]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/expr.rs
Merge from rustc
[rust.git] / compiler / rustc_hir_typeck / src / expr.rs
1 //! Type checking expressions.
2 //!
3 //! See `mod.rs` for more context on type checking in general.
4
5 use crate::cast;
6 use crate::coercion::CoerceMany;
7 use crate::coercion::DynamicCoerceMany;
8 use crate::errors::TypeMismatchFruTypo;
9 use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
10 use crate::errors::{
11     FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
12     YieldExprOutsideOfGenerator,
13 };
14 use crate::fatally_break_rust;
15 use crate::method::SelfSource;
16 use crate::type_error_struct;
17 use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
18 use crate::{
19     report_unexpected_variant_res, BreakableCtxt, Diverges, FnCtxt, Needs,
20     TupleArgumentsFlag::DontTupleArguments,
21 };
22 use rustc_ast as ast;
23 use rustc_data_structures::fx::FxHashMap;
24 use rustc_data_structures::stack::ensure_sufficient_stack;
25 use rustc_errors::{
26     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
27     ErrorGuaranteed, StashKey,
28 };
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind, Res};
31 use rustc_hir::def_id::DefId;
32 use rustc_hir::intravisit::Visitor;
33 use rustc_hir::lang_items::LangItem;
34 use rustc_hir::{ExprKind, HirId, QPath};
35 use rustc_hir_analysis::astconv::AstConv as _;
36 use rustc_hir_analysis::check::ty_kind_suggestion;
37 use rustc_infer::infer;
38 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
39 use rustc_infer::infer::InferOk;
40 use rustc_infer::traits::ObligationCause;
41 use rustc_middle::middle::stability;
42 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
43 use rustc_middle::ty::error::TypeError::FieldMisMatch;
44 use rustc_middle::ty::subst::SubstsRef;
45 use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
46 use rustc_session::errors::ExprParenthesesNeeded;
47 use rustc_session::parse::feature_err;
48 use rustc_span::hygiene::DesugaringKind;
49 use rustc_span::lev_distance::find_best_match_for_name;
50 use rustc_span::source_map::{Span, Spanned};
51 use rustc_span::symbol::{kw, sym, Ident, Symbol};
52 use rustc_target::spec::abi::Abi::RustIntrinsic;
53 use rustc_trait_selection::infer::InferCtxtExt;
54 use rustc_trait_selection::traits::{self, ObligationCauseCode};
55
56 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
57     fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
58         let ty = self.check_expr_with_hint(expr, expected);
59         self.demand_eqtype(expr.span, expected, ty);
60     }
61
62     pub fn check_expr_has_type_or_error(
63         &self,
64         expr: &'tcx hir::Expr<'tcx>,
65         expected: Ty<'tcx>,
66         extend_err: impl FnMut(&mut Diagnostic),
67     ) -> Ty<'tcx> {
68         self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
69     }
70
71     fn check_expr_meets_expectation_or_error(
72         &self,
73         expr: &'tcx hir::Expr<'tcx>,
74         expected: Expectation<'tcx>,
75         mut extend_err: impl FnMut(&mut Diagnostic),
76     ) -> Ty<'tcx> {
77         let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
78         let mut ty = self.check_expr_with_expectation(expr, expected);
79
80         // While we don't allow *arbitrary* coercions here, we *do* allow
81         // coercions from ! to `expected`.
82         if ty.is_never() {
83             if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
84                 let reported = self.tcx().sess.delay_span_bug(
85                     expr.span,
86                     "expression with never type wound up being adjusted",
87                 );
88                 return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
89                     target.to_owned()
90                 } else {
91                     self.tcx().ty_error_with_guaranteed(reported)
92                 };
93             }
94
95             let adj_ty = self.next_ty_var(TypeVariableOrigin {
96                 kind: TypeVariableOriginKind::AdjustmentType,
97                 span: expr.span,
98             });
99             self.apply_adjustments(
100                 expr,
101                 vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
102             );
103             ty = adj_ty;
104         }
105
106         if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
107             let _ = self.emit_type_mismatch_suggestions(
108                 &mut err,
109                 expr.peel_drop_temps(),
110                 ty,
111                 expected_ty,
112                 None,
113                 None,
114             );
115             extend_err(&mut err);
116             err.emit();
117         }
118         ty
119     }
120
121     pub(super) fn check_expr_coercable_to_type(
122         &self,
123         expr: &'tcx hir::Expr<'tcx>,
124         expected: Ty<'tcx>,
125         expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
126     ) -> Ty<'tcx> {
127         let ty = self.check_expr_with_hint(expr, expected);
128         // checks don't need two phase
129         self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
130     }
131
132     pub(super) fn check_expr_with_hint(
133         &self,
134         expr: &'tcx hir::Expr<'tcx>,
135         expected: Ty<'tcx>,
136     ) -> Ty<'tcx> {
137         self.check_expr_with_expectation(expr, ExpectHasType(expected))
138     }
139
140     fn check_expr_with_expectation_and_needs(
141         &self,
142         expr: &'tcx hir::Expr<'tcx>,
143         expected: Expectation<'tcx>,
144         needs: Needs,
145     ) -> Ty<'tcx> {
146         let ty = self.check_expr_with_expectation(expr, expected);
147
148         // If the expression is used in a place whether mutable place is required
149         // e.g. LHS of assignment, perform the conversion.
