]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
Rollup merge of #104587 - weihanglo:update-cargo, r=weihanglo
[rust.git] / compiler / rustc_hir_typeck / src / fn_ctxt / checks.rs
1 use crate::coercion::CoerceMany;
2 use crate::fn_ctxt::arg_matrix::{ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx};
3 use crate::gather_locals::Declaration;
4 use crate::method::MethodCallee;
5 use crate::Expectation::*;
6 use crate::TupleArgumentsFlag::*;
7 use crate::{
8     struct_span_err, BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy, Needs,
9     TupleArgumentsFlag,
10 };
11 use rustc_ast as ast;
12 use rustc_data_structures::fx::FxHashSet;
13 use rustc_errors::{pluralize, Applicability, Diagnostic, DiagnosticId, MultiSpan};
14 use rustc_hir as hir;
15 use rustc_hir::def::{CtorOf, DefKind, Res};
16 use rustc_hir::def_id::DefId;
17 use rustc_hir::{ExprKind, Node, QPath};
18 use rustc_hir_analysis::astconv::AstConv;
19 use rustc_hir_analysis::check::intrinsicck::InlineAsmCtxt;
20 use rustc_hir_analysis::check::potentially_plural_count;
21 use rustc_hir_analysis::structured_errors::StructuredDiagnostic;
22 use rustc_index::vec::IndexVec;
23 use rustc_infer::infer::error_reporting::{FailureCode, ObligationCauseExt};
24 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
25 use rustc_infer::infer::InferOk;
26 use rustc_infer::infer::TypeTrace;
27 use rustc_middle::ty::adjustment::AllowTwoPhase;
28 use rustc_middle::ty::visit::TypeVisitable;
29 use rustc_middle::ty::{self, DefIdTree, IsSuggestable, Ty, TypeSuperVisitable, TypeVisitor};
30 use rustc_session::Session;
31 use rustc_span::symbol::Ident;
32 use rustc_span::{self, sym, Span};
33 use rustc_trait_selection::traits::{self, ObligationCauseCode, SelectionContext};
34
35 use std::iter;
36 use std::mem;
37 use std::ops::ControlFlow;
38 use std::slice;
39
40 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
41     pub(in super::super) fn check_casts(&mut self) {
42         // don't hold the borrow to deferred_cast_checks while checking to avoid borrow checker errors
43         // when writing to `self.param_env`.
44         let mut deferred_cast_checks = mem::take(&mut *self.deferred_cast_checks.borrow_mut());
45
46         debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
47         for cast in deferred_cast_checks.drain(..) {
48             let prev_env = self.param_env;
49             self.param_env = self.param_env.with_constness(cast.constness);
50
51             cast.check(self);
52
53             self.param_env = prev_env;
54         }
55
56         *self.deferred_cast_checks.borrow_mut() = deferred_cast_checks;
57     }
58
59     pub(in super::super) fn check_transmutes(&self) {
60         let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
61         debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
62         for (from, to, hir_id) in deferred_transmute_checks.drain(..) {
63             self.check_transmute(from, to, hir_id);
64         }
65     }
66
67     pub(in super::super) fn check_asms(&self) {
68         let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
69         debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
70         for (asm, hir_id) in deferred_asm_checks.drain(..) {
71             let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
72             let get_operand_ty = |expr| {
73                 let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
74                 let ty = self.resolve_vars_if_possible(ty);
75                 if ty.has_non_region_infer() {
76                     self.tcx.ty_error()
77                 } else {
78                     self.tcx.erase_regions(ty)
79                 }
80             };
81             InlineAsmCtxt::new_in_fn(self.tcx, self.param_env, get_operand_ty)
82                 .check_asm(asm, self.tcx.hir().local_def_id_to_hir_id(enclosing_id));
83         }
84     }
85
86     pub(in super::super) fn check_method_argument_types(
87         &self,
88         sp: Span,
89         expr: &'tcx hir::Expr<'tcx>,
90         method: Result<MethodCallee<'tcx>, ()>,
91         args_no_rcvr: &'tcx [hir::Expr<'tcx>],
92         tuple_arguments: TupleArgumentsFlag,
93         expected: Expectation<'tcx>,
94     ) -> Ty<'tcx> {
95         let has_error = match method {
96             Ok(method) => method.substs.references_error() || method.sig.references_error(),
97             Err(_) => true,
98         };
99         if has_error {
100             let err_inputs = self.err_args(args_no_rcvr.len());
101
102             let err_inputs = match tuple_arguments {
103                 DontTupleArguments => err_inputs,
104                 TupleArguments => vec![self.tcx.intern_tup(&err_inputs)],
105             };
106
107             self.check_argument_types(
108                 sp,
109                 expr,
110                 &err_inputs,
111                 None,
112                 args_no_rcvr,
113                 false,
114                 tuple_arguments,
115                 method.ok().map(|method| method.def_id),
116             );
117             return self.tcx.ty_error();
118         }
119
120         let method = method.unwrap();
121         // HACK(eddyb) ignore self in the definition (see above).
122         let expected_input_tys = self.expected_inputs_for_expected_output(
123             sp,
124             expected,
125             method.sig.output(),
126             &method.sig.inputs()[1..],
127         );
128         self.check_argument_types(
129             sp,
130             expr,
131             &method.sig.inputs()[1..],
132             expected_input_tys,
133             args_no_rcvr,
134             method.sig.c_variadic,
135             tuple_arguments,
136             Some(method.def_id),
137         );
138
139         method.sig.output()
140     }
141
142     /// Generic function that factors out common logic from function calls,
143     /// method calls and overloaded operators.
144     pub(in super::super) fn check_argument_types(
145         &self,
146         // Span enclosing the call site
147         call_span: Span,
148         // Expression of the call site
149         call_expr: &'tcx hir::Expr<'tcx>,
150         // Types (as defined in the *signature* of the target function)
151         formal_input_tys: &[Ty<'tcx>],
152         // More specific expected types, after unifying with caller output types
153         expected_input_tys: Option<Vec<Ty<'tcx>>>,
154         // The expressions for each provided argument
155         provided_args: &'tcx [hir::Expr<'tcx>],
156         // Whether the function is variadic, for example when imported from C
157         c_variadic: bool,
158         // Whether the arguments have been bundled in a tuple (ex: closures)
159         tuple_arguments: TupleArgumentsFlag,
160         // The DefId for the function being called, for better error messages
161         fn_def_id: Option<DefId>,
162     ) {
163         let tcx = self.tcx;
164
165         // Conceptually, we've got some number of expected inputs, and some number of provided arguments
166         // and we can form a grid of whether each argument could satisfy a given input:
167         //      in1 | in2 | in3 | ...
168         // arg1  ?  |     |     |
169         // arg2     |  ?  |     |
170         // arg3     |     |  ?  |
171         // ...
172         // Initially, we just check the diagonal, because in the case of correct code
173         // these are the only checks that matter
174         // However, in the unhappy path, we'll fill in this whole grid to attempt to provide
175         // better error messages about invalid method calls.
176
177         // All the input types from the fn signature must outlive the call
178         // so as to validate implied bounds.
179         for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
180             self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation);
181         }
182
183         let mut err_code = "E0061";
184
185         // If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
186         let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
187             let tuple_type = self.structurally_resolved_type(call_span, formal_input_tys[0]);
188             match tuple_type.kind() {
189                 // We expected a tuple and got a tuple
190                 ty::Tuple(arg_types) => {
191                     // Argument length differs
192                     if arg_types.len() != provided_args.len() {
193                         err_code = "E0057";
194                     }
195                     let expected_input_tys = match expected_input_tys {
196                         Some(expected_input_tys) => match expected_input_tys.get(0) {
197                             Some(ty) => match ty.kind() {
198                                 ty::Tuple(tys) => Some(tys.iter().collect()),
199                                 _ => None,
200                             },
201                             None => None,
202                         },
203                         None => None,
204                     };
205                     (arg_types.iter().collect(), expected_input_tys)
206                 }
207                 _ => {
208                     // Otherwise, there's a mismatch, so clear out what we're expecting, and set
209                     // our input types to err_args so we don't blow up the error messages
210                     struct_span_err!(
211                         tcx.sess,
212                         call_span,
213                         E0059,
214                         "cannot use call notation; the first type parameter \
215                          for the function trait is neither a tuple nor unit"
216                     )
217                     .delay_as_bug();
218                     (self.err_args(provided_args.len()), None)
219                 }
220             }
221         } else {
222             (formal_input_tys.to_vec(), expected_input_tys)
223         };
224
225         // If there are no external expectations at the call site, just use the types from the function defn
226         let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
227             assert_eq!(expected_input_tys.len(), formal_input_tys.len());
228             expected_input_tys
229         } else {
230             formal_input_tys.clone()
231         };
232
233         let minimum_input_count = expected_input_tys.len();
234         let provided_arg_count = provided_args.len();
235
236         let is_const_eval_select = matches!(fn_def_id, Some(def_id) if
237             self.tcx.def_kind(def_id) == hir::def::DefKind::Fn
238             && self.tcx.is_intrinsic(def_id)
239             && self.tcx.item_name(def_id) == sym::const_eval_select);
240
241         // We introduce a helper function to demand that a given argument satisfy a given input
242         // This is more complicated than just checking type equality, as arguments could be coerced
243         // This version writes those types back so further type checking uses the narrowed types
244         let demand_compatible = |idx| {
245             let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
246             let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
247             let provided_arg = &provided_args[idx];
248
249             debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);
250
251             // We're on the happy path here, so we'll do a more involved check and write back types
252             // To check compatibility, we'll do 3 things:
253             // 1. Unify the provided argument with the expected type
254             let expectation = Expectation::rvalue_hint(self, expected_input_ty);
255
256             let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);
257
258             // 2. Coerce to the most detailed type that could be coerced
259             //    to, which is `expected_ty` if `rvalue_hint` returns an
260             //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
261             let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
262
263             // Cause selection errors caused by resolving a single argument to point at the
264             // argument and not the call. This lets us customize the span pointed to in the
265             // fulfillment error to be more accurate.
