]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/expr.rs
Make stage2 rustdoc and proc-macro-srv disableable in x.py install
[rust.git] / compiler / rustc_hir_typeck / src / expr.rs
1 //! Type checking expressions.
2 //!
3 //! See `mod.rs` for more context on type checking in general.
4
5 use crate::cast;
6 use crate::coercion::CoerceMany;
7 use crate::coercion::DynamicCoerceMany;
8 use crate::errors::TypeMismatchFruTypo;
9 use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
10 use crate::errors::{
11     FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
12     YieldExprOutsideOfGenerator,
13 };
14 use crate::fatally_break_rust;
15 use crate::method::SelfSource;
16 use crate::type_error_struct;
17 use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
18 use crate::{
19     report_unexpected_variant_res, BreakableCtxt, Diverges, FnCtxt, Needs,
20     TupleArgumentsFlag::DontTupleArguments,
21 };
22 use rustc_ast as ast;
23 use rustc_data_structures::fx::FxHashMap;
24 use rustc_data_structures::stack::ensure_sufficient_stack;
25 use rustc_errors::{
26     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
27     ErrorGuaranteed, StashKey,
28 };
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind, Res};
31 use rustc_hir::def_id::DefId;
32 use rustc_hir::intravisit::Visitor;
33 use rustc_hir::lang_items::LangItem;
34 use rustc_hir::{ExprKind, HirId, QPath};
35 use rustc_hir_analysis::astconv::AstConv as _;
36 use rustc_hir_analysis::check::ty_kind_suggestion;
37 use rustc_infer::infer;
38 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
39 use rustc_infer::infer::InferOk;
40 use rustc_infer::traits::ObligationCause;
41 use rustc_middle::middle::stability;
42 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
43 use rustc_middle::ty::error::TypeError::FieldMisMatch;
44 use rustc_middle::ty::subst::SubstsRef;
45 use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
46 use rustc_session::errors::ExprParenthesesNeeded;
47 use rustc_session::parse::feature_err;
48 use rustc_span::hygiene::DesugaringKind;
49 use rustc_span::lev_distance::find_best_match_for_name;
50 use rustc_span::source_map::{Span, Spanned};
51 use rustc_span::symbol::{kw, sym, Ident, Symbol};
52 use rustc_target::spec::abi::Abi::RustIntrinsic;
53 use rustc_trait_selection::infer::InferCtxtExt;
54 use rustc_trait_selection::traits::{self, ObligationCauseCode};
55
56 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
57     fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
58         let ty = self.check_expr_with_hint(expr, expected);
59         self.demand_eqtype(expr.span, expected, ty);
60     }
61
62     pub fn check_expr_has_type_or_error(
63         &self,
64         expr: &'tcx hir::Expr<'tcx>,
65         expected: Ty<'tcx>,
66         extend_err: impl FnMut(&mut Diagnostic),
67     ) -> Ty<'tcx> {
68         self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
69     }
70
71     fn check_expr_meets_expectation_or_error(
72         &self,
73         expr: &'tcx hir::Expr<'tcx>,
74         expected: Expectation<'tcx>,
75         mut extend_err: impl FnMut(&mut Diagnostic),
76     ) -> Ty<'tcx> {
77         let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
78         let mut ty = self.check_expr_with_expectation(expr, expected);
79
80         // While we don't allow *arbitrary* coercions here, we *do* allow
81         // coercions from ! to `expected`.
82         if ty.is_never() {
83             if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
84                 let reported = self.tcx().sess.delay_span_bug(
85                     expr.span,
86                     "expression with never type wound up being adjusted",
87                 );
88                 return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
89                     target.to_owned()
90                 } else {
91                     self.tcx().ty_error_with_guaranteed(reported)
92                 };
93             }
94
95             let adj_ty = self.next_ty_var(TypeVariableOrigin {
96                 kind: TypeVariableOriginKind::AdjustmentType,
97                 span: expr.span,
98             });
99             self.apply_adjustments(
100                 expr,
101                 vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
102             );
103             ty = adj_ty;
104         }
105
106         if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
107             let _ = self.emit_type_mismatch_suggestions(
108                 &mut err,
109                 expr.peel_drop_temps(),
110                 ty,
111                 expected_ty,
112                 None,
113                 None,
114             );
115             extend_err(&mut err);
116             err.emit();
117         }
118         ty
119     }
120
121     pub(super) fn check_expr_coercable_to_type(
122         &self,
123         expr: &'tcx hir::Expr<'tcx>,
124         expected: Ty<'tcx>,
125         expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
126     ) -> Ty<'tcx> {
127         let ty = self.check_expr_with_hint(expr, expected);
128         // checks don't need two phase
129         self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
130     }
131
132     pub(super) fn check_expr_with_hint(
133         &self,
134         expr: &'tcx hir::Expr<'tcx>,
135         expected: Ty<'tcx>,
136     ) -> Ty<'tcx> {
137         self.check_expr_with_expectation(expr, ExpectHasType(expected))
138     }
139
140     fn check_expr_with_expectation_and_needs(
141         &self,
142         expr: &'tcx hir::Expr<'tcx>,
143         expected: Expectation<'tcx>,
144         needs: Needs,
145     ) -> Ty<'tcx> {
146         let ty = self.check_expr_with_expectation(expr, expected);
147
148         // If the expression is used in a place whether mutable place is required
149         // e.g. LHS of assignment, perform the conversion.
150         if let Needs::MutPlace = needs {
151             self.convert_place_derefs_to_mutable(expr);
152         }
153
154         ty
155     }
156
157     pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
158         self.check_expr_with_expectation(expr, NoExpectation)
159     }
160
161     pub(super) fn check_expr_with_needs(
162         &self,
163         expr: &'tcx hir::Expr<'tcx>,
164         needs: Needs,
165     ) -> Ty<'tcx> {
166         self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
167     }
168
169     /// Invariant:
170     /// If an expression has any sub-expressions that result in a type error,
171     /// inspecting that expression's type with `ty.references_error()` will return
172     /// true. Likewise, if an expression is known to diverge, inspecting its
173     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
174     /// strict, _|_ can appear in the type of an expression that does not,
175     /// itself, diverge: for example, fn() -> _|_.)
176     /// Note that inspecting a type's structure *directly* may expose the fact
177     /// that there are actually multiple representations for `Error`, so avoid
178     /// that when err needs to be handled differently.
179     #[instrument(skip(self, expr), level = "debug")]
180     pub(super) fn check_expr_with_expectation(
181         &self,
182         expr: &'tcx hir::Expr<'tcx>,
183         expected: Expectation<'tcx>,
184     ) -> Ty<'tcx> {
185         self.check_expr_with_expectation_and_args(expr, expected, &[])
186     }
187
188     /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
189     /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
190     pub(super) fn check_expr_with_expectation_and_args(
191         &self,
192         expr: &'tcx hir::Expr<'tcx>,
193         expected: Expectation<'tcx>,
194         args: &'tcx [hir::Expr<'tcx>],
195     ) -> Ty<'tcx> {
196         if self.tcx().sess.verbose() {
197             // make this code only run with -Zverbose because it is probably slow
198             if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
199                 if !lint_str.contains('\n') {
200                     debug!("expr text: {lint_str}");
201                 } else {
202                     let mut lines = lint_str.lines();
203                     if let Some(line0) = lines.next() {
204                         let remaining_lines = lines.count();
205                         debug!("expr text: {line0}");
206                         debug!("expr text: ...(and {remaining_lines} more lines)");
207                     }
208                 }
209             }
210         }
211
212         // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
213         // without the final expr (e.g. `try { return; }`). We don't want to generate an
214         // unreachable_code lint for it since warnings for autogenerated code are confusing.
215         let is_try_block_generated_unit_expr = match expr.kind {
216             ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
217                 args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
218             }
219
220             _ => false,
221         };
222
223         // Warn for expressions after diverging siblings.
224         if !is_try_block_generated_unit_expr {
225             self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
226         }
227
228         // Hide the outer diverging and has_errors flags.
229         let old_diverges = self.diverges.replace(Diverges::Maybe);
230
231         let ty = ensure_sufficient_stack(|| match &expr.kind {
232             hir::ExprKind::Path(
233                 qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
234             ) => self.check_expr_path(qpath, expr, args),
235             _ => self.check_expr_kind(expr, expected),
236         });
237         let ty = self.resolve_vars_if_possible(ty);
238
239         // Warn for non-block expressions with diverging children.
240         match expr.kind {
241             ExprKind::Block(..)
242             | ExprKind::If(..)
243             | ExprKind::Let(..)
244             | ExprKind::Loop(..)
245             | ExprKind::Match(..) => {}
246             // If `expr` is a result of desugaring the try block and is an ok-wrapped
247             // diverging expression (e.g. it arose from desugaring of `try { return }`),
248             // we skip issuing a warning because it is autogenerated code.
249             ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
250             ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
251             ExprKind::MethodCall(segment, ..) => {
252                 self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
253             }
254             _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
255         }
256
257         // Any expression that produces a value of type `!` must have diverged
258         if ty.is_never() {
259             self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
260         }
261
262         // Record the type, which applies it effects.
263         // We need to do this after the warning above, so that
264         // we don't warn for the diverging expression itself.
265         self.write_ty(expr.hir_id, ty);
266
267         // Combine the diverging and has_error flags.
268         self.diverges.set(self.diverges.get() | old_diverges);
269
270         debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
271         debug!("... {:?}, expected is {:?}", ty, expected);
272
273         ty
274     }
275
276     #[instrument(skip(self, expr), level = "debug")]
277     fn check_expr_kind(
278         &self,
279         expr: &'tcx hir::Expr<'tcx>,
280         expected: Expectation<'tcx>,
281     ) -> Ty<'tcx> {
282         trace!("expr={:#?}", expr);
283
284         let tcx = self.tcx;
285         match expr.kind {
286             ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
287             ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
288             ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
289             ExprKind::Assign(lhs, rhs, span) => {
290                 self.check_expr_assign(expr, expected, lhs, rhs, span)
291             }
292             ExprKind::AssignOp(op, lhs, rhs) => {
293                 self.check_binop_assign(expr, op, lhs, rhs, expected)
294             }
295             ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
296             ExprKind::AddrOf(kind, mutbl, oprnd) => {
297                 self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
298             }
299             ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
300                 self.check_lang_item_path(lang_item, expr, hir_id)
301             }
302             ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
303             ExprKind::InlineAsm(asm) => {
304                 // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
305                 self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
306                 self.check_expr_asm(asm)
307             }
308             ExprKind::Break(destination, ref expr_opt) => {
309                 self.check_expr_break(destination, expr_opt.as_deref(), expr)
310             }
311             ExprKind::Continue(destination) => {
312                 if destination.target_id.is_ok() {
313                     tcx.types.never
314                 } else {
315                     // There was an error; make type-check fail.