150         if let Needs::MutPlace = needs {
151             self.convert_place_derefs_to_mutable(expr);
152         }
153
154         ty
155     }
156
157     pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
158         self.check_expr_with_expectation(expr, NoExpectation)
159     }
160
161     pub(super) fn check_expr_with_needs(
162         &self,
163         expr: &'tcx hir::Expr<'tcx>,
164         needs: Needs,
165     ) -> Ty<'tcx> {
166         self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
167     }
168
169     /// Invariant:
170     /// If an expression has any sub-expressions that result in a type error,
171     /// inspecting that expression's type with `ty.references_error()` will return
172     /// true. Likewise, if an expression is known to diverge, inspecting its
173     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
174     /// strict, _|_ can appear in the type of an expression that does not,
175     /// itself, diverge: for example, fn() -> _|_.)
176     /// Note that inspecting a type's structure *directly* may expose the fact
177     /// that there are actually multiple representations for `Error`, so avoid
178     /// that when err needs to be handled differently.
179     #[instrument(skip(self, expr), level = "debug")]
180     pub(super) fn check_expr_with_expectation(
181         &self,
182         expr: &'tcx hir::Expr<'tcx>,
183         expected: Expectation<'tcx>,
184     ) -> Ty<'tcx> {
185         self.check_expr_with_expectation_and_args(expr, expected, &[])
186     }
187
188     /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
189     /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
190     pub(super) fn check_expr_with_expectation_and_args(
191         &self,
192         expr: &'tcx hir::Expr<'tcx>,
193         expected: Expectation<'tcx>,
194         args: &'tcx [hir::Expr<'tcx>],
195     ) -> Ty<'tcx> {
196         if self.tcx().sess.verbose() {
197             // make this code only run with -Zverbose because it is probably slow
198             if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
199                 if !lint_str.contains('\n') {
200                     debug!("expr text: {lint_str}");
201                 } else {
202                     let mut lines = lint_str.lines();
203                     if let Some(line0) = lines.next() {
204                         let remaining_lines = lines.count();
205                         debug!("expr text: {line0}");
206                         debug!("expr text: ...(and {remaining_lines} more lines)");
207                     }
208                 }
209             }
210         }
211
212         // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
213         // without the final expr (e.g. `try { return; }`). We don't want to generate an
214         // unreachable_code lint for it since warnings for autogenerated code are confusing.
215         let is_try_block_generated_unit_expr = match expr.kind {
216             ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
217                 args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
218             }
219
220             _ => false,
221         };
222
223         // Warn for expressions after diverging siblings.
224         if !is_try_block_generated_unit_expr {
225             self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
226         }
227
228         // Hide the outer diverging and has_errors flags.
229         let old_diverges = self.diverges.replace(Diverges::Maybe);
230
231         let ty = ensure_sufficient_stack(|| match &expr.kind {
232             hir::ExprKind::Path(
233                 qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
234             ) => self.check_expr_path(qpath, expr, args),
235             _ => self.check_expr_kind(expr, expected),
236         });
237
238         // Warn for non-block expressions with diverging children.
239         match expr.kind {
240             ExprKind::Block(..)
241             | ExprKind::If(..)
242             | ExprKind::Let(..)
243             | ExprKind::Loop(..)
244             | ExprKind::Match(..) => {}
245             // If `expr` is a result of desugaring the try block and is an ok-wrapped
246             // diverging expression (e.g. it arose from desugaring of `try { return }`),
247             // we skip issuing a warning because it is autogenerated code.