266             let coerced_ty = self.resolve_vars_with_obligations(coerced_ty);
267
268             let coerce_error = self
269                 .try_coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None)
270                 .err();
271
272             if coerce_error.is_some() {
273                 return Compatibility::Incompatible(coerce_error);
274             }
275
276             // Check that second and third argument of `const_eval_select` must be `FnDef`, and additionally that
277             // the second argument must be `const fn`. The first argument must be a tuple, but this is already expressed
278             // in the function signature (`F: FnOnce<ARG>`), so I did not bother to add another check here.
279             //
280             // This check is here because there is currently no way to express a trait bound for `FnDef` types only.
281             if is_const_eval_select && (1..=2).contains(&idx) {
282                 if let ty::FnDef(def_id, _) = checked_ty.kind() {
283                     if idx == 1 && !self.tcx.is_const_fn_raw(*def_id) {
284                         self.tcx
285                             .sess
286                             .struct_span_err(provided_arg.span, "this argument must be a `const fn`")
287                             .help("consult the documentation on `const_eval_select` for more information")
288                             .emit();
289                     }
290                 } else {
291                     self.tcx
292                         .sess
293                         .struct_span_err(provided_arg.span, "this argument must be a function item")
294                         .note(format!("expected a function item, found {checked_ty}"))
295                         .help(
296                             "consult the documentation on `const_eval_select` for more information",
297                         )
298                         .emit();
299                 }
300             }
301
302             // 3. Check if the formal type is a supertype of the checked one
303             //    and register any such obligations for future type checks
304             let supertype_error = self
305                 .at(&self.misc(provided_arg.span), self.param_env)
306                 .sup(formal_input_ty, coerced_ty);
307             let subtyping_error = match supertype_error {
308                 Ok(InferOk { obligations, value: () }) => {
309                     self.register_predicates(obligations);
310                     None
311                 }
312                 Err(err) => Some(err),
313             };
314
315             // If neither check failed, the types are compatible
316             match subtyping_error {
317                 None => Compatibility::Compatible,
318                 Some(_) => Compatibility::Incompatible(subtyping_error),
319             }
320         };
321
322         // To start, we only care "along the diagonal", where we expect every
323         // provided arg to be in the right spot
324         let mut compatibility_diagonal =
325             vec![Compatibility::Incompatible(None); provided_args.len()];
326
327         // Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
328         // if the wrong number of arguments were supplied, we CAN'T be satisfied,
329         // and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
330         // otherwise, they need to be identical, because rust doesn't currently support variadic functions
331         let mut call_appears_satisfied = if c_variadic {
332             provided_arg_count >= minimum_input_count
333         } else {
334             provided_arg_count == minimum_input_count
335         };
336
337         // Check the arguments.
338         // We do this in a pretty awful way: first we type-check any arguments
339         // that are not closures, then we type-check the closures. This is so
340         // that we have more information about the types of arguments when we
341         // type-check the functions. This isn't really the right way to do this.
342         for check_closures in [false, true] {
343             // More awful hacks: before we check argument types, try to do
344             // an "opportunistic" trait resolution of any trait bounds on
345             // the call. This helps coercions.
346             if check_closures {
347                 self.select_obligations_where_possible(|_| {})
348             }
349
350             // Check each argument, to satisfy the input it was provided for
351             // Visually, we're traveling down the diagonal of the compatibility matrix
352             for (idx, arg) in provided_args.iter().enumerate() {
353                 // Warn only for the first loop (the "no closures" one).
354                 // Closure arguments themselves can't be diverging, but
355                 // a previous argument can, e.g., `foo(panic!(), || {})`.
356                 if !check_closures {
357                     self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
358                 }
359
360                 // For C-variadic functions, we don't have a declared type for all of
361                 // the arguments hence we only do our usual type checking with
362                 // the arguments who's types we do know. However, we *can* check
363                 // for unreachable expressions (see above).
364                 // FIXME: unreachable warning current isn't emitted
365                 if idx >= minimum_input_count {
366                     continue;
367                 }
368
369                 let is_closure = matches!(arg.kind, ExprKind::Closure { .. });
370                 if is_closure != check_closures {
371                     continue;
372                 }
373
374                 let compatible = demand_compatible(idx);
375                 let is_compatible = matches!(compatible, Compatibility::Compatible);
376                 compatibility_diagonal[idx] = compatible;
377
378                 if !is_compatible {
379                     call_appears_satisfied = false;
380                 }
381             }
382         }
383
384         if c_variadic && provided_arg_count < minimum_input_count {
385             err_code = "E0060";
386         }
387
388         for arg in provided_args.iter().skip(minimum_input_count) {
389             // Make sure we've checked this expr at least once.
390             let arg_ty = self.check_expr(&arg);
391
392             // If the function is c-style variadic, we skipped a bunch of arguments
393             // so we need to check those, and write out the types
394             // Ideally this would be folded into the above, for uniform style
395             // but c-variadic is already a corner case
396             if c_variadic {
397                 fn variadic_error<'tcx>(
398                     sess: &'tcx Session,
399                     span: Span,
400                     ty: Ty<'tcx>,
401                     cast_ty: &str,
402                 ) {
403                     use rustc_hir_analysis::structured_errors::MissingCastForVariadicArg;
404
405                     MissingCastForVariadicArg { sess, span, ty, cast_ty }.diagnostic().emit();
406                 }
407
408                 // There are a few types which get autopromoted when passed via varargs
409                 // in C but we just error out instead and require explicit casts.
410                 let arg_ty = self.structurally_resolved_type(arg.span, arg_ty);
411                 match arg_ty.kind() {
412                     ty::Float(ty::FloatTy::F32) => {
413                         variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
414                     }
415                     ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
416                         variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
417                     }
418                     ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
419                         variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
420                     }
421                     ty::FnDef(..) => {
422                         let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx));
423                         let ptr_ty = self.resolve_vars_if_possible(ptr_ty);
424                         variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string());
425                     }
426                     _ => {}
427                 }
428             }
429         }
430
431         if !call_appears_satisfied {
432             let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
433             let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
434                 minimum_input_count
435             } else {
436                 provided_arg_count
437             }));
438             debug_assert_eq!(
439                 formal_input_tys.len(),
440                 expected_input_tys.len(),
441                 "expected formal_input_tys to be the same size as expected_input_tys"
442             );
443             let formal_and_expected_inputs = IndexVec::from_iter(
444                 formal_input_tys
445                     .iter()
446                     .copied()
447                     .zip(expected_input_tys.iter().copied())
448                     .map(|vars| self.resolve_vars_if_possible(vars)),
449             );
450
451             self.report_arg_errors(
452                 compatibility_diagonal,
453                 formal_and_expected_inputs,
454                 provided_args,
455                 c_variadic,
456                 err_code,
457                 fn_def_id,
458                 call_span,
459                 call_expr,
460             );
461         }
462     }
463
464     fn report_arg_errors(
465         &self,
466         compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
467         formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
468         provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
469         c_variadic: bool,
470         err_code: &str,
471         fn_def_id: Option<DefId>,
472         call_span: Span,
473         call_expr: &hir::Expr<'tcx>,
474     ) {
475         // Next, let's construct the error
476         let (error_span, full_call_span, ctor_of, is_method) = match &call_expr.kind {
477             hir::ExprKind::Call(
478                 hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
479                 _,
480             ) => {
481                 if let Res::Def(DefKind::Ctor(of, _), _) =
482                     self.typeck_results.borrow().qpath_res(qpath, *hir_id)
483                 {
484                     (call_span, *span, Some(of), false)
485                 } else {
486                     (call_span, *span, None, false)
487                 }
488             }
489             hir::ExprKind::Call(hir::Expr { span, .. }, _) => (call_span, *span, None, false),
490             hir::ExprKind::MethodCall(path_segment, _, _, span) => {
491                 let ident_span = path_segment.ident.span;
492                 let ident_span = if let Some(args) = path_segment.args {
493                     ident_span.with_hi(args.span_ext.hi())
494                 } else {
495                     ident_span
496                 };
497                 // methods are never ctors
498                 (*span, ident_span, None, true)
499             }
500             k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
501         };
502         let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);
503         let call_name = match ctor_of {
504             Some(CtorOf::Struct) => "struct",
505             Some(CtorOf::Variant) => "enum variant",
506             None => "function",
507         };
508
509         // Don't print if it has error types or is just plain `_`
510         fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
511             tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
512         }
513
514         let tcx = self.tcx;
515         // FIXME: taint after emitting errors and pass through an `ErrorGuaranteed`
516         self.set_tainted_by_errors(
517             tcx.sess.delay_span_bug(call_span, "no errors reported for args"),
518         );
519
520         // Get the argument span in the context of the call span so that
521         // suggestions and labels are (more) correct when an arg is a
522         // macro invocation.
523         let normalize_span = |span: Span| -> Span {
524             let normalized_span = span.find_ancestor_inside(error_span).unwrap_or(span);
525             // Sometimes macros mess up the spans, so do not normalize the
526             // arg span to equal the error span, because that's less useful
527             // than pointing out the arg expr in the wrong context.
528             if normalized_span.source_equal(error_span) { span } else { normalized_span }
529         };
530
531         // Precompute the provided types and spans, since that's all we typically need for below
532         let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
533             .iter()
534             .map(|expr| {
535                 let ty = self
536                     .typeck_results
537                     .borrow()
538                     .expr_ty_adjusted_opt(*expr)
539                     .unwrap_or_else(|| tcx.ty_error());
540                 (self.resolve_vars_if_possible(ty), normalize_span(expr.span))
541             })
542             .collect();
543         let callee_expr = match &call_expr.peel_blocks().kind {
544             hir::ExprKind::Call(callee, _) => Some(*callee),
545             hir::ExprKind::MethodCall(_, receiver, ..) => {
546                 if let Some((DefKind::AssocFn, def_id)) =
547                     self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
548                     && let Some(assoc) = tcx.opt_associated_item(def_id)
549                     && assoc.fn_has_self_parameter
550                 {
551                     Some(*receiver)
552                 } else {
553                     None
554                 }
555             }
556             _ => None,
557         };
558         let callee_ty = callee_expr
559             .and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));
560
561         // A "softer" version of the `demand_compatible`, which checks types without persisting them,
562         // and treats error types differently
563         // This will allow us to "probe" for other argument orders that would likely have been correct
564         let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
565             if provided_idx.as_usize() == expected_idx.as_usize() {
566                 return compatibility_diagonal[provided_idx].clone();
567             }
568
569             let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
570             // If either is an error type, we defy the usual convention and consider them to *not* be
571             // coercible. This prevents our error message heuristic from trying to pass errors into
572             // every argument.