316                     tcx.ty_error()
317                 }
318             }
319             ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
320             ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
321             ExprKind::Loop(body, _, source, _) => {
322                 self.check_expr_loop(body, source, expected, expr)
323             }
324             ExprKind::Match(discrim, arms, match_src) => {
325                 self.check_match(expr, &discrim, arms, expected, match_src)
326             }
327             ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
328             ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
329             ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
330             ExprKind::MethodCall(segment, receiver, args, _) => {
331                 self.check_method_call(expr, segment, receiver, args, expected)
332             }
333             ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
334             ExprKind::Type(e, t) => {
335                 let ty = self.to_ty_saving_user_provided_ty(&t);
336                 self.check_expr_eq_type(&e, ty);
337                 ty
338             }
339             ExprKind::If(cond, then_expr, opt_else_expr) => {
340                 self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
341             }
342             ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
343             ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
344             ExprKind::ConstBlock(ref anon_const) => {
345                 self.check_expr_const_block(anon_const, expected, expr)
346             }
347             ExprKind::Repeat(element, ref count) => {
348                 self.check_expr_repeat(element, count, expected, expr)
349             }
350             ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
351             ExprKind::Struct(qpath, fields, ref base_expr) => {
352                 self.check_expr_struct(expr, expected, qpath, fields, base_expr)
353             }
354             ExprKind::Field(base, field) => self.check_field(expr, &base, field, expected),
355             ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
356             ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
357             hir::ExprKind::Err => tcx.ty_error(),
358         }
359     }
360
361     fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
362         let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
363             ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
364             _ => NoExpectation,
365         });
366         let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
367         self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
368         self.tcx.mk_box(referent_ty)
369     }
370
371     fn check_expr_unary(
372         &self,
373         unop: hir::UnOp,
374         oprnd: &'tcx hir::Expr<'tcx>,
375         expected: Expectation<'tcx>,
376         expr: &'tcx hir::Expr<'tcx>,
377     ) -> Ty<'tcx> {
378         let tcx = self.tcx;
379         let expected_inner = match unop {
380             hir::UnOp::Not | hir::UnOp::Neg => expected,
381             hir::UnOp::Deref => NoExpectation,
382         };
383         let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
384
385         if !oprnd_t.references_error() {
386             oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
387             match unop {
388                 hir::UnOp::Deref => {
389                     if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
390                         oprnd_t = ty;
391                     } else {
392                         let mut err = type_error_struct!(
393                             tcx.sess,
394                             expr.span,
395                             oprnd_t,
396                             E0614,
397                             "type `{oprnd_t}` cannot be dereferenced",
398                         );
399                         let sp = tcx.sess.source_map().start_point(expr.span).with_parent(None);
400                         if let Some(sp) =
401                             tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
402                         {
403                             err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
404                         }
405                         oprnd_t = tcx.ty_error_with_guaranteed(err.emit());
406                     }
407                 }
408                 hir::UnOp::Not => {
409                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
410                     // If it's builtin, we can reuse the type, this helps inference.
411                     if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
412                         oprnd_t = result;
413                     }
414                 }
415                 hir::UnOp::Neg => {
416                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
417                     // If it's builtin, we can reuse the type, this helps inference.
418                     if !oprnd_t.is_numeric() {
419                         oprnd_t = result;
420                     }
421                 }
422             }
423         }
424         oprnd_t
425     }
426
427     fn check_expr_addr_of(
428         &self,
429         kind: hir::BorrowKind,
430         mutbl: hir::Mutability,
431         oprnd: &'tcx hir::Expr<'tcx>,
432         expected: Expectation<'tcx>,
433         expr: &'tcx hir::Expr<'tcx>,
434     ) -> Ty<'tcx> {
435         let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
436             match ty.kind() {
437                 ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
438                     if oprnd.is_syntactic_place_expr() {
439                         // Places may legitimately have unsized types.
440                         // For example, dereferences of a fat pointer and
441                         // the last field of a struct can be unsized.
442                         ExpectHasType(*ty)
443                     } else {
444                         Expectation::rvalue_hint(self, *ty)
445                     }
446                 }
447                 _ => NoExpectation,
448             }
449         });
450         let ty =
451             self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
452
453         let tm = ty::TypeAndMut { ty, mutbl };
454         match kind {
455             _ if tm.ty.references_error() => self.tcx.ty_error(),
456             hir::BorrowKind::Raw => {
457                 self.check_named_place_expr(oprnd);
458                 self.tcx.mk_ptr(tm)
459             }
460             hir::BorrowKind::Ref => {
461                 // Note: at this point, we cannot say what the best lifetime
462                 // is to use for resulting pointer.  We want to use the
463                 // shortest lifetime possible so as to avoid spurious borrowck
464                 // errors.  Moreover, the longest lifetime will depend on the
465                 // precise details of the value whose address is being taken
466                 // (and how long it is valid), which we don't know yet until
467                 // type inference is complete.
468                 //
469                 // Therefore, here we simply generate a region variable. The
470                 // region inferencer will then select a suitable value.
471                 // Finally, borrowck will infer the value of the region again,
472                 // this time with enough precision to check that the value
473                 // whose address was taken can actually be made to live as long
474                 // as it needs to live.
475                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
476                 self.tcx.mk_ref(region, tm)
477             }
478         }
479     }
480
481     /// Does this expression refer to a place that either:
482     /// * Is based on a local or static.
483     /// * Contains a dereference
484     /// Note that the adjustments for the children of `expr` should already
485     /// have been resolved.
486     fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
487         let is_named = oprnd.is_place_expr(|base| {
488             // Allow raw borrows if there are any deref adjustments.
489             //
490             // const VAL: (i32,) = (0,);
491             // const REF: &(i32,) = &(0,);
492             //
493             // &raw const VAL.0;            // ERROR
494             // &raw const REF.0;            // OK, same as &raw const (*REF).0;
495             //
496             // This is maybe too permissive, since it allows
497             // `let u = &raw const Box::new((1,)).0`, which creates an
498             // immediately dangling raw pointer.
499             self.typeck_results
500                 .borrow()
501                 .adjustments()
502                 .get(base.hir_id)
503                 .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
504         });
505         if !is_named {
506             self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
507         }
508     }
509
510     fn check_lang_item_path(
511         &self,
512         lang_item: hir::LangItem,
513         expr: &'tcx hir::Expr<'tcx>,
514         hir_id: Option<hir::HirId>,
515     ) -> Ty<'tcx> {
516         self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
517     }
518
519     pub(crate) fn check_expr_path(
520         &self,
521         qpath: &'tcx hir::QPath<'tcx>,
522         expr: &'tcx hir::Expr<'tcx>,
523         args: &'tcx [hir::Expr<'tcx>],
524     ) -> Ty<'tcx> {
525         let tcx = self.tcx;
526         let (res, opt_ty, segs) =
527             self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
528         let ty = match res {
529             Res::Err => {
530                 self.suggest_assoc_method_call(segs);
531                 let e =
532                     self.tcx.sess.delay_span_bug(qpath.span(), "`Res::Err` but no error emitted");
533                 self.set_tainted_by_errors(e);
534                 tcx.ty_error_with_guaranteed(e)
535             }
536             Res::Def(DefKind::Variant, _) => {
537                 let e = report_unexpected_variant_res(tcx, res, qpath, expr.span, "E0533", "value");
538                 tcx.ty_error_with_guaranteed(e)
539             }
540             _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
541         };
542
543         if let ty::FnDef(did, ..) = *ty.kind() {
544             let fn_sig = ty.fn_sig(tcx);
545             if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
546                 let from = fn_sig.inputs().skip_binder()[0];
547                 let to = fn_sig.output().skip_binder();
548                 // We defer the transmute to the end of typeck, once all inference vars have
549                 // been resolved or we errored. This is important as we can only check transmute
550                 // on concrete types, but the output type may not be known yet (it would only
551                 // be known if explicitly specified via turbofish).
552                 self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
553             }
554             if !tcx.features().unsized_fn_params {
555                 // We want to remove some Sized bounds from std functions,
556                 // but don't want to expose the removal to stable Rust.
557                 // i.e., we don't want to allow
558                 //
559                 // ```rust
560                 // drop as fn(str);
561                 // ```
562                 //
563                 // to work in stable even if the Sized bound on `drop` is relaxed.
564                 for i in 0..fn_sig.inputs().skip_binder().len() {
565                     // We just want to check sizedness, so instead of introducing
566                     // placeholder lifetimes with probing, we just replace higher lifetimes
567                     // with fresh vars.
568                     let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
569                     let input = self.replace_bound_vars_with_fresh_vars(
570                         span,
571                         infer::LateBoundRegionConversionTime::FnCall,
572                         fn_sig.input(i),
573                     );
574                     self.require_type_is_sized_deferred(
575                         input,
576                         span,
577                         traits::SizedArgumentType(None),
578                     );
579                 }
580             }
581             // Here we want to prevent struct constructors from returning unsized types.
582             // There were two cases this happened: fn pointer coercion in stable
583             // and usual function call in presence of unsized_locals.
584             // Also, as we just want to check sizedness, instead of introducing
585             // placeholder lifetimes with probing, we just replace higher lifetimes
586             // with fresh vars.
587             let output = self.replace_bound_vars_with_fresh_vars(
588                 expr.span,
589                 infer::LateBoundRegionConversionTime::FnCall,
590                 fn_sig.output(),
591             );
592             self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
593         }
594
595         // We always require that the type provided as the value for
596         // a type parameter outlives the moment of instantiation.
597         let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
598         self.add_wf_bounds(substs, expr);
599
600         ty
601     }
602
603     fn check_expr_break(
604         &self,
605         destination: hir::Destination,
606         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
607         expr: &'tcx hir::Expr<'tcx>,
608     ) -> Ty<'tcx> {
609         let tcx = self.tcx;
610         if let Ok(target_id) = destination.target_id {
611             let (e_ty, cause);
612             if let Some(e) = expr_opt {
613                 // If this is a break with a value, we need to type-check
614                 // the expression. Get an expected type from the loop context.
615                 let opt_coerce_to = {
616                     // We should release `enclosing_breakables` before the `check_expr_with_hint`
617                     // below, so can't move this block of code to the enclosing scope and share
618                     // `ctxt` with the second `enclosing_breakables` borrow below.
619                     let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
620                     match enclosing_breakables.opt_find_breakable(target_id) {
621                         Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
622                         None => {
623                             // Avoid ICE when `break` is inside a closure (#65383).
624                             return tcx.ty_error_with_message(
625                                 expr.span,
626                                 "break was outside loop, but no error was emitted",
627                             );
628                         }
629                     }
630                 };
631
632                 // If the loop context is not a `loop { }`, then break with
633                 // a value is illegal, and `opt_coerce_to` will be `None`.
634                 // Just set expectation to error in that case.
635                 let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
636
637                 // Recurse without `enclosing_breakables` borrowed.
638                 e_ty = self.check_expr_with_hint(e, coerce_to);
639                 cause = self.misc(e.span);
640             } else {
641                 // Otherwise, this is a break *without* a value. That's
642                 // always legal, and is equivalent to `break ()`.
643                 e_ty = tcx.mk_unit();
644                 cause = self.misc(expr.span);
645             }
646
647             // Now that we have type-checked `expr_opt`, borrow
648             // the `enclosing_loops` field and let's coerce the
649             // type of `expr_opt` into what is expected.
650             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
651             let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
652                 // Avoid ICE when `break` is inside a closure (#65383).
653                 return tcx.ty_error_with_message(
654                     expr.span,
655                     "break was outside loop, but no error was emitted",
656                 );
657             };
658
659             if let Some(ref mut coerce) = ctxt.coerce {
660                 if let Some(ref e) = expr_opt {
661                     coerce.coerce(self, &cause, e, e_ty);
662                 } else {
663                     assert!(e_ty.is_unit());
664                     let ty = coerce.expected_ty();
665                     coerce.coerce_forced_unit(
666                         self,
667                         &cause,
668                         &mut |mut err| {
669                             self.suggest_mismatched_types_on_tail(
670                                 &mut err, expr, ty, e_ty, target_id,
671                             );
672                             if let Some(val) = ty_kind_suggestion(ty) {
673                                 let label = destination
674                                     .label
675                                     .map(|l| format!(" {}", l.ident))
676                                     .unwrap_or_else(String::new);
677                                 err.span_suggestion(
678                                     expr.span,
679                                     "give it a value of the expected type",
680                                     format!("break{label} {val}"),
681                                     Applicability::HasPlaceholders,
682                                 );
683                             }
684                         },
685                         false,
686                     );
687                 }
688             } else {
689                 // If `ctxt.coerce` is `None`, we can just ignore
690                 // the type of the expression.  This is because
691                 // either this was a break *without* a value, in
692                 // which case it is always a legal type (`()`), or
693                 // else an error would have been flagged by the
694                 // `loops` pass for using break with an expression
695                 // where you are not supposed to.
696                 assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
697             }
698
699             // If we encountered a `break`, then (no surprise) it may be possible to break from the
700             // loop... unless the value being returned from the loop diverges itself, e.g.