248             ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
249             ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
250             ExprKind::MethodCall(segment, ..) => {
251                 self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
252             }
253             _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
254         }
255
256         // Any expression that produces a value of type `!` must have diverged
257         if ty.is_never() {
258             self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
259         }
260
261         // Record the type, which applies it effects.
262         // We need to do this after the warning above, so that
263         // we don't warn for the diverging expression itself.
264         self.write_ty(expr.hir_id, ty);
265
266         // Combine the diverging and has_error flags.
267         self.diverges.set(self.diverges.get() | old_diverges);
268
269         debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
270         debug!("... {:?}, expected is {:?}", ty, expected);
271
272         ty
273     }
274
275     #[instrument(skip(self, expr), level = "debug")]
276     fn check_expr_kind(
277         &self,
278         expr: &'tcx hir::Expr<'tcx>,
279         expected: Expectation<'tcx>,
280     ) -> Ty<'tcx> {
281         trace!("expr={:#?}", expr);
282
283         let tcx = self.tcx;
284         match expr.kind {
285             ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
286             ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
287             ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
288             ExprKind::Assign(lhs, rhs, span) => {
289                 self.check_expr_assign(expr, expected, lhs, rhs, span)
290             }
291             ExprKind::AssignOp(op, lhs, rhs) => {
292                 self.check_binop_assign(expr, op, lhs, rhs, expected)
293             }
294             ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
295             ExprKind::AddrOf(kind, mutbl, oprnd) => {
296                 self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
297             }
298             ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
299                 self.check_lang_item_path(lang_item, expr, hir_id)
300             }
301             ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
302             ExprKind::InlineAsm(asm) => {
303                 // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
304                 self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
305                 self.check_expr_asm(asm)
306             }
307             ExprKind::Break(destination, ref expr_opt) => {
308                 self.check_expr_break(destination, expr_opt.as_deref(), expr)
309             }
310             ExprKind::Continue(destination) => {
311                 if destination.target_id.is_ok() {
312                     tcx.types.never
313                 } else {
314                     // There was an error; make type-check fail.
315                     tcx.ty_error()
316                 }
317             }
318             ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
319             ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
320             ExprKind::Loop(body, _, source, _) => {
321                 self.check_expr_loop(body, source, expected, expr)
322             }
323             ExprKind::Match(discrim, arms, match_src) => {
324                 self.check_match(expr, &discrim, arms, expected, match_src)
325             }
326             ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
327             ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
328             ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
329             ExprKind::MethodCall(segment, receiver, args, _) => {
330                 self.check_method_call(expr, segment, receiver, args, expected)
331             }
332             ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
333             ExprKind::Type(e, t) => {
334                 let ty = self.to_ty_saving_user_provided_ty(&t);
335                 self.check_expr_eq_type(&e, ty);
336                 ty
337             }
338             ExprKind::If(cond, then_expr, opt_else_expr) => {
339                 self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
340             }
341             ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
342             ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
343             ExprKind::ConstBlock(ref anon_const) => {
344                 self.check_expr_const_block(anon_const, expected, expr)
345             }
346             ExprKind::Repeat(element, ref count) => {
347                 self.check_expr_repeat(element, count, expected, expr)
348             }
349             ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
350             ExprKind::Struct(qpath, fields, ref base_expr) => {
351                 self.check_expr_struct(expr, expected, qpath, fields, base_expr)
352             }
353             ExprKind::Field(base, field) => self.check_field(expr, &base, field),
354             ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
355             ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
356             hir::ExprKind::Err => tcx.ty_error(),
357         }
358     }
359
360     fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
361         let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
362             ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
363             _ => NoExpectation,
364         });
365         let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
366         self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
367         self.tcx.mk_box(referent_ty)
368     }
369
370     fn check_expr_unary(
371         &self,
372         unop: hir::UnOp,
373         oprnd: &'tcx hir::Expr<'tcx>,
374         expected: Expectation<'tcx>,
375         expr: &'tcx hir::Expr<'tcx>,
376     ) -> Ty<'tcx> {
377         let tcx = self.tcx;
378         let expected_inner = match unop {
379             hir::UnOp::Not | hir::UnOp::Neg => expected,
380             hir::UnOp::Deref => NoExpectation,
381         };
382         let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
383
384         if !oprnd_t.references_error() {
385             oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
386             match unop {
387                 hir::UnOp::Deref => {
388                     if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
389                         oprnd_t = ty;
390                     } else {
391                         let mut err = type_error_struct!(
392                             tcx.sess,
393                             expr.span,
394                             oprnd_t,
395                             E0614,
396                             "type `{oprnd_t}` cannot be dereferenced",
397                         );
398                         let sp = tcx.sess.source_map().start_point(expr.span);
399                         if let Some(sp) =
400                             tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
401                         {
402                             err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
403                         }
404                         oprnd_t = tcx.ty_error_with_guaranteed(err.emit());
405                     }
406                 }
407                 hir::UnOp::Not => {
408                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
409                     // If it's builtin, we can reuse the type, this helps inference.