573             if (formal_input_ty, expected_input_ty).references_error() {
574                 return Compatibility::Incompatible(None);
575             }
576
577             let (arg_ty, arg_span) = provided_arg_tys[provided_idx];
578
579             let expectation = Expectation::rvalue_hint(self, expected_input_ty);
580             let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
581             let can_coerce = self.can_coerce(arg_ty, coerced_ty);
582             if !can_coerce {
583                 return Compatibility::Incompatible(Some(ty::error::TypeError::Sorts(
584                     ty::error::ExpectedFound::new(true, coerced_ty, arg_ty),
585                 )));
586             }
587
588             // Using probe here, since we don't want this subtyping to affect inference.
589             let subtyping_error = self.probe(|_| {
590                 self.at(&self.misc(arg_span), self.param_env).sup(formal_input_ty, coerced_ty).err()
591             });
592
593             // Same as above: if either the coerce type or the checked type is an error type,
594             // consider them *not* compatible.
595             let references_error = (coerced_ty, arg_ty).references_error();
596             match (references_error, subtyping_error) {
597                 (false, None) => Compatibility::Compatible,
598                 (_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
599             }
600         };
601
602         let mk_trace = |span, (formal_ty, expected_ty), provided_ty| {
603             let mismatched_ty = if expected_ty == provided_ty {
604                 // If expected == provided, then we must have failed to sup
605                 // the formal type. Avoid printing out "expected Ty, found Ty"
606                 // in that case.
607                 formal_ty
608             } else {
609                 expected_ty
610             };
611             TypeTrace::types(&self.misc(span), true, mismatched_ty, provided_ty)
612         };
613
614         // The algorithm here is inspired by levenshtein distance and longest common subsequence.
615         // We'll try to detect 4 different types of mistakes:
616         // - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
617         // - An input is missing, which isn't satisfied by *any* of the other arguments
618         // - Some number of arguments have been provided in the wrong order
619         // - A type is straight up invalid
620
621         // First, let's find the errors
622         let (mut errors, matched_inputs) =
623             ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
624                 .find_errors();
625
626         // First, check if we just need to wrap some arguments in a tuple.
627         if let Some((mismatch_idx, terr)) =
628             compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
629                 if let Compatibility::Incompatible(Some(terr)) = c {
630                     Some((i, *terr))
631                 } else {
632                     None
633                 }
634             })
635         {
636             // Is the first bad expected argument a tuple?
637             // Do we have as many extra provided arguments as the tuple's length?
638             // If so, we might have just forgotten to wrap some args in a tuple.
639             if let Some(ty::Tuple(tys)) =
640                 formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
641                 // If the tuple is unit, we're not actually wrapping any arguments.
642                 && !tys.is_empty()
643                 && provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
644             {
645                 // Wrap up the N provided arguments starting at this position in a tuple.
646                 let provided_as_tuple = tcx.mk_tup(
647                     provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
648                 );
649
650                 let mut satisfied = true;
651                 // Check if the newly wrapped tuple + rest of the arguments are compatible.
652                 for ((_, expected_ty), provided_ty) in std::iter::zip(
653                     formal_and_expected_inputs.iter().skip(mismatch_idx),
654                     [provided_as_tuple].into_iter().chain(
655                         provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
656                     ),
657                 ) {
658                     if !self.can_coerce(provided_ty, *expected_ty) {
659                         satisfied = false;
660                         break;
661                     }
662                 }
663
664                 // If they're compatible, suggest wrapping in an arg, and we're done!
665                 // Take some care with spans, so we don't suggest wrapping a macro's
666                 // innards in parenthesis, for example.
667                 if satisfied
668                     && let Some((_, lo)) =
669                         provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
670                     && let Some((_, hi)) =
671                         provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
672                 {
673                     let mut err;
674                     if tys.len() == 1 {
675                         // A tuple wrap suggestion actually occurs within,
676                         // so don't do anything special here.
677                         err = self.err_ctxt().report_and_explain_type_error(
678                             mk_trace(
679                                 *lo,
680                                 formal_and_expected_inputs[mismatch_idx.into()],
681                                 provided_arg_tys[mismatch_idx.into()].0,
682                             ),
683                             terr,
684                         );
685                         err.span_label(
686                             full_call_span,
687                             format!("arguments to this {} are incorrect", call_name),
688                         );
689                     } else {
690                         err = tcx.sess.struct_span_err_with_code(
691                             full_call_span,
692                             &format!(
693                                 "this {} takes {}{} but {} {} supplied",
694                                 call_name,
695                                 if c_variadic { "at least " } else { "" },
696                                 potentially_plural_count(
697                                     formal_and_expected_inputs.len(),
698                                     "argument"
699                                 ),
700                                 potentially_plural_count(provided_args.len(), "argument"),
701                                 pluralize!("was", provided_args.len())
702                             ),
703                             DiagnosticId::Error(err_code.to_owned()),
704                         );
705                         err.multipart_suggestion_verbose(
706                             "wrap these arguments in parentheses to construct a tuple",
707                             vec![
708                                 (lo.shrink_to_lo(), "(".to_string()),
709                                 (hi.shrink_to_hi(), ")".to_string()),
710                             ],
711                             Applicability::MachineApplicable,
712                         );
713                     };
714                     self.label_fn_like(
715                         &mut err,
716                         fn_def_id,
717                         callee_ty,
718                         Some(mismatch_idx),
719                         is_method,
720                     );
721                     err.emit();
722                     return;
723                 }
724             }
725         }
726
727         // Okay, so here's where it gets complicated in regards to what errors
728         // we emit and how.
729         // There are 3 different "types" of errors we might encounter.
730         //   1) Missing/extra/swapped arguments
731         //   2) Valid but incorrect arguments
732         //   3) Invalid arguments
733         //      - Currently I think this only comes up with `CyclicTy`
734         //
735         // We first need to go through, remove those from (3) and emit those
736         // as their own error, particularly since they're error code and
737         // message is special. From what I can tell, we *must* emit these
738         // here (vs somewhere prior to this function) since the arguments
739         // become invalid *because* of how they get used in the function.
740         // It is what it is.
741
742         if errors.is_empty() {
743             if cfg!(debug_assertions) {
744                 span_bug!(error_span, "expected errors from argument matrix");
745             } else {
746                 tcx.sess
747                     .struct_span_err(
748                         error_span,
749                         "argument type mismatch was detected, \
750                         but rustc had trouble determining where",
751                     )
752                     .note(
753                         "we would appreciate a bug report: \
754                         https://github.com/rust-lang/rust/issues/new",
755                     )
756                     .emit();
757             }
758             return;
759         }
760
761         errors.drain_filter(|error| {
762                 let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(e))) = error else { return false };
763                 let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
764                 let trace = mk_trace(provided_span, formal_and_expected_inputs[*expected_idx], provided_ty);
765                 if !matches!(trace.cause.as_failure_code(*e), FailureCode::Error0308(_)) {
766                     self.err_ctxt().report_and_explain_type_error(trace, *e).emit();
767                     return true;
768                 }
769                 false
770             });
771
772         // We're done if we found errors, but we already emitted them.
773         if errors.is_empty() {
774             return;
775         }
776
777         // Okay, now that we've emitted the special errors separately, we
778         // are only left missing/extra/swapped and mismatched arguments, both
779         // can be collated pretty easily if needed.
780
781         // Next special case: if there is only one "Incompatible" error, just emit that
782         if let [
783             Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
784         ] = &errors[..]
785         {
786             let (formal_ty, expected_ty) = formal_and_expected_inputs[*expected_idx];
787             let (provided_ty, provided_arg_span) = provided_arg_tys[*provided_idx];
788             let trace = mk_trace(provided_arg_span, (formal_ty, expected_ty), provided_ty);
789             let mut err = self.err_ctxt().report_and_explain_type_error(trace, *err);
790             self.emit_coerce_suggestions(
791                 &mut err,
792                 &provided_args[*provided_idx],
793                 provided_ty,
794                 Expectation::rvalue_hint(self, expected_ty)
795                     .only_has_type(self)
796                     .unwrap_or(formal_ty),
797                 None,
798                 None,
799             );
800             err.span_label(
801                 full_call_span,
802                 format!("arguments to this {} are incorrect", call_name),
803             );
804             // Call out where the function is defined
805             self.label_fn_like(
806                 &mut err,
807                 fn_def_id,
808                 callee_ty,
809                 Some(expected_idx.as_usize()),
810                 is_method,
811             );
812             err.emit();
813             return;
814         }
815
816         let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
817             struct_span_err!(
818                 tcx.sess,
819                 full_call_span,
820                 E0308,
821                 "arguments to this {} are incorrect",
822                 call_name,
823             )
824         } else {
825             tcx.sess.struct_span_err_with_code(
826                 full_call_span,
827                 &format!(
828                     "this {} takes {}{} but {} {} supplied",
829                     call_name,
830                     if c_variadic { "at least " } else { "" },
831                     potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
832                     potentially_plural_count(provided_args.len(), "argument"),
833                     pluralize!("was", provided_args.len())
834                 ),
835                 DiagnosticId::Error(err_code.to_owned()),
836             )
837         };
838
839         // As we encounter issues, keep track of what we want to provide for the suggestion
840         let mut labels = vec![];
841         // If there is a single error, we give a specific suggestion; otherwise, we change to
842         // "did you mean" with the suggested function call
843         enum SuggestionText {
844             None,
845             Provide(bool),
846             Remove(bool),
847             Swap,
848             Reorder,
849             DidYouMean,
850         }
851         let mut suggestion_text = SuggestionText::None;
852
853         let mut errors = errors.into_iter().peekable();
854         while let Some(error) = errors.next() {
855             match error {
856                 Error::Invalid(provided_idx, expected_idx, compatibility) => {
857                     let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
858                     let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
859                     if let Compatibility::Incompatible(error) = compatibility {
860                         let trace = mk_trace(provided_span, (formal_ty, expected_ty), provided_ty);
861                         if let Some(e) = error {
862                             self.err_ctxt().note_type_err(
863                                 &mut err,
864                                 &trace.cause,
865                                 None,
866                                 Some(trace.values),
867                                 e,
868                                 false,
869                                 true,
870                             );
871                         }
872                     }
873
874                     self.emit_coerce_suggestions(
875                         &mut err,
876                         &provided_args[provided_idx],
877                         provided_ty,
878                         Expectation::rvalue_hint(self, expected_ty)
879                             .only_has_type(self)
880                             .unwrap_or(formal_ty),
881                         None,
882                         None,
883                     );
884                 }
885                 Error::Extra(arg_idx) => {
886                     let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
887                     let provided_ty_name = if !has_error_or_infer([provided_ty]) {
888                         // FIXME: not suggestable, use something else
889                         format!(" of type `{}`", provided_ty)
890                     } else {
891                         "".to_string()
892                     };
893                     labels
894                         .push((provided_span, format!("argument{} unexpected", provided_ty_name)));
895                     suggestion_text = match suggestion_text {
896                         SuggestionText::None => SuggestionText::Remove(false),
897                         SuggestionText::Remove(_) => SuggestionText::Remove(true),
898                         _ => SuggestionText::DidYouMean,
899                     };
900                 }
901                 Error::Missing(expected_idx) => {
902                     // If there are multiple missing arguments adjacent to each other,
903                     // then we can provide a single error.