701             // `break return 5` or `break loop {}`.
702             ctxt.may_break |= !self.diverges.get().is_always();
703
704             // the type of a `break` is always `!`, since it diverges
705             tcx.types.never
706         } else {
707             // Otherwise, we failed to find the enclosing loop;
708             // this can only happen if the `break` was not
709             // inside a loop at all, which is caught by the
710             // loop-checking pass.
711             let err = self.tcx.ty_error_with_message(
712                 expr.span,
713                 "break was outside loop, but no error was emitted",
714             );
715
716             // We still need to assign a type to the inner expression to
717             // prevent the ICE in #43162.
718             if let Some(e) = expr_opt {
719                 self.check_expr_with_hint(e, err);
720
721                 // ... except when we try to 'break rust;'.
722                 // ICE this expression in particular (see #43162).
723                 if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
724                     if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
725                         fatally_break_rust(self.tcx.sess);
726                     }
727                 }
728             }
729
730             // There was an error; make type-check fail.
731             err
732         }
733     }
734
735     fn check_expr_return(
736         &self,
737         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
738         expr: &'tcx hir::Expr<'tcx>,
739     ) -> Ty<'tcx> {
740         if self.ret_coercion.is_none() {
741             let mut err = ReturnStmtOutsideOfFnBody {
742                 span: expr.span,
743                 encl_body_span: None,
744                 encl_fn_span: None,
745             };
746
747             let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
748
749             if let Some(hir::Node::Item(hir::Item {
750                 kind: hir::ItemKind::Fn(..),
751                 span: encl_fn_span,
752                 ..
753             }))
754             | Some(hir::Node::TraitItem(hir::TraitItem {
755                 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
756                 span: encl_fn_span,
757                 ..
758             }))
759             | Some(hir::Node::ImplItem(hir::ImplItem {
760                 kind: hir::ImplItemKind::Fn(..),
761                 span: encl_fn_span,
762                 ..
763             })) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
764             {
765                 // We are inside a function body, so reporting "return statement
766                 // outside of function body" needs an explanation.
767
768                 let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
769
770                 // If this didn't hold, we would not have to report an error in
771                 // the first place.
772                 assert_ne!(encl_item_id.def_id, encl_body_owner_id);
773
774                 let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
775                 let encl_body = self.tcx.hir().body(encl_body_id);
776
777                 err.encl_body_span = Some(encl_body.value.span);
778                 err.encl_fn_span = Some(*encl_fn_span);
779             }
780
781             self.tcx.sess.emit_err(err);
782
783             if let Some(e) = expr_opt {
784                 // We still have to type-check `e` (issue #86188), but calling
785                 // `check_return_expr` only works inside fn bodies.
786                 self.check_expr(e);
787             }
788         } else if let Some(e) = expr_opt {
789             if self.ret_coercion_span.get().is_none() {
790                 self.ret_coercion_span.set(Some(e.span));
791             }
792             self.check_return_expr(e, true);
793         } else {
794             let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
795             if self.ret_coercion_span.get().is_none() {
796                 self.ret_coercion_span.set(Some(expr.span));
797             }
798             let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
799             if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
800                 coercion.coerce_forced_unit(
801                     self,
802                     &cause,
803                     &mut |db| {
804                         let span = fn_decl.output.span();
805                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
806                             db.span_label(
807                                 span,
808                                 format!("expected `{snippet}` because of this return type"),
809                             );
810                         }
811                     },
812                     true,
813                 );
814             } else {
815                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
816             }
817         }
818         self.tcx.types.never
819     }
820
821     /// `explicit_return` is `true` if we're checking an explicit `return expr`,
822     /// and `false` if we're checking a trailing expression.
823     pub(super) fn check_return_expr(
824         &self,
825         return_expr: &'tcx hir::Expr<'tcx>,
826         explicit_return: bool,
827     ) {
828         let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
829             span_bug!(return_expr.span, "check_return_expr called outside fn body")
830         });
831
832         let ret_ty = ret_coercion.borrow().expected_ty();
833         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
834         let mut span = return_expr.span;
835         // Use the span of the trailing expression for our cause,
836         // not the span of the entire function
837         if !explicit_return {
838             if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
839                 span = last_expr.span;
840             }
841         }
842         ret_coercion.borrow_mut().coerce(
843             self,
844             &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
845             return_expr,
846             return_expr_ty,
847         );
848
849         if let Some(fn_sig) = self.body_fn_sig()
850             && fn_sig.output().has_opaque_types()
851         {
852             // Point any obligations that were registered due to opaque type
853             // inference at the return expression.
854             self.select_obligations_where_possible(|errors| {
855                 self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
856             });
857         }
858     }
859
860     fn point_at_return_for_opaque_ty_error(
861         &self,
862         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
863         span: Span,
864         return_expr_ty: Ty<'tcx>,
865     ) {
866         // Don't point at the whole block if it's empty
867         if span == self.tcx.hir().span(self.body_id) {
868             return;
869         }
870         for err in errors {
871             let cause = &mut err.obligation.cause;
872             if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
873                 let new_cause = ObligationCause::new(
874                     cause.span,
875                     cause.body_id,
876                     ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
877                 );
878                 *cause = new_cause;
879             }
880         }
881     }
882
883     pub(crate) fn check_lhs_assignable(
884         &self,
885         lhs: &'tcx hir::Expr<'tcx>,
886         err_code: &'static str,
887         op_span: Span,
888         adjust_err: impl FnOnce(&mut Diagnostic),
889     ) {
890         if lhs.is_syntactic_place_expr() {
891             return;
892         }
893
894         // FIXME: Make this use Diagnostic once error codes can be dynamically set.
895         let mut err = self.tcx.sess.struct_span_err_with_code(
896             op_span,
897             "invalid left-hand side of assignment",
898             DiagnosticId::Error(err_code.into()),
899         );
900         err.span_label(lhs.span, "cannot assign to this expression");
901
902         self.comes_from_while_condition(lhs.hir_id, |expr| {
903             err.span_suggestion_verbose(
904                 expr.span.shrink_to_lo(),
905                 "you might have meant to use pattern destructuring",
906                 "let ",
907                 Applicability::MachineApplicable,
908             );
909         });
910
911         adjust_err(&mut err);
912
913         err.emit();
914     }
915
916     // Check if an expression `original_expr_id` comes from the condition of a while loop,
917     /// as opposed from the body of a while loop, which we can naively check by iterating
918     /// parents until we find a loop...
919     pub(super) fn comes_from_while_condition(
920         &self,
921         original_expr_id: HirId,
922         then: impl FnOnce(&hir::Expr<'_>),
923     ) {
924         let mut parent = self.tcx.hir().parent_id(original_expr_id);
925         while let Some(node) = self.tcx.hir().find(parent) {
926             match node {
927                 hir::Node::Expr(hir::Expr {
928                     kind:
929                         hir::ExprKind::Loop(
930                             hir::Block {
931                                 expr:
932                                     Some(hir::Expr {
933                                         kind:
934                                             hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
935                                         ..
936                                     }),
937                                 ..
938                             },
939                             _,
940                             hir::LoopSource::While,
941                             _,
942                         ),
943                     ..
944                 }) => {
945                     // Check if our original expression is a child of the condition of a while loop
946                     let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
947                         self.tcx.hir().opt_parent_id(*id)
948                     })
949                     .take_while(|id| *id != parent)
950                     .any(|id| id == expr.hir_id);
951                     // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
952                     // where `while let` was more likely intended.
953                     if expr_is_ancestor {
954                         then(expr);
955                     }
956                     break;
957                 }
958                 hir::Node::Item(_)
959                 | hir::Node::ImplItem(_)
960                 | hir::Node::TraitItem(_)
961                 | hir::Node::Crate(_) => break,
962                 _ => {
963                     parent = self.tcx.hir().parent_id(parent);
964                 }
965             }
966         }
967     }
968
969     // A generic function for checking the 'then' and 'else' clauses in an 'if'
970     // or 'if-else' expression.
971     fn check_then_else(
972         &self,
973         cond_expr: &'tcx hir::Expr<'tcx>,
974         then_expr: &'tcx hir::Expr<'tcx>,
975         opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
976         sp: Span,
977         orig_expected: Expectation<'tcx>,
978     ) -> Ty<'tcx> {
979         let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
980
981         self.warn_if_unreachable(
982             cond_expr.hir_id,
983             then_expr.span,
984             "block in `if` or `while` expression",
985         );
986
987         let cond_diverges = self.diverges.get();
988         self.diverges.set(Diverges::Maybe);
989
990         let expected = orig_expected.adjust_for_branches(self);
991         let then_ty = self.check_expr_with_expectation(then_expr, expected);
992         let then_diverges = self.diverges.get();
993         self.diverges.set(Diverges::Maybe);
994
995         // We've already taken the expected type's preferences
996         // into account when typing the `then` branch. To figure
997         // out the initial shot at a LUB, we thus only consider
998         // `expected` if it represents a *hard* constraint
999         // (`only_has_type`); otherwise, we just go with a
1000         // fresh type variable.
1001         let coerce_to_ty = expected.coercion_target_type(self, sp);
1002         let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
1003
1004         coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
1005
1006         if let Some(else_expr) = opt_else_expr {
1007             let else_ty = self.check_expr_with_expectation(else_expr, expected);
1008             let else_diverges = self.diverges.get();
1009
1010             let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
1011             let if_cause = self.if_cause(
1012                 sp,
1013                 cond_expr.span,
1014                 then_expr,
1015                 else_expr,
1016                 then_ty,
1017                 else_ty,
1018                 opt_suggest_box_span,
1019             );
1020
1021             coerce.coerce(self, &if_cause, else_expr, else_ty);
1022
1023             // We won't diverge unless both branches do (or the condition does).
1024             self.diverges.set(cond_diverges | then_diverges & else_diverges);
1025         } else {
1026             self.if_fallback_coercion(sp, then_expr, &mut coerce);
1027
1028             // If the condition is false we can't diverge.
1029             self.diverges.set(cond_diverges);
1030         }
1031
1032         let result_ty = coerce.complete(self);
1033         if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
1034     }
1035
1036     /// Type check assignment expression `expr` of form `lhs = rhs`.
1037     /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
1038     fn check_expr_assign(
1039         &self,
1040         expr: &'tcx hir::Expr<'tcx>,
1041         expected: Expectation<'tcx>,
1042         lhs: &'tcx hir::Expr<'tcx>,
1043         rhs: &'tcx hir::Expr<'tcx>,
1044         span: Span,
1045     ) -> Ty<'tcx> {
1046         let expected_ty = expected.coercion_target_type(self, expr.span);
1047         if expected_ty == self.tcx.types.bool {
1048             // The expected type is `bool` but this will result in `()` so we can reasonably
1049             // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
1050             // The likely cause of this is `if foo = bar { .. }`.
1051             let actual_ty = self.tcx.mk_unit();
1052             let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
1053             let lhs_ty = self.check_expr(&lhs);
1054             let rhs_ty = self.check_expr(&rhs);
1055             let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
1056                 (Applicability::MachineApplicable, true)
1057             } else if let ExprKind::Binary(
1058                 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1059                 _,
1060                 rhs_expr,
1061             ) = lhs.kind
1062             {
1063                 // if x == 1 && y == 2 { .. }
1064                 //                 +
1065                 let actual_lhs_ty = self.check_expr(&rhs_expr);
1066                 (Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
1067             } else if let ExprKind::Binary(
1068                 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1069                 lhs_expr,
1070                 _,
1071             ) = rhs.kind
1072             {
1073                 // if x == 1 && y == 2 { .. }
1074                 //       +
1075                 let actual_rhs_ty = self.check_expr(&lhs_expr);
1076                 (Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
1077             } else {
1078                 (Applicability::MaybeIncorrect, false)
1079             };
1080             if !lhs.is_syntactic_place_expr()
1081                 && lhs.is_approximately_pattern()
1082                 && !matches!(lhs.kind, hir::ExprKind::Lit(_))
1083             {
1084                 // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
1085                 let hir = self.tcx.hir();
1086                 if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1087                     hir.get_parent(hir.parent_id(expr.hir_id))
1088                 {
1089                     err.span_suggestion_verbose(
1090                         expr.span.shrink_to_lo(),
1091                         "you might have meant to use pattern matching",
1092                         "let ",
1093                         applicability,
1094                     );
1095                 };
1096             }
1097             if eq {
1098                 err.span_suggestion_verbose(
1099                     span.shrink_to_hi(),
1100                     "you might have meant to compare for equality",
1101                     '=',
1102                     applicability,
1103                 );
1104             }
1105
1106             // If the assignment expression itself is ill-formed, don't
1107             // bother emitting another error
1108             let reported = err.emit_unless(lhs_ty.references_error() || rhs_ty.references_error());
1109             return self.tcx.ty_error_with_guaranteed(reported);
1110         }
1111
1112         let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
1113
1114         let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
1115             if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
1116                 // Can only assign if the type is sized, so if `DerefMut` yields a type that is
1117                 // unsized, do not suggest dereferencing it.