410                     if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
411                         oprnd_t = result;
412                     }
413                 }
414                 hir::UnOp::Neg => {
415                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
416                     // If it's builtin, we can reuse the type, this helps inference.
417                     if !oprnd_t.is_numeric() {
418                         oprnd_t = result;
419                     }
420                 }
421             }
422         }
423         oprnd_t
424     }
425
426     fn check_expr_addr_of(
427         &self,
428         kind: hir::BorrowKind,
429         mutbl: hir::Mutability,
430         oprnd: &'tcx hir::Expr<'tcx>,
431         expected: Expectation<'tcx>,
432         expr: &'tcx hir::Expr<'tcx>,
433     ) -> Ty<'tcx> {
434         let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
435             match ty.kind() {
436                 ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
437                     if oprnd.is_syntactic_place_expr() {
438                         // Places may legitimately have unsized types.
439                         // For example, dereferences of a fat pointer and
440                         // the last field of a struct can be unsized.
441                         ExpectHasType(*ty)
442                     } else {
443                         Expectation::rvalue_hint(self, *ty)
444                     }
445                 }
446                 _ => NoExpectation,
447             }
448         });
449         let ty =
450             self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
451
452         let tm = ty::TypeAndMut { ty, mutbl };
453         match kind {
454             _ if tm.ty.references_error() => self.tcx.ty_error(),
455             hir::BorrowKind::Raw => {
456                 self.check_named_place_expr(oprnd);
457                 self.tcx.mk_ptr(tm)
458             }
459             hir::BorrowKind::Ref => {
460                 // Note: at this point, we cannot say what the best lifetime
461                 // is to use for resulting pointer.  We want to use the
462                 // shortest lifetime possible so as to avoid spurious borrowck
463                 // errors.  Moreover, the longest lifetime will depend on the
464                 // precise details of the value whose address is being taken
465                 // (and how long it is valid), which we don't know yet until
466                 // type inference is complete.
467                 //
468                 // Therefore, here we simply generate a region variable. The
469                 // region inferencer will then select a suitable value.
470                 // Finally, borrowck will infer the value of the region again,
471                 // this time with enough precision to check that the value
472                 // whose address was taken can actually be made to live as long
473                 // as it needs to live.
474                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
475                 self.tcx.mk_ref(region, tm)
476             }
477         }
478     }
479
480     /// Does this expression refer to a place that either:
481     /// * Is based on a local or static.
482     /// * Contains a dereference
483     /// Note that the adjustments for the children of `expr` should already
484     /// have been resolved.
485     fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
486         let is_named = oprnd.is_place_expr(|base| {
487             // Allow raw borrows if there are any deref adjustments.
488             //
489             // const VAL: (i32,) = (0,);
490             // const REF: &(i32,) = &(0,);
491             //
492             // &raw const VAL.0;            // ERROR
493             // &raw const REF.0;            // OK, same as &raw const (*REF).0;
494             //
495             // This is maybe too permissive, since it allows
496             // `let u = &raw const Box::new((1,)).0`, which creates an
497             // immediately dangling raw pointer.