904
905                     let mut missing_idxs = vec![expected_idx];
906                     while let Some(e) = errors.next_if(|e| {
907                         matches!(e, Error::Missing(next_expected_idx)
908                             if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
909                     }) {
910                         match e {
911                             Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
912                             _ => unreachable!(),
913                         }
914                     }
915
916                     // NOTE: Because we might be re-arranging arguments, might have extra
917                     // arguments, etc. it's hard to *really* know where we should provide
918                     // this error label, so as a heuristic, we point to the provided arg, or
919                     // to the call if the missing inputs pass the provided args.
920                     match &missing_idxs[..] {
921                         &[expected_idx] => {
922                             let (_, input_ty) = formal_and_expected_inputs[expected_idx];
923                             let span = if let Some((_, arg_span)) =
924                                 provided_arg_tys.get(expected_idx.to_provided_idx())
925                             {
926                                 *arg_span
927                             } else {
928                                 args_span
929                             };
930                             let rendered = if !has_error_or_infer([input_ty]) {
931                                 format!(" of type `{}`", input_ty)
932                             } else {
933                                 "".to_string()
934                             };
935                             labels.push((span, format!("an argument{} is missing", rendered)));
936                             suggestion_text = match suggestion_text {
937                                 SuggestionText::None => SuggestionText::Provide(false),
938                                 SuggestionText::Provide(_) => SuggestionText::Provide(true),
939                                 _ => SuggestionText::DidYouMean,
940                             };
941                         }
942                         &[first_idx, second_idx] => {
943                             let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
944                             let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
945                             let span = if let (Some((_, first_span)), Some((_, second_span))) = (
946                                 provided_arg_tys.get(first_idx.to_provided_idx()),
947                                 provided_arg_tys.get(second_idx.to_provided_idx()),
948                             ) {
949                                 first_span.to(*second_span)
950                             } else {
951                                 args_span
952                             };
953                             let rendered =
954                                 if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
955                                     format!(
956                                         " of type `{}` and `{}`",
957                                         first_expected_ty, second_expected_ty
958                                     )
959                                 } else {
960                                     "".to_string()
961                                 };
962                             labels.push((span, format!("two arguments{} are missing", rendered)));
963                             suggestion_text = match suggestion_text {
964                                 SuggestionText::None | SuggestionText::Provide(_) => {
965                                     SuggestionText::Provide(true)
966                                 }
967                                 _ => SuggestionText::DidYouMean,
968                             };
969                         }
970                         &[first_idx, second_idx, third_idx] => {
971                             let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
972                             let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
973                             let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
974                             let span = if let (Some((_, first_span)), Some((_, third_span))) = (
975                                 provided_arg_tys.get(first_idx.to_provided_idx()),
976                                 provided_arg_tys.get(third_idx.to_provided_idx()),
977                             ) {
978                                 first_span.to(*third_span)
979                             } else {
980                                 args_span
981                             };
982                             let rendered = if !has_error_or_infer([
983                                 first_expected_ty,
984                                 second_expected_ty,
985                                 third_expected_ty,
986                             ]) {
987                                 format!(
988                                     " of type `{}`, `{}`, and `{}`",
989                                     first_expected_ty, second_expected_ty, third_expected_ty
990                                 )
991                             } else {
992                                 "".to_string()
993                             };
994                             labels.push((span, format!("three arguments{} are missing", rendered)));
995                             suggestion_text = match suggestion_text {
996                                 SuggestionText::None | SuggestionText::Provide(_) => {
997                                     SuggestionText::Provide(true)
998                                 }
999                                 _ => SuggestionText::DidYouMean,
1000                             };
1001                         }
1002                         missing_idxs => {
1003                             let first_idx = *missing_idxs.first().unwrap();
1004                             let last_idx = *missing_idxs.last().unwrap();
1005                             // NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
1006                             // It's hard to *really* know where we should provide this error label, so this is a
1007                             // decent heuristic
1008                             let span = if let (Some((_, first_span)), Some((_, last_span))) = (
1009                                 provided_arg_tys.get(first_idx.to_provided_idx()),
1010                                 provided_arg_tys.get(last_idx.to_provided_idx()),
1011                             ) {
1012                                 first_span.to(*last_span)
1013                             } else {
1014                                 args_span
1015                             };
1016                             labels.push((span, format!("multiple arguments are missing")));
1017                             suggestion_text = match suggestion_text {
1018                                 SuggestionText::None | SuggestionText::Provide(_) => {
1019                                     SuggestionText::Provide(true)
1020                                 }
1021                                 _ => SuggestionText::DidYouMean,
1022                             };
1023                         }
1024                     }
1025                 }
1026                 Error::Swap(
1027                     first_provided_idx,
1028                     second_provided_idx,
1029                     first_expected_idx,
1030                     second_expected_idx,
1031                 ) => {
1032                     let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
1033                     let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
1034                     let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
1035                         format!(", found `{}`", first_provided_ty)
1036                     } else {
1037                         String::new()
1038                     };
1039                     labels.push((
1040                         first_span,
1041                         format!("expected `{}`{}", first_expected_ty, first_provided_ty_name),
1042                     ));
1043
1044                     let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
1045                     let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
1046                     let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
1047                         format!(", found `{}`", second_provided_ty)
1048                     } else {
1049                         String::new()
1050                     };
1051                     labels.push((
1052                         second_span,
1053                         format!("expected `{}`{}", second_expected_ty, second_provided_ty_name),
1054                     ));
1055
1056                     suggestion_text = match suggestion_text {
1057                         SuggestionText::None => SuggestionText::Swap,
1058                         _ => SuggestionText::DidYouMean,
1059                     };
1060                 }
1061                 Error::Permutation(args) => {
1062                     for (dst_arg, dest_input) in args {
1063                         let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
1064                         let (provided_ty, provided_span) = provided_arg_tys[dest_input];
1065                         let provided_ty_name = if !has_error_or_infer([provided_ty]) {
1066                             format!(", found `{}`", provided_ty)
1067                         } else {
1068                             String::new()
1069                         };
1070                         labels.push((
1071                             provided_span,
1072                             format!("expected `{}`{}", expected_ty, provided_ty_name),
1073                         ));
1074                     }
1075
1076                     suggestion_text = match suggestion_text {
1077                         SuggestionText::None => SuggestionText::Reorder,
1078                         _ => SuggestionText::DidYouMean,
1079                     };
1080                 }
1081             }
1082         }
1083
1084         // If we have less than 5 things to say, it would be useful to call out exactly what's wrong
1085         if labels.len() <= 5 {
1086             for (span, label) in labels {
1087                 err.span_label(span, label);
1088             }
1089         }
1090
1091         // Call out where the function is defined
1092         self.label_fn_like(&mut err, fn_def_id, callee_ty, None, is_method);
1093
1094         // And add a suggestion block for all of the parameters
1095         let suggestion_text = match suggestion_text {
1096             SuggestionText::None => None,
1097             SuggestionText::Provide(plural) => {
1098                 Some(format!("provide the argument{}", if plural { "s" } else { "" }))
1099             }
1100             SuggestionText::Remove(plural) => {
1101                 Some(format!("remove the extra argument{}", if plural { "s" } else { "" }))
1102             }
1103             SuggestionText::Swap => Some("swap these arguments".to_string()),
1104             SuggestionText::Reorder => Some("reorder these arguments".to_string()),
1105             SuggestionText::DidYouMean => Some("did you mean".to_string()),
1106         };
1107         if let Some(suggestion_text) = suggestion_text {
1108             let source_map = self.sess().source_map();
1109             let (mut suggestion, suggestion_span) =
1110                 if let Some(call_span) = full_call_span.find_ancestor_inside(error_span) {
1111                     ("(".to_string(), call_span.shrink_to_hi().to(error_span.shrink_to_hi()))
1112                 } else {
1113                     (
1114                         format!(
1115                             "{}(",
1116                             source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| {
1117                                 fn_def_id.map_or("".to_string(), |fn_def_id| {
1118                                     tcx.item_name(fn_def_id).to_string()
1119                                 })
1120                             })
1121                         ),
1122                         error_span,
1123                     )
1124                 };
1125             let mut needs_comma = false;
1126             for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
1127                 if needs_comma {
1128                     suggestion += ", ";
1129                 } else {
1130                     needs_comma = true;
1131                 }
1132                 let suggestion_text = if let Some(provided_idx) = provided_idx
1133                     && let (_, provided_span) = provided_arg_tys[*provided_idx]
1134                     && let Ok(arg_text) = source_map.span_to_snippet(provided_span)
1135                 {
1136                     arg_text
1137                 } else {
1138                     // Propose a placeholder of the correct type
1139                     let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
1140                     if expected_ty.is_unit() {