1118                 let lhs_deref_ty_is_sized = self
1119                     .infcx
1120                     .type_implements_trait(
1121                         self.tcx.require_lang_item(LangItem::Sized, None),
1122                         [lhs_deref_ty],
1123                         self.param_env,
1124                     )
1125                     .may_apply();
1126                 if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
1127                     err.span_suggestion_verbose(
1128                         lhs.span.shrink_to_lo(),
1129                         "consider dereferencing here to assign to the mutably borrowed value",
1130                         "*",
1131                         Applicability::MachineApplicable,
1132                     );
1133                 }
1134             }
1135         };
1136
1137         // This is (basically) inlined `check_expr_coercable_to_type`, but we want
1138         // to suggest an additional fixup here in `suggest_deref_binop`.
1139         let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
1140         if let (_, Some(mut diag)) =
1141             self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
1142         {
1143             suggest_deref_binop(&mut diag, rhs_ty);
1144             diag.emit();
1145         }
1146
1147         self.check_lhs_assignable(lhs, "E0070", span, |err| {
1148             if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
1149                 suggest_deref_binop(err, rhs_ty);
1150             }
1151         });
1152
1153         self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
1154
1155         if lhs_ty.references_error() || rhs_ty.references_error() {
1156             self.tcx.ty_error()
1157         } else {
1158             self.tcx.mk_unit()
1159         }
1160     }
1161
1162     pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
1163         // for let statements, this is done in check_stmt
1164         let init = let_expr.init;
1165         self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1166         // otherwise check exactly as a let statement
1167         self.check_decl(let_expr.into());
1168         // but return a bool, for this is a boolean expression
1169         self.tcx.types.bool
1170     }
1171
1172     fn check_expr_loop(
1173         &self,
1174         body: &'tcx hir::Block<'tcx>,
1175         source: hir::LoopSource,
1176         expected: Expectation<'tcx>,
1177         expr: &'tcx hir::Expr<'tcx>,
1178     ) -> Ty<'tcx> {
1179         let coerce = match source {
1180             // you can only use break with a value from a normal `loop { }`
1181             hir::LoopSource::Loop => {
1182                 let coerce_to = expected.coercion_target_type(self, body.span);
1183                 Some(CoerceMany::new(coerce_to))
1184             }
1185
1186             hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1187         };
1188
1189         let ctxt = BreakableCtxt {
1190             coerce,
1191             may_break: false, // Will get updated if/when we find a `break`.
1192         };
1193
1194         let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1195             self.check_block_no_value(&body);
1196         });
1197
1198         if ctxt.may_break {
1199             // No way to know whether it's diverging because
1200             // of a `break` or an outer `break` or `return`.
1201             self.diverges.set(Diverges::Maybe);
1202         }
1203
1204         // If we permit break with a value, then result type is
1205         // the LUB of the breaks (possibly ! if none); else, it
1206         // is nil. This makes sense because infinite loops
1207         // (which would have type !) are only possible iff we
1208         // permit break with a value [1].
1209         if ctxt.coerce.is_none() && !ctxt.may_break {
1210             // [1]
1211             self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
1212         }
1213         ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
1214     }
1215
1216     /// Checks a method call.
1217     fn check_method_call(
1218         &self,
1219         expr: &'tcx hir::Expr<'tcx>,
1220         segment: &hir::PathSegment<'_>,
1221         rcvr: &'tcx hir::Expr<'tcx>,
1222         args: &'tcx [hir::Expr<'tcx>],
1223         expected: Expectation<'tcx>,
1224     ) -> Ty<'tcx> {
1225         let rcvr_t = self.check_expr(&rcvr);
1226         // no need to check for bot/err -- callee does that
1227         let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
1228         let span = segment.ident.span;
1229
1230         let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
1231             Ok(method) => {
1232                 // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
1233                 // trigger this codepath causing `structurally_resolved_type` to emit an error.
1234
1235                 self.write_method_call(expr.hir_id, method);
1236                 Ok(method)
1237             }
1238             Err(error) => {
1239                 if segment.ident.name != kw::Empty {
1240                     if let Some(mut err) = self.report_method_error(
1241                         span,
1242                         rcvr_t,
1243                         segment.ident,
1244                         SelfSource::MethodCall(rcvr),
1245                         error,
1246                         Some((rcvr, args)),
1247                         expected,
1248                     ) {
1249                         err.emit();
1250                     }
1251                 }
1252                 Err(())
1253             }
1254         };
1255
1256         // Call the generic checker.
1257         self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
1258     }
1259
1260     fn check_expr_cast(
1261         &self,
1262         e: &'tcx hir::Expr<'tcx>,
1263         t: &'tcx hir::Ty<'tcx>,
1264         expr: &'tcx hir::Expr<'tcx>,
1265     ) -> Ty<'tcx> {
1266         // Find the type of `e`. Supply hints based on the type we are casting to,
1267         // if appropriate.
1268         let t_cast = self.to_ty_saving_user_provided_ty(t);
1269         let t_cast = self.resolve_vars_if_possible(t_cast);
1270         let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1271         let t_expr = self.resolve_vars_if_possible(t_expr);
1272
1273         // Eagerly check for some obvious errors.
1274         if t_expr.references_error() || t_cast.references_error() {
1275             self.tcx.ty_error()
1276         } else {
1277             // Defer other checks until we're done type checking.
1278             let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1279             match cast::CastCheck::new(
1280                 self,
1281                 e,
1282                 t_expr,
1283                 t_cast,
1284                 t.span,
1285                 expr.span,
1286                 self.param_env.constness(),
1287             ) {
1288                 Ok(cast_check) => {
1289                     debug!(
1290                         "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1291                         t_cast, t_expr, cast_check,
1292                     );
1293                     deferred_cast_checks.push(cast_check);
1294                     t_cast
1295                 }
1296                 Err(_) => self.tcx.ty_error(),
1297             }
1298         }
1299     }
1300
1301     fn check_expr_array(
1302         &self,
1303         args: &'tcx [hir::Expr<'tcx>],
1304         expected: Expectation<'tcx>,
1305         expr: &'tcx hir::Expr<'tcx>,
1306     ) -> Ty<'tcx> {
1307         let element_ty = if !args.is_empty() {
1308             let coerce_to = expected
1309                 .to_option(self)
1310                 .and_then(|uty| match *uty.kind() {
1311                     ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1312                     _ => None,
1313                 })
1314                 .unwrap_or_else(|| {
1315                     self.next_ty_var(TypeVariableOrigin {
1316                         kind: TypeVariableOriginKind::TypeInference,
1317                         span: expr.span,
1318                     })
1319                 });
1320             let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1321             assert_eq!(self.diverges.get(), Diverges::Maybe);
1322             for e in args {
1323                 let e_ty = self.check_expr_with_hint(e, coerce_to);
1324                 let cause = self.misc(e.span);
1325                 coerce.coerce(self, &cause, e, e_ty);
1326             }
1327             coerce.complete(self)
1328         } else {
1329             self.next_ty_var(TypeVariableOrigin {
1330                 kind: TypeVariableOriginKind::TypeInference,
1331                 span: expr.span,
1332             })
1333         };
1334         let array_len = args.len() as u64;
1335         self.suggest_array_len(expr, array_len);
1336         self.tcx.mk_array(element_ty, array_len)
1337     }
1338
1339     fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
1340         let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
1341             !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
1342         });
1343         let Some((_,
1344             hir::Node::Local(hir::Local { ty: Some(ty), .. })
1345             | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
1346         ) = parent_node else {
1347             return
1348         };
1349         if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
1350             && let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
1351             && let Some(span) = self.tcx.hir().opt_span(hir_id)
1352         {
1353             match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
1354                 Some(mut err) => {
1355                     err.span_suggestion(
1356                         span,
1357                         "consider specifying the array length",
1358                         array_len,
1359                         Applicability::MaybeIncorrect,
1360                     );
1361                     err.emit();
1362                 }
1363                 None => ()
1364             }
1365         }
1366     }
1367
1368     fn check_expr_const_block(
1369         &self,
1370         anon_const: &'tcx hir::AnonConst,
1371         expected: Expectation<'tcx>,
1372         _expr: &'tcx hir::Expr<'tcx>,
1373     ) -> Ty<'tcx> {
1374         let body = self.tcx.hir().body(anon_const.body);
1375
1376         // Create a new function context.
1377         let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
1378         crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
1379
1380         let ty = fcx.check_expr_with_expectation(&body.value, expected);
1381         fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
1382         fcx.write_ty(anon_const.hir_id, ty);
1383         ty
1384     }
1385
1386     fn check_expr_repeat(
1387         &self,
1388         element: &'tcx hir::Expr<'tcx>,
1389         count: &'tcx hir::ArrayLen,
1390         expected: Expectation<'tcx>,
1391         expr: &'tcx hir::Expr<'tcx>,
1392     ) -> Ty<'tcx> {
1393         let tcx = self.tcx;
1394         let count = self.array_length_to_const(count);
1395         if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
1396             self.suggest_array_len(expr, count);
1397         }
1398
1399         let uty = match expected {
1400             ExpectHasType(uty) => match *uty.kind() {
1401                 ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1402                 _ => None,
1403             },
1404             _ => None,
1405         };
1406
1407         let (element_ty, t) = match uty {
1408             Some(uty) => {
1409                 self.check_expr_coercable_to_type(&element, uty, None);
1410                 (uty, uty)
1411             }
1412             None => {
1413                 let ty = self.next_ty_var(TypeVariableOrigin {
1414                     kind: TypeVariableOriginKind::MiscVariable,
1415                     span: element.span,
1416                 });
1417                 let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
1418                 (element_ty, ty)
1419             }
1420         };
1421
1422         if element_ty.references_error() {
1423             return tcx.ty_error();
1424         }
1425
1426         self.check_repeat_element_needs_copy_bound(element, count, element_ty);
1427
1428         tcx.mk_ty(ty::Array(t, count))
1429     }
1430
1431     fn check_repeat_element_needs_copy_bound(
1432         &self,
1433         element: &hir::Expr<'_>,
1434         count: ty::Const<'tcx>,
1435         element_ty: Ty<'tcx>,
1436     ) {
1437         let tcx = self.tcx;
1438         // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
1439         match &element.kind {
1440             hir::ExprKind::ConstBlock(..) => return,
1441             hir::ExprKind::Path(qpath) => {
1442                 let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
1443                 if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
1444                 {
1445                     return;
1446                 }
1447             }
1448             _ => {}
1449         }
1450         // If someone calls a const fn, they can extract that call out into a separate constant (or a const
1451         // block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
1452         let is_const_fn = match element.kind {
1453             hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
1454                 ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
1455                 _ => false,
1456             },
1457             _ => false,
1458         };
1459
1460         // If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
1461         // don't copy that one element, we move it. Only check for Copy if the length is larger.