498             self.typeck_results
499                 .borrow()
500                 .adjustments()
501                 .get(base.hir_id)
502                 .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
503         });
504         if !is_named {
505             self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
506         }
507     }
508
509     fn check_lang_item_path(
510         &self,
511         lang_item: hir::LangItem,
512         expr: &'tcx hir::Expr<'tcx>,
513         hir_id: Option<hir::HirId>,
514     ) -> Ty<'tcx> {
515         self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
516     }
517
518     pub(crate) fn check_expr_path(
519         &self,
520         qpath: &'tcx hir::QPath<'tcx>,
521         expr: &'tcx hir::Expr<'tcx>,
522         args: &'tcx [hir::Expr<'tcx>],
523     ) -> Ty<'tcx> {
524         let tcx = self.tcx;
525         let (res, opt_ty, segs) =
526             self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
527         let ty = match res {
528             Res::Err => {
529                 self.suggest_assoc_method_call(segs);
530                 let e =
531                     self.tcx.sess.delay_span_bug(qpath.span(), "`Res::Err` but no error emitted");
532                 self.set_tainted_by_errors(e);
533                 tcx.ty_error_with_guaranteed(e)
534             }
535             Res::Def(DefKind::Variant, _) => {
536                 let e = report_unexpected_variant_res(tcx, res, qpath, expr.span, "E0533", "value");
537                 tcx.ty_error_with_guaranteed(e)
538             }
539             _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
540         };
541
542         if let ty::FnDef(did, ..) = *ty.kind() {
543             let fn_sig = ty.fn_sig(tcx);
544             if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
545                 let from = fn_sig.inputs().skip_binder()[0];
546                 let to = fn_sig.output().skip_binder();
547                 // We defer the transmute to the end of typeck, once all inference vars have
548                 // been resolved or we errored. This is important as we can only check transmute
549                 // on concrete types, but the output type may not be known yet (it would only
550                 // be known if explicitly specified via turbofish).
551                 self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
552             }
553             if !tcx.features().unsized_fn_params {
554                 // We want to remove some Sized bounds from std functions,
555                 // but don't want to expose the removal to stable Rust.
556                 // i.e., we don't want to allow
557                 //
558                 // ```rust
559                 // drop as fn(str);
560                 // ```
561                 //
562                 // to work in stable even if the Sized bound on `drop` is relaxed.
563                 for i in 0..fn_sig.inputs().skip_binder().len() {
564                     // We just want to check sizedness, so instead of introducing
565                     // placeholder lifetimes with probing, we just replace higher lifetimes
566                     // with fresh vars.
567                     let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
568                     let input = self.replace_bound_vars_with_fresh_vars(
569                         span,
570                         infer::LateBoundRegionConversionTime::FnCall,
571                         fn_sig.input(i),
572                     );
573                     self.require_type_is_sized_deferred(
574                         input,
575                         span,
576                         traits::SizedArgumentType(None),
577                     );
578                 }
579             }
580             // Here we want to prevent struct constructors from returning unsized types.
581             // There were two cases this happened: fn pointer coercion in stable
582             // and usual function call in presence of unsized_locals.
583             // Also, as we just want to check sizedness, instead of introducing
584             // placeholder lifetimes with probing, we just replace higher lifetimes
585             // with fresh vars.
586             let output = self.replace_bound_vars_with_fresh_vars(
587                 expr.span,
588                 infer::LateBoundRegionConversionTime::FnCall,
589                 fn_sig.output(),
590             );
591             self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
592         }
593
594         // We always require that the type provided as the value for
595         // a type parameter outlives the moment of instantiation.
596         let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
597         self.add_wf_bounds(substs, expr);
598
599         ty
600     }
601
602     fn check_expr_break(
603         &self,
604         destination: hir::Destination,
605         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
606         expr: &'tcx hir::Expr<'tcx>,
607     ) -> Ty<'tcx> {
608         let tcx = self.tcx;
609         if let Ok(target_id) = destination.target_id {
610             let (e_ty, cause);
611             if let Some(e) = expr_opt {
612                 // If this is a break with a value, we need to type-check
613                 // the expression. Get an expected type from the loop context.
614                 let opt_coerce_to = {
615                     // We should release `enclosing_breakables` before the `check_expr_with_hint`
616                     // below, so can't move this block of code to the enclosing scope and share
617                     // `ctxt` with the second `enclosing_breakables` borrow below.
618                     let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
619                     match enclosing_breakables.opt_find_breakable(target_id) {
620                         Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
621                         None => {
622                             // Avoid ICE when `break` is inside a closure (#65383).
623                             return tcx.ty_error_with_message(
624                                 expr.span,
625                                 "break was outside loop, but no error was emitted",
626                             );
627                         }
628                     }
629                 };
630
631                 // If the loop context is not a `loop { }`, then break with
632                 // a value is illegal, and `opt_coerce_to` will be `None`.
633                 // Just set expectation to error in that case.
634                 let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
635
636                 // Recurse without `enclosing_breakables` borrowed.
637                 e_ty = self.check_expr_with_hint(e, coerce_to);
638                 cause = self.misc(e.span);
639             } else {
640                 // Otherwise, this is a break *without* a value. That's
641                 // always legal, and is equivalent to `break ()`.