1141                         "()".to_string()
1142                     } else if expected_ty.is_suggestable(tcx, false) {
1143                         format!("/* {} */", expected_ty)
1144                     } else {
1145                         "/* value */".to_string()
1146                     }
1147                 };
1148                 suggestion += &suggestion_text;
1149             }
1150             suggestion += ")";
1151             err.span_suggestion_verbose(
1152                 suggestion_span,
1153                 &suggestion_text,
1154                 suggestion,
1155                 Applicability::HasPlaceholders,
1156             );
1157         }
1158
1159         err.emit();
1160     }
1161
1162     // AST fragment checking
1163     pub(in super::super) fn check_lit(
1164         &self,
1165         lit: &hir::Lit,
1166         expected: Expectation<'tcx>,
1167     ) -> Ty<'tcx> {
1168         let tcx = self.tcx;
1169
1170         match lit.node {
1171             ast::LitKind::Str(..) => tcx.mk_static_str(),
1172             ast::LitKind::ByteStr(ref v) => {
1173                 tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64))
1174             }
1175             ast::LitKind::Byte(_) => tcx.types.u8,
1176             ast::LitKind::Char(_) => tcx.types.char,
1177             ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(ty::int_ty(t)),
1178             ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(ty::uint_ty(t)),
1179             ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
1180                 let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
1181                     ty::Int(_) | ty::Uint(_) => Some(ty),
1182                     ty::Char => Some(tcx.types.u8),
1183                     ty::RawPtr(..) => Some(tcx.types.usize),
1184                     ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize),
1185                     _ => None,
1186                 });
1187                 opt_ty.unwrap_or_else(|| self.next_int_var())
1188             }
1189             ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
1190                 tcx.mk_mach_float(ty::float_ty(t))
1191             }
1192             ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
1193                 let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
1194                     ty::Float(_) => Some(ty),
1195                     _ => None,
1196                 });
1197                 opt_ty.unwrap_or_else(|| self.next_float_var())
1198             }
1199             ast::LitKind::Bool(_) => tcx.types.bool,
1200             ast::LitKind::Err => tcx.ty_error(),
1201         }
1202     }
1203
1204     pub fn check_struct_path(
1205         &self,
1206         qpath: &QPath<'_>,
1207         hir_id: hir::HirId,
1208     ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> {
1209         let path_span = qpath.span();
1210         let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
1211         let variant = match def {
1212             Res::Err => {
1213                 self.set_tainted_by_errors(
1214                     self.tcx.sess.delay_span_bug(path_span, "`Res::Err` but no error emitted"),
1215                 );
1216                 return None;
1217             }
1218             Res::Def(DefKind::Variant, _) => match ty.kind() {
1219                 ty::Adt(adt, substs) => Some((adt.variant_of_res(def), adt.did(), substs)),
1220                 _ => bug!("unexpected type: {:?}", ty),
1221             },
1222             Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
1223             | Res::SelfTyParam { .. }
1224             | Res::SelfTyAlias { .. } => match ty.kind() {
1225                 ty::Adt(adt, substs) if !adt.is_enum() => {
1226                     Some((adt.non_enum_variant(), adt.did(), substs))
1227                 }
1228                 _ => None,
1229             },
1230             _ => bug!("unexpected definition: {:?}", def),
1231         };
1232
1233         if let Some((variant, did, substs)) = variant {
1234             debug!("check_struct_path: did={:?} substs={:?}", did, substs);
1235             self.write_user_type_annotation_from_substs(hir_id, did, substs, None);
1236
1237             // Check bounds on type arguments used in the path.
1238             self.add_required_obligations_for_hir(path_span, did, substs, hir_id);
1239
1240             Some((variant, ty))
1241         } else {
1242             match ty.kind() {
1243                 ty::Error(_) => {
1244                     // E0071 might be caused by a spelling error, which will have
1245                     // already caused an error message and probably a suggestion
1246                     // elsewhere. Refrain from emitting more unhelpful errors here
1247                     // (issue #88844).
1248                 }
1249                 _ => {
1250                     struct_span_err!(
1251                         self.tcx.sess,
1252                         path_span,
1253                         E0071,
1254                         "expected struct, variant or union type, found {}",
1255                         ty.sort_string(self.tcx)
1256                     )
1257                     .span_label(path_span, "not a struct")
1258                     .emit();
1259                 }
1260             }
1261             None
1262         }
1263     }
1264
1265     pub fn check_decl_initializer(
1266         &self,
1267         hir_id: hir::HirId,
1268         pat: &'tcx hir::Pat<'tcx>,
1269         init: &'tcx hir::Expr<'tcx>,
1270     ) -> Ty<'tcx> {
1271         // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
1272         // for #42640 (default match binding modes).
1273         //
1274         // See #44848.
1275         let ref_bindings = pat.contains_explicit_ref_binding();
1276
1277         let local_ty = self.local_ty(init.span, hir_id).revealed_ty;
1278         if let Some(m) = ref_bindings {
1279             // Somewhat subtle: if we have a `ref` binding in the pattern,
1280             // we want to avoid introducing coercions for the RHS. This is
1281             // both because it helps preserve sanity and, in the case of
1282             // ref mut, for soundness (issue #23116). In particular, in
1283             // the latter case, we need to be clear that the type of the
1284             // referent for the reference that results is *equal to* the
1285             // type of the place it is referencing, and not some
1286             // supertype thereof.
1287             let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
1288             self.demand_eqtype(init.span, local_ty, init_ty);
1289             init_ty
1290         } else {
1291             self.check_expr_coercable_to_type(init, local_ty, None)
1292         }
1293     }
1294
1295     pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
1296         // Determine and write the type which we'll check the pattern against.
1297         let decl_ty = self.local_ty(decl.span, decl.hir_id).decl_ty;
1298         self.write_ty(decl.hir_id, decl_ty);
1299
1300         // Type check the initializer.
1301         if let Some(ref init) = decl.init {
1302             let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, &init);
1303             self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, init_ty);
1304         }
1305
1306         // Does the expected pattern type originate from an expression and what is the span?
1307         let (origin_expr, ty_span) = match (decl.ty, decl.init) {
1308             (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type.
1309             (_, Some(init)) => {
1310                 (true, Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
1311             } // No explicit type; so use the scrutinee.
1312             _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained.
1313         };
1314
1315         // Type check the pattern. Override if necessary to avoid knock-on errors.
1316         self.check_pat_top(&decl.pat, decl_ty, ty_span, origin_expr);
1317         let pat_ty = self.node_ty(decl.pat.hir_id);
1318         self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, pat_ty);
1319
1320         if let Some(blk) = decl.els {
1321             let previous_diverges = self.diverges.get();
1322             let else_ty = self.check_block_with_expected(blk, NoExpectation);
1323             let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
1324             if let Some(mut err) =
1325                 self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
1326             {
1327                 err.emit();
1328             }
1329             self.diverges.set(previous_diverges);
1330         }
1331     }
1332
1333     /// Type check a `let` statement.
1334     pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) {
1335         self.check_decl(local.into());
1336     }
1337
1338     pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>, is_last: bool) {
1339         // Don't do all the complex logic below for `DeclItem`.
1340         match stmt.kind {
1341             hir::StmtKind::Item(..) => return,
1342             hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
1343         }
1344
1345         self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");
1346
1347         // Hide the outer diverging and `has_errors` flags.
1348         let old_diverges = self.diverges.replace(Diverges::Maybe);
1349
1350         match stmt.kind {
1351             hir::StmtKind::Local(l) => {
1352                 self.check_decl_local(l);
1353             }
1354             // Ignore for now.
1355             hir::StmtKind::Item(_) => {}
1356             hir::StmtKind::Expr(ref expr) => {
1357                 // Check with expected type of `()`.
1358                 self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| {
1359                     if expr.can_have_side_effects() {
1360                         self.suggest_semicolon_at_end(expr.span, err);
1361                     }
1362                 });
1363             }
1364             hir::StmtKind::Semi(ref expr) => {
1365                 // All of this is equivalent to calling `check_expr`, but it is inlined out here
1366                 // in order to capture the fact that this `match` is the last statement in its
1367                 // function. This is done for better suggestions to remove the `;`.
1368                 let expectation = match expr.kind {
1369                     hir::ExprKind::Match(..) if is_last => IsLast(stmt.span),
1370                     _ => NoExpectation,
1371                 };
1372                 self.check_expr_with_expectation(expr, expectation);
1373             }
1374         }
1375
1376         // Combine the diverging and `has_error` flags.
1377         self.diverges.set(self.diverges.get() | old_diverges);
1378     }
1379
1380     pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
1381         let unit = self.tcx.mk_unit();
1382         let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
1383
1384         // if the block produces a `!` value, that can always be
1385         // (effectively) coerced to unit.
1386         if !ty.is_never() {
1387             self.demand_suptype(blk.span, unit, ty);
1388         }
1389     }
1390
1391     pub(in super::super) fn check_block_with_expected(
1392         &self,
1393         blk: &'tcx hir::Block<'tcx>,
1394         expected: Expectation<'tcx>,
1395     ) -> Ty<'tcx> {
1396         let prev = self.ps.replace(self.ps.get().recurse(blk));
1397
1398         // In some cases, blocks have just one exit, but other blocks
1399         // can be targeted by multiple breaks. This can happen both
1400         // with labeled blocks as well as when we desugar
1401         // a `try { ... }` expression.
1402         //
1403         // Example 1:
1404         //
1405         //    'a: { if true { break 'a Err(()); } Ok(()) }
1406         //
1407         // Here we would wind up with two coercions, one from
1408         // `Err(())` and the other from the tail expression
1409         // `Ok(())`. If the tail expression is omitted, that's a
1410         // "forced unit" -- unless the block diverges, in which
1411         // case we can ignore the tail expression (e.g., `'a: {
1412         // break 'a 22; }` would not force the type of the block
1413         // to be `()`).
1414         let tail_expr = blk.expr.as_ref();
1415         let coerce_to_ty = expected.coercion_target_type(self, blk.span);
1416         let coerce = if blk.targeted_by_break {
1417             CoerceMany::new(coerce_to_ty)
1418         } else {
1419             let tail_expr: &[&hir::Expr<'_>] = match tail_expr {
1420                 Some(e) => slice::from_ref(e),
1421                 None => &[],
1422             };
1423             CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
1424         };
1425
1426         let prev_diverges = self.diverges.get();
1427         let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };
1428
1429         let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
1430             for (pos, s) in blk.stmts.iter().enumerate() {
1431                 self.check_stmt(s, blk.stmts.len() - 1 == pos);
1432             }
1433
1434             // check the tail expression **without** holding the
1435             // `enclosing_breakables` lock below.