1462         if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
1463             let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
1464             let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
1465             self.require_type_meets(element_ty, element.span, code, lang_item);
1466         }
1467     }
1468
1469     fn check_expr_tuple(
1470         &self,
1471         elts: &'tcx [hir::Expr<'tcx>],
1472         expected: Expectation<'tcx>,
1473         expr: &'tcx hir::Expr<'tcx>,
1474     ) -> Ty<'tcx> {
1475         let flds = expected.only_has_type(self).and_then(|ty| {
1476             let ty = self.resolve_vars_with_obligations(ty);
1477             match ty.kind() {
1478                 ty::Tuple(flds) => Some(&flds[..]),
1479                 _ => None,
1480             }
1481         });
1482
1483         let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1484             Some(fs) if i < fs.len() => {
1485                 let ety = fs[i];
1486                 self.check_expr_coercable_to_type(&e, ety, None);
1487                 ety
1488             }
1489             _ => self.check_expr_with_expectation(&e, NoExpectation),
1490         });
1491         let tuple = self.tcx.mk_tup(elt_ts_iter);
1492         if tuple.references_error() {
1493             self.tcx.ty_error()
1494         } else {
1495             self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
1496             tuple
1497         }
1498     }
1499
1500     fn check_expr_struct(
1501         &self,
1502         expr: &hir::Expr<'_>,
1503         expected: Expectation<'tcx>,
1504         qpath: &QPath<'_>,
1505         fields: &'tcx [hir::ExprField<'tcx>],
1506         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1507     ) -> Ty<'tcx> {
1508         // Find the relevant variant
1509         let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
1510             self.check_struct_fields_on_error(fields, base_expr);
1511             return self.tcx.ty_error();
1512         };
1513
1514         // Prohibit struct expressions when non-exhaustive flag is set.
1515         let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1516         if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
1517             self.tcx
1518                 .sess
1519                 .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1520         }
1521
1522         self.check_expr_struct_fields(
1523             adt_ty,
1524             expected,
1525             expr.hir_id,
1526             qpath.span(),
1527             variant,
1528             fields,
1529             base_expr,
1530             expr.span,
1531         );
1532
1533         self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
1534         adt_ty
1535     }
1536
1537     fn check_expr_struct_fields(
1538         &self,
1539         adt_ty: Ty<'tcx>,
1540         expected: Expectation<'tcx>,
1541         expr_id: hir::HirId,
1542         span: Span,
1543         variant: &'tcx ty::VariantDef,
1544         ast_fields: &'tcx [hir::ExprField<'tcx>],
1545         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1546         expr_span: Span,
1547     ) {
1548         let tcx = self.tcx;
1549
1550         let expected_inputs =
1551             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
1552         let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
1553             expected_inputs.get(0).cloned().unwrap_or(adt_ty)
1554         } else {
1555             adt_ty
1556         };
1557         // re-link the regions that EIfEO can erase.
1558         self.demand_eqtype(span, adt_ty_hint, adt_ty);
1559
1560         let ty::Adt(adt, substs) = adt_ty.kind() else {
1561             span_bug!(span, "non-ADT passed to check_expr_struct_fields");
1562         };
1563         let adt_kind = adt.adt_kind();
1564
1565         let mut remaining_fields = variant
1566             .fields
1567             .iter()
1568             .enumerate()
1569             .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
1570             .collect::<FxHashMap<_, _>>();
1571
1572         let mut seen_fields = FxHashMap::default();
1573
1574         let mut error_happened = false;
1575
1576         // Type-check each field.
1577         for (idx, field) in ast_fields.iter().enumerate() {
1578             let ident = tcx.adjust_ident(field.ident, variant.def_id);
1579             let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
1580                 seen_fields.insert(ident, field.span);
1581                 self.write_field_index(field.hir_id, i);
1582
1583                 // We don't look at stability attributes on
1584                 // struct-like enums (yet...), but it's definitely not
1585                 // a bug to have constructed one.
1586                 if adt_kind != AdtKind::Enum {
1587                     tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
1588                 }
1589
1590                 self.field_ty(field.span, v_field, substs)
1591             } else {
1592                 error_happened = true;
1593                 if let Some(prev_span) = seen_fields.get(&ident) {
1594                     tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
1595                         span: field.ident.span,
1596                         prev_span: *prev_span,
1597                         ident,
1598                     });
1599                 } else {
1600                     self.report_unknown_field(
1601                         adt_ty,
1602                         variant,
1603                         field,
1604                         ast_fields,
1605                         adt.variant_descr(),
1606                         expr_span,
1607                     );
1608                 }
1609
1610                 tcx.ty_error()
1611             };
1612
1613             // Make sure to give a type to the field even if there's
1614             // an error, so we can continue type-checking.
1615             let ty = self.check_expr_with_hint(&field.expr, field_type);
1616             let (_, diag) =
1617                 self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
1618
1619             if let Some(mut diag) = diag {
1620                 if idx == ast_fields.len() - 1 {
1621                     if remaining_fields.is_empty() {
1622                         self.suggest_fru_from_range(field, variant, substs, &mut diag);
1623                         diag.emit();
1624                     } else {
1625                         diag.stash(field.span, StashKey::MaybeFruTypo);
1626                     }
1627                 } else {
1628                     diag.emit();
1629                 }
1630             }
1631         }
1632
1633         // Make sure the programmer specified correct number of fields.
1634         if adt_kind == AdtKind::Union {
1635             if ast_fields.len() != 1 {
1636                 struct_span_err!(
1637                     tcx.sess,
1638                     span,
1639                     E0784,
1640                     "union expressions should have exactly one field",
1641                 )
1642                 .emit();
1643             }
1644         }
1645
1646         // If check_expr_struct_fields hit an error, do not attempt to populate
1647         // the fields with the base_expr. This could cause us to hit errors later
1648         // when certain fields are assumed to exist that in fact do not.
1649         if error_happened {
1650             if let Some(base_expr) = base_expr {
1651                 self.check_expr(base_expr);
1652             }
1653             return;
1654         }
1655
1656         if let Some(base_expr) = base_expr {
1657             // FIXME: We are currently creating two branches here in order to maintain
1658             // consistency. But they should be merged as much as possible.
1659             let fru_tys = if self.tcx.features().type_changing_struct_update {
1660                 if adt.is_struct() {
1661                     // Make some fresh substitutions for our ADT type.
1662                     let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
1663                     // We do subtyping on the FRU fields first, so we can
1664                     // learn exactly what types we expect the base expr
1665                     // needs constrained to be compatible with the struct
1666                     // type we expect from the expectation value.
1667                     let fru_tys = variant
1668                         .fields
1669                         .iter()
1670                         .map(|f| {
1671                             let fru_ty = self.normalize(
1672                                 expr_span,
1673                                 self.field_ty(base_expr.span, f, fresh_substs),
1674                             );
1675                             let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
1676                             if let Some(_) = remaining_fields.remove(&ident) {
1677                                 let target_ty = self.field_ty(base_expr.span, f, substs);
1678                                 let cause = self.misc(base_expr.span);
1679                                 match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
1680                                     Ok(InferOk { obligations, value: () }) => {
1681                                         self.register_predicates(obligations)
1682                                     }
1683                                     Err(_) => {
1684                                         // This should never happen, since we're just subtyping the
1685                                         // remaining_fields, but it's fine to emit this, I guess.
1686                                         self.err_ctxt()
1687                                             .report_mismatched_types(
1688                                                 &cause,
1689                                                 target_ty,
1690                                                 fru_ty,
1691                                                 FieldMisMatch(variant.name, ident.name),
1692                                             )
1693                                             .emit();
1694                                     }
1695                                 }
1696                             }
1697                             self.resolve_vars_if_possible(fru_ty)
1698                         })
1699                         .collect();
1700                     // The use of fresh substs that we have subtyped against
1701                     // our base ADT type's fields allows us to guide inference
1702                     // along so that, e.g.
1703                     // ```
1704                     // MyStruct<'a, F1, F2, const C: usize> {
1705                     //     f: F1,
1706                     //     // Other fields that reference `'a`, `F2`, and `C`
1707                     // }
1708                     //
1709                     // let x = MyStruct {
1710                     //    f: 1usize,
1711                     //    ..other_struct
1712                     // };
1713                     // ```
1714                     // will have the `other_struct` expression constrained to
1715                     // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
1716                     // This is important to allow coercions to happen in
1717                     // `other_struct` itself. See `coerce-in-base-expr.rs`.
1718                     let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
1719                     self.check_expr_has_type_or_error(
1720                         base_expr,
1721                         self.resolve_vars_if_possible(fresh_base_ty),
1722                         |_| {},
1723                     );
1724                     fru_tys
1725                 } else {
1726                     // Check the base_expr, regardless of a bad expected adt_ty, so we can get
1727                     // type errors on that expression, too.
1728                     self.check_expr(base_expr);
1729                     self.tcx
1730                         .sess
1731                         .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1732                     return;
1733                 }
1734             } else {
1735                 self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
1736                     let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
1737                     let same_adt = match (adt_ty.kind(), base_ty.kind()) {
1738                         (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
1739                         _ => false,
1740                     };
1741                     if self.tcx.sess.is_nightly_build() && same_adt {
1742                         feature_err(
1743                             &self.tcx.sess.parse_sess,
1744                             sym::type_changing_struct_update,
1745                             base_expr.span,
1746                             "type changing struct updating is experimental",
1747                         )
1748                         .emit();
1749                     }
1750                 });
1751                 match adt_ty.kind() {
1752                     ty::Adt(adt, substs) if adt.is_struct() => variant
1753                         .fields
1754                         .iter()
1755                         .map(|f| self.normalize(expr_span, f.ty(self.tcx, substs)))
1756                         .collect(),
1757                     _ => {
1758                         self.tcx
1759                             .sess
1760                             .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1761                         return;
1762                     }
1763                 }
1764             };
1765             self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
1766         } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
1767             debug!(?remaining_fields);
1768             let private_fields: Vec<&ty::FieldDef> = variant
1769                 .fields
1770                 .iter()
1771                 .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
1772                 .collect();
1773
1774             if !private_fields.is_empty() {
1775                 self.report_private_fields(adt_ty, span, private_fields, ast_fields);
1776             } else {
1777                 self.report_missing_fields(
1778                     adt_ty,
1779                     span,
1780                     remaining_fields,
1781                     variant,
1782                     ast_fields,
1783                     substs,
1784                 );
1785             }
1786         }
1787     }
1788
1789     fn check_struct_fields_on_error(
1790         &self,
1791         fields: &'tcx [hir::ExprField<'tcx>],
1792         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1793     ) {
1794         for field in fields {
1795             self.check_expr(&field.expr);
1796         }
1797         if let Some(base) = *base_expr {
1798             self.check_expr(&base);
1799         }
1800     }
1801
1802     /// Report an error for a struct field expression when there are fields which aren't provided.
1803     ///
1804     /// ```text
1805     /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
1806     ///  --> src/main.rs:8:5
1807     ///   |
1808     /// 8 |     foo::Foo {};
1809     ///   |     ^^^^^^^^ missing `you_can_use_this_field`
1810     ///
1811     /// error: aborting due to previous error
1812     /// ```
1813     fn report_missing_fields(
1814         &self,
1815         adt_ty: Ty<'tcx>,
1816         span: Span,
1817         remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
1818         variant: &'tcx ty::VariantDef,
1819         ast_fields: &'tcx [hir::ExprField<'tcx>],
1820         substs: SubstsRef<'tcx>,
1821     ) {
1822         let len = remaining_fields.len();
1823
1824         let mut displayable_field_names: Vec<&str> =
1825             remaining_fields.keys().map(|ident| ident.as_str()).collect();
1826         // sorting &str primitives here, sort_unstable is ok
1827         displayable_field_names.sort_unstable();
1828
1829         let mut truncated_fields_error = String::new();
1830         let remaining_fields_names = match &displayable_field_names[..] {
1831             [field1] => format!("`{}`", field1),
1832             [field1, field2] => format!("`{field1}` and `{field2}`"),
1833             [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
1834             _ => {
1835                 truncated_fields_error =
1836                     format!(" and {} other field{}", len - 3, pluralize!(len - 3));
1837                 displayable_field_names
1838                     .iter()
1839                     .take(3)
1840                     .map(|n| format!("`{n}`"))
1841                     .collect::<Vec<_>>()
1842                     .join(", ")
1843             }
1844         };
1845
1846         let mut err = struct_span_err!(
1847             self.tcx.sess,
1848             span,
1849             E0063,
1850             "missing field{} {}{} in initializer of `{}`",
1851             pluralize!(len),
1852             remaining_fields_names,
1853             truncated_fields_error,
1854             adt_ty
1855         );
1856         err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
1857
1858         if let Some(last) = ast_fields.last() {
1859             self.suggest_fru_from_range(last, variant, substs, &mut err);
1860         }
1861
1862         err.emit();
1863     }
1864
1865     /// If the last field is a range literal, but it isn't supposed to be, then they probably
1866     /// meant to use functional update syntax.
