx),
2171                             [
2172                                 callee_ty,
2173                                 self.next_ty_var(TypeVariableOrigin {
2174                                     kind: TypeVariableOriginKind::MiscVariable,
2175                                     span: rustc_span::DUMMY_SP,
2176                                 }),
2177                             ],
2178                         );
2179                         let obligation = traits::Obligation::new(
2180                             self.tcx,
2181                             traits::ObligationCause::dummy(),
2182                             self.param_env,
2183                             ty::Binder::dummy(trait_ref),
2184                         );
2185                         match SelectionContext::new(&self).select(&obligation) {
2186                             Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
2187                                 Some(impl_source.impl_def_id)
2188                             }
2189                             _ => None,
2190                         }
2191                     });
2192                     if let Some(new_def_id) = new_def_id {
2193                         def_id = new_def_id;
2194                     } else {
2195                         return;
2196                     }
2197                 }
2198             }
2199         }
2200
2201         if let Some(def_span) = self.tcx.def_ident_span(def_id) && !def_span.is_dummy() {
2202             let mut spans: MultiSpan = def_span.into();
2203
2204             let params = self
2205                 .tcx
2206                 .hir()
2207                 .get_if_local(def_id)
2208                 .and_then(|node| node.body_id())
2209                 .into_iter()
2210                 .flat_map(|id| self.tcx.hir().body(id).params)
2211                 .skip(if is_method { 1 } else { 0 });
2212
2213             for (_, param) in params
2214                 .into_iter()
2215                 .enumerate()
2216                 .filter(|(idx, _)| expected_idx.map_or(true, |expected_idx| expected_idx == *idx))
2217             {
2218                 spans.push_span_label(param.span, "");
2219             }
2220
2221             let def_kind = self.tcx.def_kind(def_id);
2222             err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
2223         } else if let Some(hir::Node::Expr(e)) = self.tcx.hir().get_if_local(def_id)
2224             && let hir::ExprKind::Closure(hir::Closure { body, .. }) = &e.kind
2225         {
2226             let param = expected_idx
2227                 .and_then(|expected_idx| self.tcx.hir().body(*body).params.get(expected_idx));
2228             let (kind, span) = if let Some(param) = param {
2229                 ("closure parameter", param.span)
2230             } else {
2231                 ("closure", self.tcx.def_span(def_id))
2232             };
2233             err.span_note(span, &format!("{} defined here", kind));
2234         } else {
2235             let def_kind = self.tcx.def_kind(def_id);
2236             err.span_note(
2237                 self.tcx.def_span(def_id),
2238                 &format!("{} defined here", def_kind.descr(def_id)),
2239             );
2240         }
2241     }
2242 }
2243
2244 fn find_param_in_ty<'tcx>(ty: Ty<'tcx>, param_to_point_at: ty::GenericArg<'tcx>) -> bool {
2245     let mut walk = ty.walk();
2246     while let Some(arg) = walk.next() {
2247         if arg == param_to_point_at {
2248             return true;
2249         } else if let ty::GenericArgKind::Type(ty) = arg.unpack()
2250             && let ty::Alias(ty::Projection, ..) = ty.kind()
2251         {
2252             // This logic may seem a bit strange, but typically when
2253             // we have a projection type in a function signature, the
2254             // argument that's being passed into that signature is
2255             // not actually constraining that projection's substs in
2256             // a meaningful way. So we skip it, and see improvements
2257             // in some UI tests.
2258             walk.skip_current_subtree();
2259         }
2260     }
2261     false
2262 }