1436             let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
1437
1438             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1439             let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
1440             let coerce = ctxt.coerce.as_mut().unwrap();
1441             if let Some(tail_expr_ty) = tail_expr_ty {
1442                 let tail_expr = tail_expr.unwrap();
1443                 let span = self.get_expr_coercion_span(tail_expr);
1444                 let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id));
1445                 let ty_for_diagnostic = coerce.merged_ty();
1446                 // We use coerce_inner here because we want to augment the error
1447                 // suggesting to wrap the block in square brackets if it might've
1448                 // been mistaken array syntax
1449                 coerce.coerce_inner(
1450                     self,
1451                     &cause,
1452                     Some(tail_expr),
1453                     tail_expr_ty,
1454                     Some(&mut |diag: &mut Diagnostic| {
1455                         self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
1456                     }),
1457                     false,
1458                 );
1459             } else {
1460                 // Subtle: if there is no explicit tail expression,
1461                 // that is typically equivalent to a tail expression
1462                 // of `()` -- except if the block diverges. In that
1463                 // case, there is no value supplied from the tail
1464                 // expression (assuming there are no other breaks,
1465                 // this implies that the type of the block will be
1466                 // `!`).
1467                 //
1468                 // #41425 -- label the implicit `()` as being the
1469                 // "found type" here, rather than the "expected type".
1470                 if !self.diverges.get().is_always() {
1471                     // #50009 -- Do not point at the entire fn block span, point at the return type
1472                     // span, as it is the cause of the requirement, and
1473                     // `consider_hint_about_removing_semicolon` will point at the last expression
1474                     // if it were a relevant part of the error. This improves usability in editors
1475                     // that highlight errors inline.
1476                     let mut sp = blk.span;
1477                     let mut fn_span = None;
1478                     if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) {
1479                         let ret_sp = decl.output.span();
1480                         if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
1481                             // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
1482                             // output would otherwise be incorrect and even misleading. Make sure
1483                             // the span we're aiming at correspond to a `fn` body.
1484                             if block_sp == blk.span {
1485                                 sp = ret_sp;
1486                                 fn_span = Some(ident.span);
1487                             }
1488                         }
1489                     }
1490                     coerce.coerce_forced_unit(
1491                         self,
1492                         &self.misc(sp),
1493                         &mut |err| {
1494                             if let Some(expected_ty) = expected.only_has_type(self) {
1495                                 if !self.consider_removing_semicolon(blk, expected_ty, err) {
1496                                     self.err_ctxt().consider_returning_binding(
1497                                         blk,
1498                                         expected_ty,
1499                                         err,
1500                                     );
1501                                 }
1502                                 if expected_ty == self.tcx.types.bool {
1503                                     // If this is caused by a missing `let` in a `while let`,
1504                                     // silence this redundant error, as we already emit E0070.
1505
1506                                     // Our block must be a `assign desugar local; assignment`
1507                                     if let Some(hir::Node::Block(hir::Block {
1508                                         stmts:
1509                                             [
1510                                                 hir::Stmt {
1511                                                     kind:
1512                                                         hir::StmtKind::Local(hir::Local {
1513                                                             source:
1514                                                                 hir::LocalSource::AssignDesugar(_),
1515                                                             ..
1516                                                         }),
1517                                                     ..
1518                                                 },
1519                                                 hir::Stmt {
1520                                                     kind:
1521                                                         hir::StmtKind::Expr(hir::Expr {
1522                                                             kind: hir::ExprKind::Assign(..),
1523                                                             ..
1524                                                         }),
1525                                                     ..
1526                                                 },
1527                                             ],
1528                                         ..
1529                                     })) = self.tcx.hir().find(blk.hir_id)
1530                                     {
1531                                         self.comes_from_while_condition(blk.hir_id, |_| {
1532                                             err.downgrade_to_delayed_bug();
1533                                         })
1534                                     }
1535                                 }
1536                             }
1537                             if let Some(fn_span) = fn_span {
1538                                 err.span_label(
1539                                     fn_span,
1540                                     "implicitly returns `()` as its body has no tail or `return` \
1541                                      expression",
1542                                 );
1543                             }
1544                         },
1545                         false,
1546                     );
1547                 }
1548             }
1549         });
1550
1551         if ctxt.may_break {
1552             // If we can break from the block, then the block's exit is always reachable
1553             // (... as long as the entry is reachable) - regardless of the tail of the block.
1554             self.diverges.set(prev_diverges);
1555         }
1556
1557         let ty = ctxt.coerce.unwrap().complete(self);
1558
1559         self.write_ty(blk.hir_id, ty);
1560
1561         self.ps.set(prev);
1562         ty
1563     }
1564
1565     fn parent_item_span(&self, id: hir::HirId) -> Option<Span> {
1566         let node = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(id).def_id);
1567         match node {
1568             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
1569             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
1570                 let body = self.tcx.hir().body(body_id);
1571                 if let ExprKind::Block(block, _) = &body.value.kind {
1572                     return Some(block.span);
1573                 }
1574             }
1575             _ => {}
1576         }
1577         None
1578     }
1579
1580     /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise.
1581     fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> {
1582         let parent = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(blk_id).def_id);
1583         self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident))
1584     }
1585
1586     /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
1587     /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
1588     /// when given code like the following:
1589     /// ```text
1590     /// if false { return 0i32; } else { 1u32 }
1591     /// //                               ^^^^ point at this instead of the whole `if` expression
1592     /// ```
1593     fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
1594         let check_in_progress = |elem: &hir::Expr<'_>| {
1595             self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
1596                 |_| match elem.kind {
1597                     // Point at the tail expression when possible.
1598                     hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
1599                     _ => elem.span,
1600                 },
1601             )
1602         };
1603
1604         if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
1605             if let Some(rslt) = check_in_progress(el) {
1606                 return rslt;
1607             }
1608         }
1609
1610         if let hir::ExprKind::Match(_, arms, _) = expr.kind {
1611             let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
1612             if let Some(span) = iter.next() {
1613                 if iter.next().is_none() {
1614                     return span;
1615                 }
1616             }
1617         }
1618
1619         expr.span
1620     }
1621
1622     fn overwrite_local_ty_if_err(
1623         &self,
1624         hir_id: hir::HirId,
1625         pat: &'tcx hir::Pat<'tcx>,
1626         decl_ty: Ty<'tcx>,
1627         ty: Ty<'tcx>,
1628     ) {
1629         if ty.references_error() {
1630             // Override the types everywhere with `err()` to avoid knock on errors.
1631             self.write_ty(hir_id, ty);
1632             self.write_ty(pat.hir_id, ty);
1633             let local_ty = LocalTy { decl_ty, revealed_ty: ty };
1634             self.locals.borrow_mut().insert(hir_id, local_ty);
1635             self.locals.borrow_mut().insert(pat.hir_id, local_ty);
1636         }
1637     }
1638
1639     // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
1640     // The newly resolved definition is written into `type_dependent_defs`.
1641     fn finish_resolving_struct_path(
1642         &self,
1643         qpath: &QPath<'_>,
1644         path_span: Span,
1645         hir_id: hir::HirId,
1646     ) -> (Res, Ty<'tcx>) {
1647         match *qpath {
1648             QPath::Resolved(ref maybe_qself, ref path) => {
1649                 let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
1650                 let ty = <dyn AstConv<'_>>::res_to_ty(self, self_ty, path, true);
1651                 (path.res, ty)
1652             }
1653             QPath::TypeRelative(ref qself, ref segment) => {
1654                 let ty = self.to_ty(qself);
1655
1656                 let result = <dyn AstConv<'_>>::associated_path_to_ty(
1657                     self, hir_id, path_span, ty, qself, segment, true,
1658                 );
1659                 let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error());
1660                 let result = result.map(|(_, kind, def_id)| (kind, def_id));
1661
1662                 // Write back the new resolution.
1663                 self.write_resolution(hir_id, result);
1664
1665                 (result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
1666             }
1667             QPath::LangItem(lang_item, span, id) => {
1668                 self.resolve_lang_item_path(lang_item, span, hir_id, id)
1669             }
1670         }
1671     }
1672
1673     /// Given a vector of fulfillment errors, try to adjust the spans of the
1674     /// errors to more accurately point at the cause of the failure.
1675     ///
1676     /// This applies to calls, methods, and struct expressions. This will also
1677     /// try to deduplicate errors that are due to the same cause but might
1678     /// have been created with different [`ObligationCause`][traits::ObligationCause]s.
1679     pub(super) fn adjust_fulfillment_errors_for_expr_obligation(
1680         &self,
1681         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
1682     ) {
1683         // Store a mapping from `(Span, Predicate) -> ObligationCause`, so that
1684         // other errors that have the same span and predicate can also get fixed,
1685         // even if their `ObligationCauseCode` isn't an `Expr*Obligation` kind.
1686         // This is important since if we adjust one span but not the other, then
1687         // we will have "duplicated" the error on the UI side.
1688         let mut remap_cause = FxHashSet::default();
1689         let mut not_adjusted = vec![];
1690
1691         for error in errors {
1692             let before_span = error.obligation.cause.span;
1693             if self.adjust_fulfillment_error_for_expr_obligation(error)
1694                 || before_span != error.obligation.cause.span
1695             {
1696                 // Store both the predicate and the predicate *without constness*
1697                 // since sometimes we instantiate and check both of these in a
1698                 // method call, for example.
1699                 remap_cause.insert((
1700                     before_span,
1701                     error.obligation.predicate,
1702                     error.obligation.cause.clone(),
1703                 ));
1704                 remap_cause.insert((
1705                     before_span,
1706                     error.obligation.predicate.without_const(self.tcx),
1707                     error.obligation.cause.clone(),
1708                 ));
1709             } else {
1710                 // If it failed to be adjusted once around, it may be adjusted
1711                 // via the "remap cause" mapping the second time...