1867     fn suggest_fru_from_range(
1868         &self,
1869         last_expr_field: &hir::ExprField<'tcx>,
1870         variant: &ty::VariantDef,
1871         substs: SubstsRef<'tcx>,
1872         err: &mut Diagnostic,
1873     ) {
1874         // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
1875         if let ExprKind::Struct(
1876                 QPath::LangItem(LangItem::Range, ..),
1877                 [range_start, range_end],
1878                 _,
1879             ) = last_expr_field.expr.kind
1880             && let variant_field =
1881                 variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
1882             && let range_def_id = self.tcx.lang_items().range_struct()
1883             && variant_field
1884                 .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
1885                 .map(|adt| adt.did())
1886                 != range_def_id
1887         {
1888             // Suppress any range expr type mismatches
1889             if let Some(mut diag) = self
1890                 .tcx
1891                 .sess
1892                 .diagnostic()
1893                 .steal_diagnostic(last_expr_field.span, StashKey::MaybeFruTypo)
1894             {
1895                 diag.delay_as_bug();
1896             }
1897
1898             // Use a (somewhat arbitrary) filtering heuristic to avoid printing
1899             // expressions that are either too long, or have control character
1900             //such as newlines in them.
1901             let expr = self
1902                 .tcx
1903                 .sess
1904                 .source_map()
1905                 .span_to_snippet(range_end.expr.span)
1906                 .ok()
1907                 .filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));
1908
1909             let fru_span = self
1910                 .tcx
1911                 .sess
1912                 .source_map()
1913                 .span_extend_while(range_start.span, |c| c.is_whitespace())
1914                 .unwrap_or(range_start.span).shrink_to_hi().to(range_end.span);
1915
1916             err.subdiagnostic(TypeMismatchFruTypo {
1917                 expr_span: range_start.span,
1918                 fru_span,
1919                 expr,
1920             });
1921         }
1922     }
1923
1924     /// Report an error for a struct field expression when there are invisible fields.
1925     ///
1926     /// ```text
1927     /// error: cannot construct `Foo` with struct literal syntax due to private fields
1928     ///  --> src/main.rs:8:5
1929     ///   |
1930     /// 8 |     foo::Foo {};
1931     ///   |     ^^^^^^^^
1932     ///
1933     /// error: aborting due to previous error
1934     /// ```
1935     fn report_private_fields(
1936         &self,
1937         adt_ty: Ty<'tcx>,
1938         span: Span,
1939         private_fields: Vec<&ty::FieldDef>,
1940         used_fields: &'tcx [hir::ExprField<'tcx>],
1941     ) {
1942         let mut err = self.tcx.sess.struct_span_err(
1943             span,
1944             &format!(
1945                 "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
1946             ),
1947         );
1948         let (used_private_fields, remaining_private_fields): (
1949             Vec<(Symbol, Span, bool)>,
1950             Vec<(Symbol, Span, bool)>,
1951         ) = private_fields
1952             .iter()
1953             .map(|field| {
1954                 match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
1955                     Some(used_field) => (field.name, used_field.span, true),
1956                     None => (field.name, self.tcx.def_span(field.did), false),
1957                 }
1958             })
1959             .partition(|field| field.2);
1960         err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
1961         if !remaining_private_fields.is_empty() {
1962             let remaining_private_fields_len = remaining_private_fields.len();
1963             let names = match &remaining_private_fields
1964                 .iter()
1965                 .map(|(name, _, _)| name)
1966                 .collect::<Vec<_>>()[..]
1967             {
1968                 _ if remaining_private_fields_len > 6 => String::new(),
1969                 [name] => format!("`{name}` "),
1970                 [names @ .., last] => {
1971                     let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
1972                     format!("{} and `{last}` ", names.join(", "))
1973                 }
1974                 [] => unreachable!(),
1975             };
1976             err.note(format!(
1977                 "... and other private field{s} {names}that {were} not provided",
1978                 s = pluralize!(remaining_private_fields_len),
1979                 were = pluralize!("was", remaining_private_fields_len),
1980             ));
1981         }
1982         err.emit();
1983     }
1984
1985     fn report_unknown_field(
1986         &self,
1987         ty: Ty<'tcx>,
1988         variant: &'tcx ty::VariantDef,
1989         field: &hir::ExprField<'_>,
1990         skip_fields: &[hir::ExprField<'_>],
1991         kind_name: &str,
1992         expr_span: Span,
1993     ) {
1994         if variant.is_recovered() {
1995             self.set_tainted_by_errors(
1996                 self.tcx
1997                     .sess
1998                     .delay_span_bug(expr_span, "parser recovered but no error was emitted"),
1999             );
2000             return;
2001         }
2002         let mut err = self.err_ctxt().type_error_struct_with_diag(
2003             field.ident.span,
2004             |actual| match ty.kind() {
2005                 ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
2006                     self.tcx.sess,
2007                     field.ident.span,
2008                     E0559,
2009                     "{} `{}::{}` has no field named `{}`",
2010                     kind_name,
2011                     actual,
2012                     variant.name,
2013                     field.ident
2014                 ),
2015                 _ => struct_span_err!(
2016                     self.tcx.sess,
2017                     field.ident.span,
2018                     E0560,
2019                     "{} `{}` has no field named `{}`",
2020                     kind_name,
2021                     actual,
2022                     field.ident
2023                 ),
2024             },
2025             ty,
2026         );
2027
2028         let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
2029         match variant.ctor_kind() {
2030             Some(CtorKind::Fn) => match ty.kind() {
2031                 ty::Adt(adt, ..) if adt.is_enum() => {
2032                     err.span_label(
2033                         variant_ident_span,
2034                         format!(
2035                             "`{adt}::{variant}` defined here",
2036                             adt = ty,
2037                             variant = variant.name,
2038                         ),
2039                     );
2040                     err.span_label(field.ident.span, "field does not exist");
2041                     err.span_suggestion_verbose(
2042                         expr_span,
2043                         &format!(
2044                             "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
2045                             adt = ty,
2046                             variant = variant.name,
2047                         ),
2048                         format!(
2049                             "{adt}::{variant}(/* fields */)",
2050                             adt = ty,
2051                             variant = variant.name,
2052                         ),
2053                         Applicability::HasPlaceholders,
2054                     );
2055                 }
2056                 _ => {
2057                     err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
2058                     err.span_label(field.ident.span, "field does not exist");
2059                     err.span_suggestion_verbose(
2060                         expr_span,
2061                         &format!(
2062                             "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
2063                             adt = ty,
2064                             kind_name = kind_name,
2065                         ),
2066                         format!("{adt}(/* fields */)", adt = ty),
2067                         Applicability::HasPlaceholders,
2068                     );
2069                 }
2070             },
2071             _ => {
2072                 // prevent all specified fields from being suggested
2073                 let skip_fields = skip_fields.iter().map(|x| x.ident.name);
2074                 if let Some(field_name) = self.suggest_field_name(
2075                     variant,
2076                     field.ident.name,
2077                     skip_fields.collect(),
2078                     expr_span,
2079                 ) {
2080                     err.span_suggestion(
2081                         field.ident.span,
2082                         "a field with a similar name exists",
2083                         field_name,
2084                         Applicability::MaybeIncorrect,
2085                     );
2086                 } else {
2087                     match ty.kind() {
2088                         ty::Adt(adt, ..) => {
2089                             if adt.is_enum() {
2090                                 err.span_label(
2091                                     field.ident.span,
2092                                     format!("`{}::{}` does not have this field", ty, variant.name),
2093                                 );
2094                             } else {
2095                                 err.span_label(
2096                                     field.ident.span,
2097                                     format!("`{ty}` does not have this field"),
2098                                 );
2099                             }
2100                             let available_field_names =
2101                                 self.available_field_names(variant, expr_span);
2102                             if !available_field_names.is_empty() {
2103                                 err.note(&format!(
2104                                     "available fields are: {}",
2105                                     self.name_series_display(available_field_names)
2106                                 ));
2107                             }
2108                         }
2109                         _ => bug!("non-ADT passed to report_unknown_field"),
2110                     }
2111                 };
2112             }
2113         }
2114         err.emit();
2115     }
2116
2117     // Return a hint about the closest match in field names
2118     fn suggest_field_name(
2119         &self,
2120         variant: &'tcx ty::VariantDef,
2121         field: Symbol,
2122         skip: Vec<Symbol>,
2123         // The span where stability will be checked
2124         span: Span,
2125     ) -> Option<Symbol> {
2126         let names = variant
2127             .fields
2128             .iter()
2129             .filter_map(|field| {
2130                 // ignore already set fields and private fields from non-local crates
2131                 // and unstable fields.
2132                 if skip.iter().any(|&x| x == field.name)
2133                     || (!variant.def_id.is_local() && !field.vis.is_public())
2134                     || matches!(
2135                         self.tcx.eval_stability(field.did, None, span, None),
2136                         stability::EvalResult::Deny { .. }
2137                     )
2138                 {
2139                     None
2140                 } else {
2141                     Some(field.name)
2142                 }
2143             })
2144             .collect::<Vec<Symbol>>();
2145
2146         find_best_match_for_name(&names, field, None)
2147     }
2148
2149     fn available_field_names(
2150         &self,
2151         variant: &'tcx ty::VariantDef,
2152         access_span: Span,
2153     ) -> Vec<Symbol> {
2154         variant
2155             .fields
2156             .iter()
2157             .filter(|field| {
2158                 let def_scope = self
2159                     .tcx
2160                     .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
2161                     .1;
2162                 field.vis.is_accessible_from(def_scope, self.tcx)
2163                     && !matches!(
2164                         self.tcx.eval_stability(field.did, None, access_span, None),
2165                         stability::EvalResult::Deny { .. }
2166                     )
2167             })
2168             .filter(|field| !self.tcx.is_doc_hidden(field.did))
2169             .map(|field| field.name)
2170             .collect()
2171     }
2172
2173     fn name_series_display(&self, names: Vec<Symbol>) -> String {
2174         // dynamic limit, to never omit just one field
2175         let limit = if names.len() == 6 { 6 } else { 5 };
2176         let mut display =
2177             names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
2178         if names.len() > limit {
2179             display = format!("{} ... and {} others", display, names.len() - limit);
2180         }
2181         display
2182     }
2183
2184     // Check field access expressions
2185     fn check_field(
2186         &self,
2187         expr: &'tcx hir::Expr<'tcx>,
2188         base: &'tcx hir::Expr<'tcx>,
2189         field: Ident,
2190         expected: Expectation<'tcx>,
2191     ) -> Ty<'tcx> {
2192         debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
2193         let base_ty = self.check_expr(base);
2194         let base_ty = self.structurally_resolved_type(base.span, base_ty);
2195         let mut private_candidate = None;
2196         let mut autoderef = self.autoderef(expr.span, base_ty);
2197         while let Some((deref_base_ty, _)) = autoderef.next() {
2198             debug!("deref_base_ty: {:?}", deref_base_ty);
2199             match deref_base_ty.kind() {
2200                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2201                     debug!("struct named {:?}", deref_base_ty);
2202                     let (ident, def_scope) =
2203                         self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
2204                     let fields = &base_def.non_enum_variant().fields;
2205                     if let Some(index) = fields
2206                         .iter()
2207                         .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
2208                     {
2209                         let field = &fields[index];
2210                         let field_ty = self.field_ty(expr.span, field, substs);
2211                         // Save the index of all fields regardless of their visibility in case
2212                         // of error recovery.
2213                         self.write_field_index(expr.hir_id, index);
2214                         let adjustments = self.adjust_steps(&autoderef);
2215                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2216                             self.apply_adjustments(base, adjustments);
2217                             self.register_predicates(autoderef.into_obligations());
2218
2219                             self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
2220                             return field_ty;
2221                         }
2222                         private_candidate = Some((adjustments, base_def.did()));
2223                     }
2224                 }
2225                 ty::Tuple(tys) => {
2226                     let fstr = field.as_str();
2227                     if let Ok(index) = fstr.parse::<usize>() {
2228                         if fstr == index.to_string() {
2229                             if let Some(&field_ty) = tys.get(index) {
2230                                 let adjustments = self.adjust_steps(&autoderef);
2231                                 self.apply_adjustments(base, adjustments);
2232                                 self.register_predicates(autoderef.into_obligations());
2233
2234                                 self.write_field_index(expr.hir_id, index);
2235                                 return field_ty;
2236                             }
2237                         }
2238                     }
2239                 }
2240                 _ => {}
2241             }
2242         }
2243         self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
2244
2245         if let Some((adjustments, did)) = private_candidate {
2246             // (#90483) apply adjustments to avoid ExprUseVisitor from
2247             // creating erroneous projection.
2248             self.apply_adjustments(base, adjustments);
2249             self.ban_private_field_access(expr, base_ty, field, did, expected.only_has_type(self));
2250             return self.tcx().ty_error();
2251         }
2252
2253         if field.name == kw::Empty {
2254         } else if self.method_exists(
2255             field,
2256             base_ty,
2257             expr.hir_id,
2258             true,
2259             expected.only_has_type(self),
2260         ) {
2261             self.ban_take_value_of_method(expr, base_ty, field);
2262         } else if !base_ty.is_primitive_ty() {
2263             self.ban_nonexisting_field(field, base, expr, base_ty);
2264         } else {
2265             let field_name = field.to_string();
2266             let mut err = type_error_struct!(
2267                 self.tcx().sess,
2268                 field.span,
2269                 base_ty,
2270                 E0610,
2271                 "`{base_ty}` is a primitive type and therefore doesn't have fields",
2272             );
2273             let is_valid_suffix = |field: &str| {
2274                 if field == "f32" || field == "f64" {
2275                     return true;
2276                 }
2277                 let mut chars = field.chars().peekable();
2278                 match chars.peek() {
2279                     Some('e') | Some('E') => {
2280                         chars.next();
2281                         if let Some(c) = chars.peek()
2282                             && !c.is_numeric() && *c != '-' && *c != '+'
2283                         {
2284                             return false;
2285                         }
2286                         while let Some(c) = chars.peek() {
2287                             if !c.is_numeric() {
2288                                 break;
2289                             }
2290                             chars.next();
2291                         }
2292                     }
2293                     _ => (),
2294                 }
2295                 let suffix = chars.collect::<String>();
2296                 suffix.is_empty() || suffix == "f32" || suffix == "f64"
2297             };
2298             let maybe_partial_suffix = |field: &str| -> Option<&str> {
2299                 let first_chars = ['f', 'l'];
2300                 if field.len() >= 1
2301                     && field.to_lowercase().starts_with(first_chars)
2302                     && field[1..].chars().all(|c| c.is_ascii_digit())
2303                 {
2304                     if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
2305                 } else {
2306                     None
2307                 }
2308             };
2309             if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
2310                 && let ExprKind::Lit(Spanned {
2311                     node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
2312                     ..
2313                 }) = base.kind
2314                 && !base.span.from_expansion()
2315             {
2316                 if is_valid_suffix(&field_name) {
2317                     err.span_suggestion_verbose(
2318                         field.span.shrink_to_lo(),
2319                         "if intended to be a floating point literal, consider adding a `0` after the period",
2320                         '0',
2321                         Applicability::MaybeIncorrect,
2322                     );
2323                 } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
2324                     err.span_suggestion_verbose(
2325                         field.span,
2326                         format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
2327                         format!("0{correct_suffix}"),
2328                         Applicability::MaybeIncorrect,
2329                     );
2330                 }
2331             }
2332             err.emit();
2333         }
2334
2335         self.tcx().ty_error()
2336     }
2337
2338     fn suggest_await_on_field_access(
2339         &self,
2340         err: &mut Diagnostic,
2341         field_ident: Ident,
2342         base: &'tcx hir::Expr<'tcx>,
2343         ty: Ty<'tcx>,
2344     ) {
2345         let Some(output_ty) = self.get_impl_future_output_ty(ty) else { return; };
2346         let mut add_label = true;
2347         if let ty::Adt(def, _) = output_ty.kind() {
2348             // no field access on enum type
2349             if !def.is_enum() {
2350                 if def
2351                     .non_enum_variant()
2352                     .fields
2353                     .iter()
2354                     .any(|field| field.ident(self.tcx) == field_ident)
2355                 {
2356                     add_label = false;
2357                     err.span_label(
2358                         field_ident.span,
2359                         "field not available in `impl Future`, but it is available in its `Output`",
2360                     );
2361                     err.span_suggestion_verbose(
2362                         base.span.shrink_to_hi(),
2363                         "consider `await`ing on the `Future` and access the field of its `Output`",
2364                         ".await",
2365                         Applicability::MaybeIncorrect,
2366                     );
2367                 }
2368             }
2369         }
2370         if add_label {
2371             err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
2372         }
2373     }
2374
2375     fn ban_nonexisting_field(
2376         &self,
2377         ident: Ident,
2378         base: &'tcx hir::Expr<'tcx>,
2379         expr: &'tcx hir::Expr<'tcx>,
2380         base_ty: Ty<'tcx>,
2381     ) {
2382         debug!(
2383             "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
2384             ident, base, expr, base_ty
2385         );
2386         let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
2387
2388         match *base_ty.peel_refs().kind() {
2389             ty::Array(_, len) => {
2390                 self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
2391             }
2392             ty::RawPtr(..) => {
2393                 self.suggest_first_deref_field(&mut err, expr, base, ident);
2394             }
2395             ty::Adt(def, _) if !def.is_enum() => {
2396                 self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
2397             }
2398             ty::Param(param_ty) => {
2399                 self.point_at_param_definition(&mut err, param_ty);
2400             }
2401             ty::Alias(ty::Opaque, _) => {
2402                 self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
2403             }
2404             _ => {}
2405         }
2406
2407         self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
2408             if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
2409                 def.non_enum_variant().fields.iter().any(|field| {
2410                     field.ident(self.tcx) == ident
2411                         && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
2412                 })
2413             } else if let ty::Tuple(tys) = output_ty.kind()
2414                 && let Ok(idx) = ident.as_str().parse::<usize>()
2415             {
2416                 idx < tys.len()
2417             } else {
2418                 false
2419             }
2420         });
2421
2422         if ident.name == kw::Await {
2423             // We know by construction that `<expr>.await` is either on Rust 2015
2424             // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
2425             err.note("to `.await` a `Future`, switch to Rust 2018 or later");
2426             err.help_use_latest_edition();
2427         }
2428
2429         err.emit();
2430     }
2431
2432     fn ban_private_field_access(
2433         &self,
2434         expr: &hir::Expr<'tcx>,
2435         expr_t: Ty<'tcx>,
2436         field: Ident,
2437         base_did: DefId,
2438         return_ty: Option<Ty<'tcx>>,
2439     ) {
2440         let struct_path = self.tcx().def_path_str(base_did);
2441         let kind_name = self.tcx().def_kind(base_did).descr(base_did);
2442         let mut err = struct_span_err!(
2443             self.tcx().sess,
2444             field.span,
2445             E0616,
2446             "field `{field}` of {kind_name} `{struct_path}` is private",
2447         );
2448         err.span_label(field.span, "private field");
2449         // Also check if an accessible method exists, which is often what is meant.
2450         if self.method_exists(field, expr_t, expr.hir_id, false, return_ty)
2451             && !self.expr_in_place(expr.hir_id)
2452         {
2453             self.suggest_method_call(
2454                 &mut err,
2455                 &format!("a method `{field}` also exists, call it with parentheses"),
2456                 field,
2457                 expr_t,
2458                 expr,
2459                 None,
2460             );
2461         }
2462         err.emit();
2463     }
2464
2465     fn ban_take_value_of_method(&self, expr: &hir::Expr<'tcx>, expr_t: Ty<'tcx>, field: Ident) {
2466         let mut err = type_error_struct!(
2467             self.tcx().sess,
2468             field.span,
2469             expr_t,
2470             E0615,
2471             "attempted to take value of method `{field}` on type `{expr_t}`",
2472         );
2473         err.span_label(field.span, "method, not a field");
2474         let expr_is_call =
2475             if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
2476                 self.tcx.hir().get_parent(expr.hir_id)
2477             {
2478                 expr.hir_id == callee.hir_id
2479             } else {
2480                 false
2481             };
2482         let expr_snippet =
2483             self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
2484         let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
2485         let after_open = expr.span.lo() + rustc_span::BytePos(1);
2486         let before_close = expr.span.hi() - rustc_span::BytePos(1);
2487
2488         if expr_is_call && is_wrapped {
2489             err.multipart_suggestion(
2490                 "remove wrapping parentheses to call the method",
2491                 vec![
2492                     (expr.span.with_hi(after_open), String::new()),
2493                     (expr.span.with_lo(before_close), String::new()),
2494                 ],
2495                 Applicability::MachineApplicable,
2496             );
2497         } else if !self.expr_in_place(expr.hir_id) {
2498             // Suggest call parentheses inside the wrapping parentheses
2499             let span = if is_wrapped {
2500                 expr.span.with_lo(after_open).with_hi(before_close)
2501             } else {
2502                 expr.span
2503             };
2504             self.suggest_method_call(
2505                 &mut err,
2506                 "use parentheses to call the method",
2507                 field,
2508                 expr_t,
2509                 expr,
2510                 Some(span),
2511             );
2512         } else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
2513             && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
2514             && let ExprKind::Field(base_expr, _) = expr.kind
2515             && adt_def.variants().len() == 1
2516             && adt_def
2517                 .variants()
2518                 .iter()
2519                 .next()
2520                 .unwrap()
2521                 .fields
2522                 .iter()
2523                 .any(|f| f.ident(self.tcx) == field)
2524         {
2525             err.multipart_suggestion(
2526                 "to access the field, dereference first",
2527                 vec![
2528                     (base_expr.span.shrink_to_lo(), "(*".to_string()),
2529                     (base_expr.span.shrink_to_hi(), ")".to_string()),
2530                 ],
2531                 Applicability::MaybeIncorrect,
2532             );
2533         } else {
2534             err.help("methods are immutable and cannot be assigned to");
2535         }
2536
2537         err.emit();
2538     }
2539
2540     fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
2541         let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
2542         let generic_param = generics.type_param(&param, self.tcx);
2543         if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
2544             return;
2545         }
2546         let param_def_id = generic_param.def_id;
2547         let param_hir_id = match param_def_id.as_local() {
2548             Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
2549             None => return,
2550         };
2551         let param_span = self.tcx.hir().span(param_hir_id);
2552         let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
2553
2554         err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
2555     }
2556
2557     fn suggest_fields_on_recordish(
2558         &self,
2559         err: &mut Diagnostic,
2560         def: ty::AdtDef<'tcx>,
2561         field: Ident,
2562         access_span: Span,
2563     ) {
2564         if let Some(suggested_field_name) =
2565             self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
2566         {
2567             err.span_suggestion(
2568                 field.span,
2569                 "a field with a similar name exists",
2570                 suggested_field_name,
2571                 Applicability::MaybeIncorrect,
2572             );
2573         } else {
2574             err.span_label(field.span, "unknown field");
2575             let struct_variant_def = def.non_enum_variant();
2576             let field_names = self.available_field_names(struct_variant_def, access_span);
2577             if !field_names.is_empty() {
2578                 err.note(&format!(
2579                     "available fields are: {}",
2580                     self.name_series_display(field_names),
2581                 ));
2582             }
2583         }
2584     }
2585
2586     fn maybe_suggest_array_indexing(
2587         &self,
2588         err: &mut Diagnostic,
2589         expr: &hir::Expr<'_>,
2590         base: &hir::Expr<'_>,
2591         field: Ident,
2592         len: ty::Const<'tcx>,
2593     ) {
2594         if let (Some(len), Ok(user_index)) =
2595             (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
2596             && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
2597         {
2598             let help = "instead of using tuple indexing, use array indexing";
2599             let suggestion = format!("{base}[{field}]");
2600             let applicability = if len < user_index {
2601                 Applicability::MachineApplicable
2602             } else {
2603                 Applicability::MaybeIncorrect
2604             };
2605             err.span_suggestion(expr.span, help, suggestion, applicability);
2606         }
2607     }
2608
2609     fn suggest_first_deref_field(
2610         &self,
2611         err: &mut Diagnostic,
2612         expr: &hir::Expr<'_>,
2613         base: &hir::Expr<'_>,
2614         field: Ident,
2615     ) {
2616         if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
2617             let msg = format!("`{base}` is a raw pointer; try dereferencing it");
2618             let suggestion = format!("(*{base}).{field}");
2619             err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
2620         }
2621     }
2622
2623     fn no_such_field_err(
2624         &self,
2625         field: Ident,
2626         expr_t: Ty<'tcx>,
2627         id: HirId,
2628     ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
2629         let span = field.span;
2630         debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
2631
2632         let mut err = type_error_struct!(
2633             self.tcx().sess,
2634             field.span,
2635             expr_t,
2636             E0609,
2637             "no field `{field}` on type `{expr_t}`",
2638         );
2639
2640         // try to add a suggestion in case the field is a nested field of a field of the Adt
2641         let mod_id = self.tcx.parent_module(id).to_def_id();
2642         if let Some((fields, substs)) =
2643             self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
2644         {
2645             let candidate_fields: Vec<_> = fields
2646                 .filter_map(|candidate_field| {
2647                     self.check_for_nested_field_satisfying(
2648                         span,
2649                         &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
2650                         candidate_field,
2651                         substs,
2652                         vec![],
2653                         mod_id,
2654                     )
2655                 })
2656                 .map(|mut field_path| {
2657                     field_path.pop();
2658                     field_path
2659                         .iter()
2660                         .map(|id| id.name.to_ident_string())
2661                         .collect::<Vec<String>>()
2662                         .join(".")