1712                 not_adjusted.push(error);
1713             }
1714         }
1715
1716         for error in not_adjusted {
1717             for (span, predicate, cause) in &remap_cause {
1718                 if *predicate == error.obligation.predicate
1719                     && span.contains(error.obligation.cause.span)
1720                 {
1721                     error.obligation.cause = cause.clone();
1722                     continue;
1723                 }
1724             }
1725         }
1726     }
1727
1728     fn adjust_fulfillment_error_for_expr_obligation(
1729         &self,
1730         error: &mut traits::FulfillmentError<'tcx>,
1731     ) -> bool {
1732         let (traits::ExprItemObligation(def_id, hir_id, idx) | traits::ExprBindingObligation(def_id, _, hir_id, idx))
1733             = *error.obligation.cause.code().peel_derives() else { return false; };
1734         let hir = self.tcx.hir();
1735         let hir::Node::Expr(expr) = hir.get(hir_id) else { return false; };
1736
1737         // Skip over mentioning async lang item
1738         if Some(def_id) == self.tcx.lang_items().from_generator_fn()
1739             && error.obligation.cause.span.desugaring_kind()
1740                 == Some(rustc_span::DesugaringKind::Async)
1741         {
1742             return false;
1743         }
1744
1745         let Some(unsubstituted_pred) =
1746             self.tcx.predicates_of(def_id).instantiate_identity(self.tcx).predicates.into_iter().nth(idx)
1747             else { return false; };
1748
1749         let generics = self.tcx.generics_of(def_id);
1750         let predicate_substs = match unsubstituted_pred.kind().skip_binder() {
1751             ty::PredicateKind::Trait(pred) => pred.trait_ref.substs,
1752             ty::PredicateKind::Projection(pred) => pred.projection_ty.substs,
1753             _ => ty::List::empty(),
1754         };
1755
1756         let find_param_matching = |matches: &dyn Fn(&ty::ParamTy) -> bool| {
1757             predicate_substs.types().find_map(|ty| {
1758                 ty.walk().find_map(|arg| {
1759                     if let ty::GenericArgKind::Type(ty) = arg.unpack()
1760                         && let ty::Param(param_ty) = ty.kind()
1761                         && matches(param_ty)
1762                     {
1763                         Some(arg)
1764                     } else {
1765                         None
1766                     }
1767                 })
1768             })
1769         };
1770
1771         // Prefer generics that are local to the fn item, since these are likely
1772         // to be the cause of the unsatisfied predicate.
1773         let mut param_to_point_at = find_param_matching(&|param_ty| {
1774             self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) == def_id
1775         });
1776         // Fall back to generic that isn't local to the fn item. This will come
1777         // from a trait or impl, for example.
1778         let mut fallback_param_to_point_at = find_param_matching(&|param_ty| {
1779             self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) != def_id
1780                 && param_ty.name != rustc_span::symbol::kw::SelfUpper
1781         });
1782         // Finally, the `Self` parameter is possibly the reason that the predicate
1783         // is unsatisfied. This is less likely to be true for methods, because
1784         // method probe means that we already kinda check that the predicates due
1785         // to the `Self` type are true.
1786         let mut self_param_to_point_at =
1787             find_param_matching(&|param_ty| param_ty.name == rustc_span::symbol::kw::SelfUpper);
1788
1789         // Finally, for ambiguity-related errors, we actually want to look
1790         // for a parameter that is the source of the inference type left
1791         // over in this predicate.
1792         if let traits::FulfillmentErrorCode::CodeAmbiguity = error.code {
1793             fallback_param_to_point_at = None;
1794             self_param_to_point_at = None;
1795             param_to_point_at =
1796                 self.find_ambiguous_parameter_in(def_id, error.root_obligation.predicate);
1797         }
1798
1799         if self.closure_span_overlaps_error(error, expr.span) {
1800             return false;
1801         }
1802
1803         match &expr.kind {
1804             hir::ExprKind::Path(qpath) => {
1805                 if let hir::Node::Expr(hir::Expr {
1806                     kind: hir::ExprKind::Call(callee, args),
1807                     hir_id: call_hir_id,
1808                     span: call_span,
1809                     ..
1810                 }) = hir.get(hir.get_parent_node(expr.hir_id))
1811                     && callee.hir_id == expr.hir_id
1812                 {
1813                     if self.closure_span_overlaps_error(error, *call_span) {
1814                         return false;
1815                     }
1816
1817                     for param in
1818                         [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1819                         .into_iter()
1820                         .flatten()
1821                     {
1822                         if self.point_at_arg_if_possible(
1823                                 error,
1824                                 def_id,
1825                                 param,
1826                                 *call_hir_id,
1827                                 callee.span,
1828                                 None,
1829                                 args,
1830                             )
1831                         {
1832                             return true;
1833                         }
1834                     }
1835                 }
1836                 // Notably, we only point to params that are local to the
1837                 // item we're checking, since those are the ones we are able
1838                 // to look in the final `hir::PathSegment` for. Everything else
1839                 // would require a deeper search into the `qpath` than I think
1840                 // is worthwhile.
1841                 if let Some(param_to_point_at) = param_to_point_at
1842                     && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
1843                 {
1844                     return true;
1845                 }
1846             }
1847             hir::ExprKind::MethodCall(segment, receiver, args, ..) => {
1848                 for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1849                     .into_iter()
1850                     .flatten()
1851                 {
1852                     if self.point_at_arg_if_possible(
1853                         error,
1854                         def_id,
1855                         param,
1856                         hir_id,
1857                         segment.ident.span,
1858                         Some(receiver),
1859                         args,
1860                     ) {
1861                         return true;
1862                     }
1863                 }
1864                 if let Some(param_to_point_at) = param_to_point_at
1865                     && self.point_at_generic_if_possible(error, def_id, param_to_point_at, segment)
1866                 {
1867                     return true;
1868                 }
1869             }
1870             hir::ExprKind::Struct(qpath, fields, ..) => {
1871                 if let Res::Def(DefKind::Struct | DefKind::Variant, variant_def_id) =
1872                     self.typeck_results.borrow().qpath_res(qpath, hir_id)
1873                 {
1874                     for param in
1875                         [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
1876                     {
1877                         if let Some(param) = param
1878                             && self.point_at_field_if_possible(
1879                                 error,
1880                                 def_id,
1881                                 param,
1882                                 variant_def_id,
1883                                 fields,
1884                             )
1885                         {
1886                             return true;
1887                         }
1888                     }
1889                 }
1890                 if let Some(param_to_point_at) = param_to_point_at
1891                     && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
1892                 {
1893                     return true;
1894                 }
1895             }
1896             _ => {}
1897         }
1898
1899         false
1900     }
1901
1902     fn closure_span_overlaps_error(
1903         &self,
1904         error: &traits::FulfillmentError<'tcx>,
1905         span: Span,
1906     ) -> bool {
1907         if let traits::FulfillmentErrorCode::CodeSelectionError(
1908             traits::SelectionError::OutputTypeParameterMismatch(_, expected, _),
1909         ) = error.code
1910             && let ty::Closure(def_id, _) | ty::Generator(def_id, ..) = expected.skip_binder().self_ty().kind()
1911             && span.overlaps(self.tcx.def_span(*def_id))
1912         {
1913             true
1914         } else {
1915             false
1916         }
1917     }
1918
1919     fn point_at_arg_if_possible(
1920         &self,
1921         error: &mut traits::FulfillmentError<'tcx>,
1922         def_id: DefId,
1923         param_to_point_at: ty::GenericArg<'tcx>,
1924         call_hir_id: hir::HirId,
1925         callee_span: Span,
1926         receiver: Option<&'tcx hir::Expr<'tcx>>,
1927         args: &'tcx [hir::Expr<'tcx>],
1928     ) -> bool {
1929         let sig = self.tcx.fn_sig(def_id).skip_binder();
1930         let args_referencing_param: Vec<_> = sig
1931             .inputs()
1932             .iter()
1933             .enumerate()
1934             .filter(|(_, ty)| find_param_in_ty(**ty, param_to_point_at))
1935             .collect();
1936         // If there's one field that references the given generic, great!
1937         if let [(idx, _)] = args_referencing_param.as_slice()
1938             && let Some(arg) = receiver
1939                 .map_or(args.get(*idx), |rcvr| if *idx == 0 { Some(rcvr) } else { args.get(*idx - 1) }) {
1940             error.obligation.cause.span = arg.span.find_ancestor_in_same_ctxt(error.obligation.cause.span).unwrap_or(arg.span);
1941             error.obligation.cause.map_code(|parent_code| {
1942                 ObligationCauseCode::FunctionArgumentObligation {
1943                     arg_hir_id: arg.hir_id,
1944                     call_hir_id,
1945                     parent_code,
1946                 }
1947             });
1948             return true;
1949         } else if args_referencing_param.len() > 0 {
1950             // If more than one argument applies, then point to the callee span at least...
1951             // We have chance to fix this up further in `point_at_generics_if_possible`
1952             error.obligation.cause.span = callee_span;
1953         }
1954
1955         false
1956     }
1957
1958     fn point_at_field_if_possible(
1959         &self,
1960         error: &mut traits::FulfillmentError<'tcx>,
1961         def_id: DefId,
1962         param_to_point_at: ty::GenericArg<'tcx>,
1963         variant_def_id: DefId,
1964         expr_fields: &[hir::ExprField<'tcx>],
1965     ) -> bool {
1966         let def = self.tcx.adt_def(def_id);
1967
1968         let identity_substs = ty::InternalSubsts::identity_for_item(self.tcx, def_id);
1969         let fields_referencing_param: Vec<_> = def
1970             .variant_with_id(variant_def_id)
1971             .fields
1972             .iter()
1973             .filter(|field| {
1974                 let field_ty = field.ty(self.tcx, identity_substs);
1975                 find_param_in_ty(field_ty, param_to_point_at)
1976             })
1977             .collect();
1978
1979         if let [field] = fields_referencing_param.as_slice() {
1980             for expr_field in expr_fields {
1981                 // Look for the ExprField that matches the field, using the
1982                 // same rules that check_expr_struct uses for macro hygiene.
1983                 if self.tcx.adjust_ident(expr_field.ident, variant_def_id) == field.ident(self.tcx)
1984                 {
1985                     error.obligation.cause.span = expr_field
1986                         .expr
1987                         .span
1988                         .find_ancestor_in_same_ctxt(error.obligation.cause.span)
1989                         .unwrap_or(expr_field.span);
1990                     return true;
1991                 }
1992             }
1993         }
1994
1995         false
1996     }
1997
1998     fn point_at_path_if_possible(
1999         &self,
2000         error: &mut traits::FulfillmentError<'tcx>,
2001         def_id: DefId,
2002         param: ty::GenericArg<'tcx>,
2003         qpath: &QPath<'tcx>,
2004     ) -> bool {
2005         match qpath {
2006             hir::QPath::Resolved(_, path) => {
2007                 if let Some(segment) = path.segments.last()
2008                     && self.point_at_generic_if_possible(error, def_id, param, segment)
2009                 {
2010                     return true;
2011                 }
2012             }
2013             hir::QPath::TypeRelative(_, segment) => {
2014                 if self.point_at_generic_if_possible(error, def_id, param, segment) {
2015                     return true;
2016                 }
2017             }
2018             _ => {}
2019         }
2020
2021         false
2022     }
2023
2024     fn point_at_generic_if_possible(
2025         &self,
2026         error: &mut traits::FulfillmentError<'tcx>,
2027         def_id: DefId,
2028         param_to_point_at: ty::GenericArg<'tcx>,
2029         segment: &hir::PathSegment<'tcx>,
2030     ) -> bool {
2031         let own_substs = self
2032             .tcx
2033             .generics_of(def_id)
2034             .own_substs(ty::InternalSubsts::identity_for_item(self.tcx, def_id));
2035         let Some((index, _)) = own_substs
2036             .iter()
2037             .filter(|arg| matches!(arg.unpack(), ty::GenericArgKind::Type(_)))
2038             .enumerate()
2039             .find(|(_, arg)| **arg == param_to_point_at) else { return false };
2040         let Some(arg) = segment
2041             .args()
2042             .args
2043             .iter()
2044             .filter(|arg| matches!(arg, hir::GenericArg::Type(_)))
2045             .nth(index) else { return false; };
2046         error.obligation.cause.span = arg
2047             .span()
2048             .find_ancestor_in_same_ctxt(error.obligation.cause.span)
2049             .unwrap_or(arg.span());
2050         true
2051     }
2052
2053     fn find_ambiguous_parameter_in<T: TypeVisitable<'tcx>>(
2054         &self,
2055         item_def_id: DefId,
2056         t: T,
2057     ) -> Option<ty::GenericArg<'tcx>> {
2058         struct FindAmbiguousParameter<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, DefId);
2059         impl<'tcx> TypeVisitor<'tcx> for FindAmbiguousParameter<'_, 'tcx> {
2060             type BreakTy = ty::GenericArg<'tcx>;
2061             fn visit_ty(&mut self, ty: Ty<'tcx>) -> std::ops::ControlFlow<Self::BreakTy> {
2062                 if let Some(origin) = self.0.type_var_origin(ty)
2063                     && let TypeVariableOriginKind::TypeParameterDefinition(_, Some(def_id)) =
2064                         origin.kind
2065                     && let generics = self.0.tcx.generics_of(self.1)
2066                     && let Some(index) = generics.param_def_id_to_index(self.0.tcx, def_id)
2067                     && let Some(subst) = ty::InternalSubsts::identity_for_item(self.0.tcx, self.1)
2068                         .get(index as usize)
2069                 {
2070                     ControlFlow::Break(*subst)
2071                 } else {
2072                     ty.super_visit_with(self)
2073                 }
2074             }
2075         }
2076         t.visit_with(&mut FindAmbiguousParameter(self, item_def_id)).break_value()
2077     }
2078
2079     fn label_fn_like(
2080         &self,
2081         err: &mut Diagnostic,
2082         callable_def_id: Option<DefId>,
2083         callee_ty: Option<Ty<'tcx>>,
2084         // A specific argument should be labeled, instead of all of them
2085         expected_idx: Option<usize>,
2086         is_method: bool,
2087     ) {
2088         let Some(mut def_id) = callable_def_id else {
2089             return;
2090         };
2091
2092         if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
2093             // Possibly points at either impl or trait item, so try to get it
2094             // to point to trait item, then get the parent.
2095             // This parent might be an impl in the case of an inherent function,
2096             // but the next check will fail.
2097             && let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
2098             && let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
2099             // Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
2100             && let Some(call_kind) = ty::ClosureKind::from_def_id(self.tcx, maybe_trait_def_id)
2101             && let Some(callee_ty) = callee_ty
2102         {
2103             let callee_ty = callee_ty.peel_refs();
2104             match *callee_ty.kind() {
2105                 ty::Param(param) => {
2106                     let param =
2107                         self.tcx.generics_of(self.body_id.owner).type_param(&param, self.tcx);
2108                     if param.kind.is_synthetic() {
2109                         // if it's `impl Fn() -> ..` then just fall down to the def-id based logic
2110                         def_id = param.def_id;
2111                     } else {
2112                         // Otherwise, find the predicate that makes this generic callable,
2113                         // and point at that.
2114                         let instantiated = self
2115                             .tcx
2116                             .explicit_predicates_of(self.body_id.owner)
2117                             .instantiate_identity(self.tcx);
2118                         // FIXME(compiler-errors): This could be problematic if something has two
2119                         // fn-like predicates with different args, but callable types really never
2120                         // do that, so it's OK.
2121                         for (predicate, span) in
2122                             std::iter::zip(instantiated.predicates, instantiated.spans)
2123                         {
2124                             if let ty::PredicateKind::Trait(pred) = predicate.kind().skip_binder()
2125                                 && pred.self_ty().peel_refs() == callee_ty
2126                                 && ty::ClosureKind::from_def_id(self.tcx, pred.def_id()).is_some()
2127                             {
2128                                 err.span_note(span, "callable defined here");
2129                                 return;
2130                             }
2131                         }
2132                     }
2133                 }
2134                 ty::Opaque(new_def_id, _)
2135                 | ty::Closure(new_def_id, _)
2136                 | ty::FnDef(new_def_id, _) => {
2137                     def_id = new_def_id;
2138                 }
2139                 _ => {
2140                     // Look for a user-provided impl of a `Fn` trait, and point to it.
2141                     let new_def_id = self.probe(|_| {
2142                         let trait_ref = ty::TraitRef::new(
2143                             call_kind.to_def_id(self.tcx),
2144                             self.tcx.mk_substs(
2145                                 [
2146                                     ty::GenericArg::from(callee_ty),
2147                                     self.next_ty_var(TypeVariableOrigin {
2148                                         kind: TypeVariableOriginKind::MiscVariable,
2149                                         span: rustc_span::DUMMY_SP,
2150                                     })
2151                                     .into(),
2152                                 ]
2153                                 .into_iter(),
2154                             ),
2155                         );
2156                         let obligation = traits::Obligation::new(
2157                             self.tcx,
2158                             traits::ObligationCause::dummy(),
2159                             self.param_env,
2160                             ty::Binder::dummy(ty::TraitPredicate {
2161                                 trait_ref,
2162                                 constness: ty::BoundConstness::NotConst,
2163                                 polarity: ty::ImplPolarity::Positive,
2164                             }),
2165                         );
2166                         match SelectionContext::new(&self).select(&obligation) {
2167                             Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
2168                                 Some(impl_source.impl_def_id)
2169                             }
2170                             _ => None,
2171                         }
2172                     });
2173                     if let Some(new_def_id) = new_def_id {
2174                         def_id = new_def_id;
2175                     } else {
2176                         return;
2177                     }
2178                 }
2179             }
2180         }
2181
2182         if let Some(def_span) = self.tcx.def_ident_span(def_id) && !def_span.is_dummy() {
2183             let mut spans: MultiSpan = def_span.into();
2184
2185             let params = self
2186                 .tcx
2187                 .hir()
2188                 .get_if_local(def_id)
2189                 .and_then(|node| node.body_id())
2190                 .into_iter()
2191                 .flat_map(|id| self.tcx.hir().body(id).params)
2192                 .skip(if is_method { 1 } else { 0 });
2193
2194             for (_, param) in params
2195                 .into_iter()
2196                 .enumerate()
2197                 .filter(|(idx, _)| expected_idx.map_or(true, |expected_idx| expected_idx == *idx))
2198             {
2199                 spans.push_span_label(param.span, "");
2200             }
2201
2202             let def_kind = self.tcx.def_kind(def_id);
2203             err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
2204         } else if let Some(hir::Node::Expr(e)) = self.tcx.hir().get_if_local(def_id)
2205             && let hir::ExprKind::Closure(hir::Closure { body, .. }) = &e.kind
2206         {
2207             let param = expected_idx
2208                 .and_then(|expected_idx| self.tcx.hir().body(*body).params.get(expected_idx));
2209             let (kind, span) = if let Some(param) = param {
2210                 ("closure parameter", param.span)
2211             } else {
2212                 ("closure", self.tcx.def_span(def_id))
2213             };
2214             err.span_note(span, &format!("{} defined here", kind));
2215         } else {
2216             let def_kind = self.tcx.def_kind(def_id);
2217             err.span_note(
2218                 self.tcx.def_span(def_id),
2219                 &format!("{} defined here", def_kind.descr(def_id)),
2220             );
2221         }
2222     }
2223 }
2224
2225 fn find_param_in_ty<'tcx>(ty: Ty<'tcx>, param_to_point_at: ty::GenericArg<'tcx>) -> bool {
2226     let mut walk = ty.walk();
2227     while let Some(arg) = walk.next() {
2228         if arg == param_to_point_at {
2229             return true;
2230         } else if let ty::GenericArgKind::Type(ty) = arg.unpack()
2231             && let ty::Projection(..) = ty.kind()
2232         {
2233             // This logic may seem a bit strange, but typically when
2234             // we have a projection type in a function signature, the
2235             // argument that's being passed into that signature is
2236             // not actually constraining that projection's substs in
2237             // a meaningful way. So we skip it, and see improvements
2238             // in some UI tests.
2239             walk.skip_current_subtree();
2240         }
2241     }
2242     false
2243 }