2663                 })
2664                 .collect::<Vec<_>>();
2665
2666             let len = candidate_fields.len();
2667             if len > 0 {
2668                 err.span_suggestions(
2669                     field.span.shrink_to_lo(),
2670                     format!(
2671                         "{} of the expressions' fields {} a field of the same name",
2672                         if len > 1 { "some" } else { "one" },
2673                         if len > 1 { "have" } else { "has" },
2674                     ),
2675                     candidate_fields.iter().map(|path| format!("{path}.")),
2676                     Applicability::MaybeIncorrect,
2677                 );
2678             }
2679         }
2680         err
2681     }
2682
2683     pub(crate) fn get_field_candidates_considering_privacy(
2684         &self,
2685         span: Span,
2686         base_ty: Ty<'tcx>,
2687         mod_id: DefId,
2688     ) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
2689         debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
2690
2691         for (base_t, _) in self.autoderef(span, base_ty) {
2692             match base_t.kind() {
2693                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2694                     let tcx = self.tcx;
2695                     let fields = &base_def.non_enum_variant().fields;
2696                     // Some struct, e.g. some that impl `Deref`, have all private fields
2697                     // because you're expected to deref them to access the _real_ fields.
2698                     // This, for example, will help us suggest accessing a field through a `Box<T>`.
2699                     if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
2700                         continue;
2701                     }
2702                     return Some((
2703                         fields
2704                             .iter()
2705                             .filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
2706                             // For compile-time reasons put a limit on number of fields we search
2707                             .take(100),
2708                         substs,
2709                     ));
2710                 }
2711                 _ => {}
2712             }
2713         }
2714         None
2715     }
2716
2717     /// This method is called after we have encountered a missing field error to recursively
2718     /// search for the field
2719     pub(crate) fn check_for_nested_field_satisfying(
2720         &self,
2721         span: Span,
2722         matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
2723         candidate_field: &ty::FieldDef,
2724         subst: SubstsRef<'tcx>,
2725         mut field_path: Vec<Ident>,
2726         mod_id: DefId,
2727     ) -> Option<Vec<Ident>> {
2728         debug!(
2729             "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
2730             span, candidate_field, field_path
2731         );
2732
2733         if field_path.len() > 3 {
2734             // For compile-time reasons and to avoid infinite recursion we only check for fields
2735             // up to a depth of three
2736             None
2737         } else {
2738             field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
2739             let field_ty = candidate_field.ty(self.tcx, subst);
2740             if matches(candidate_field, field_ty) {
2741                 return Some(field_path);
2742             } else if let Some((nested_fields, subst)) =
2743                 self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
2744             {
2745                 // recursively search fields of `candidate_field` if it's a ty::Adt
2746                 for field in nested_fields {
2747                     if let Some(field_path) = self.check_for_nested_field_satisfying(
2748                         span,
2749                         matches,
2750                         field,
2751                         subst,
2752                         field_path.clone(),
2753                         mod_id,
2754                     ) {
2755                         return Some(field_path);
2756                     }
2757                 }
2758             }
2759             None
2760         }
2761     }
2762
2763     fn check_expr_index(
2764         &self,
2765         base: &'tcx hir::Expr<'tcx>,
2766         idx: &'tcx hir::Expr<'tcx>,
2767         expr: &'tcx hir::Expr<'tcx>,
2768     ) -> Ty<'tcx> {
2769         let base_t = self.check_expr(&base);
2770         let idx_t = self.check_expr(&idx);
2771
2772         if base_t.references_error() {
2773             base_t
2774         } else if idx_t.references_error() {
2775             idx_t
2776         } else {
2777             let base_t = self.structurally_resolved_type(base.span, base_t);
2778             match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
2779                 Some((index_ty, element_ty)) => {
2780                     // two-phase not needed because index_ty is never mutable
2781                     self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
2782                     self.select_obligations_where_possible(|errors| {
2783                         self.point_at_index_if_possible(errors, idx.span)
2784                     });
2785                     element_ty
2786                 }
2787                 None => {
2788                     let mut err = type_error_struct!(
2789                         self.tcx.sess,
2790                         expr.span,
2791                         base_t,
2792                         E0608,
2793                         "cannot index into a value of type `{base_t}`",
2794                     );
2795                     // Try to give some advice about indexing tuples.
2796                     if let ty::Tuple(..) = base_t.kind() {
2797                         let mut needs_note = true;
2798                         // If the index is an integer, we can show the actual
2799                         // fixed expression:
2800                         if let ExprKind::Lit(ref lit) = idx.kind {
2801                             if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
2802                                 let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
2803                                 if let Ok(snip) = snip {
2804                                     err.span_suggestion(
2805                                         expr.span,
2806                                         "to access tuple elements, use",
2807                                         format!("{snip}.{i}"),
2808                                         Applicability::MachineApplicable,
2809                                     );
2810                                     needs_note = false;
2811                                 }
2812                             }
2813                         }
2814                         if needs_note {
2815                             err.help(
2816                                 "to access tuple elements, use tuple indexing \
2817                                         syntax (e.g., `tuple.0`)",
2818                             );
2819                         }
2820                     }
2821                     let reported = err.emit();
2822                     self.tcx.ty_error_with_guaranteed(reported)
2823                 }
2824             }
2825         }
2826     }
2827
2828     fn point_at_index_if_possible(
2829         &self,
2830         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
2831         span: Span,
2832     ) {
2833         for error in errors {
2834             match error.obligation.predicate.kind().skip_binder() {
2835                 ty::PredicateKind::Clause(ty::Clause::Trait(predicate))
2836                     if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
2837                 }
2838                 _ => continue,
2839             }
2840             error.obligation.cause.span = span;
2841         }
2842     }
2843
2844     fn check_expr_yield(
2845         &self,
2846         value: &'tcx hir::Expr<'tcx>,
2847         expr: &'tcx hir::Expr<'tcx>,
2848         src: &'tcx hir::YieldSource,
2849     ) -> Ty<'tcx> {
2850         match self.resume_yield_tys {
2851             Some((resume_ty, yield_ty)) => {
2852                 self.check_expr_coercable_to_type(&value, yield_ty, None);
2853
2854                 resume_ty
2855             }
2856             // Given that this `yield` expression was generated as a result of lowering a `.await`,
2857             // we know that the yield type must be `()`; however, the context won't contain this
2858             // information. Hence, we check the source of the yield expression here and check its
2859             // value's type against `()` (this check should always hold).
2860             None if src.is_await() => {
2861                 self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
2862                 self.tcx.mk_unit()
2863             }
2864             _ => {
2865                 self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
2866                 // Avoid expressions without types during writeback (#78653).
2867                 self.check_expr(value);
2868                 self.tcx.mk_unit()
2869             }
2870         }
2871     }
2872
2873     fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
2874         let needs = if is_input { Needs::None } else { Needs::MutPlace };
2875         let ty = self.check_expr_with_needs(expr, needs);
2876         self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
2877
2878         if !is_input && !expr.is_syntactic_place_expr() {
2879             let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
2880             err.span_label(expr.span, "cannot assign to this expression");
2881             err.emit();
2882         }
2883
2884         // If this is an input value, we require its type to be fully resolved
2885         // at this point. This allows us to provide helpful coercions which help
2886         // pass the type candidate list in a later pass.
2887         //
2888         // We don't require output types to be resolved at this point, which
2889         // allows them to be inferred based on how they are used later in the
2890         // function.
2891         if is_input {
2892             let ty = self.structurally_resolved_type(expr.span, ty);
2893             match *ty.kind() {
2894                 ty::FnDef(..) => {
2895                     let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
2896                     self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
2897                 }
2898                 ty::Ref(_, base_ty, mutbl) => {
2899                     let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
2900                     self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
2901                 }
2902                 _ => {}
2903             }
2904         }
2905     }
2906
2907     fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
2908         for (op, _op_sp) in asm.operands {
2909             match op {
2910                 hir::InlineAsmOperand::In { expr, .. } => {
2911                     self.check_expr_asm_operand(expr, true);
2912                 }
2913                 hir::InlineAsmOperand::Out { expr: Some(expr), .. }
2914                 | hir::InlineAsmOperand::InOut { expr, .. } => {
2915                     self.check_expr_asm_operand(expr, false);
2916                 }
2917                 hir::InlineAsmOperand::Out { expr: None, .. } => {}
2918                 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
2919                     self.check_expr_asm_operand(in_expr, true);
2920                     if let Some(out_expr) = out_expr {
2921                         self.check_expr_asm_operand(out_expr, false);
2922                     }
2923                 }
2924                 // `AnonConst`s have their own body and is type-checked separately.
2925                 // As they don't flow into the type system we don't need them to
2926                 // be well-formed.
2927                 hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
2928                 hir::InlineAsmOperand::SymStatic { .. } => {}
2929             }
2930         }
2931         if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
2932             self.tcx.types.never
2933         } else {
2934             self.tcx.mk_unit()
2935         }
2936     }
2937 }