642                 e_ty = tcx.mk_unit();
643                 cause = self.misc(expr.span);
644             }
645
646             // Now that we have type-checked `expr_opt`, borrow
647             // the `enclosing_loops` field and let's coerce the
648             // type of `expr_opt` into what is expected.
649             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
650             let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
651                 // Avoid ICE when `break` is inside a closure (#65383).
652                 return tcx.ty_error_with_message(
653                     expr.span,
654                     "break was outside loop, but no error was emitted",
655                 );
656             };
657
658             if let Some(ref mut coerce) = ctxt.coerce {
659                 if let Some(ref e) = expr_opt {
660                     coerce.coerce(self, &cause, e, e_ty);
661                 } else {
662                     assert!(e_ty.is_unit());
663                     let ty = coerce.expected_ty();
664                     coerce.coerce_forced_unit(
665                         self,
666                         &cause,
667                         &mut |mut err| {
668                             self.suggest_mismatched_types_on_tail(
669                                 &mut err, expr, ty, e_ty, target_id,
670                             );
671                             if let Some(val) = ty_kind_suggestion(ty) {
672                                 let label = destination
673                                     .label
674                                     .map(|l| format!(" {}", l.ident))
675                                     .unwrap_or_else(String::new);
676                                 err.span_suggestion(
677                                     expr.span,
678                                     "give it a value of the expected type",
679                                     format!("break{label} {val}"),
680                                     Applicability::HasPlaceholders,
681                                 );
682                             }
683                         },
684                         false,
685                     );
686                 }
687             } else {
688                 // If `ctxt.coerce` is `None`, we can just ignore
689                 // the type of the expression.  This is because
690                 // either this was a break *without* a value, in
691                 // which case it is always a legal type (`()`), or
692                 // else an error would have been flagged by the
693                 // `loops` pass for using break with an expression
694                 // where you are not supposed to.
695                 assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
696             }
697
698             // If we encountered a `break`, then (no surprise) it may be possible to break from the
699             // loop... unless the value being returned from the loop diverges itself, e.g.
700             // `break return 5` or `break loop {}`.
701             ctxt.may_break |= !self.diverges.get().is_always();
702
703             // the type of a `break` is always `!`, since it diverges
704             tcx.types.never
705         } else {
706             // Otherwise, we failed to find the enclosing loop;
707             // this can only happen if the `break` was not
708             // inside a loop at all, which is caught by the
709             // loop-checking pass.
710             let err = self.tcx.ty_error_with_message(
711                 expr.span,
712                 "break was outside loop, but no error was emitted",
713             );
714
715             // We still need to assign a type to the inner expression to
716             // prevent the ICE in #43162.
717             if let Some(e) = expr_opt {
718                 self.check_expr_with_hint(e, err);
719
720                 // ... except when we try to 'break rust;'.
721                 // ICE this expression in particular (see #43162).
722                 if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
723                     if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
724                         fatally_break_rust(self.tcx.sess);
725                     }
726                 }
727             }
728
729             // There was an error; make type-check fail.
730             err
731         }
732     }
733
734     fn check_expr_return(
735         &self,
736         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
737         expr: &'tcx hir::Expr<'tcx>,
738     ) -> Ty<'tcx> {
739         if self.ret_coercion.is_none() {
740             let mut err = ReturnStmtOutsideOfFnBody {
741                 span: expr.span,
742                 encl_body_span: None,
743                 encl_fn_span: None,
744             };
745
746             let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
747
748             if let Some(hir::Node::Item(hir::Item {
749                 kind: hir::ItemKind::Fn(..),
750                 span: encl_fn_span,
751                 ..
752             }))
753             | Some(hir::Node::TraitItem(hir::TraitItem {
754                 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
755                 span: encl_fn_span,
756                 ..
757             }))
758             | Some(hir::Node::ImplItem(hir::ImplItem {
759                 kind: hir::ImplItemKind::Fn(..),
760                 span: encl_fn_span,
761                 ..
762             })) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
763             {
764                 // We are inside a function body, so reporting "return statement
765                 // outside of function body" needs an explanation.
766
767                 let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
768
769                 // If this didn't hold, we would not have to report an error in
770                 // the first place.
771                 assert_ne!(encl_item_id.def_id, encl_body_owner_id);
772
773                 let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
774                 let encl_body = self.tcx.hir().body(encl_body_id);
775
776                 err.encl_body_span = Some(encl_body.value.span);
777                 err.encl_fn_span = Some(*encl_fn_span);
778             }
779
780             self.tcx.sess.emit_err(err);
781
782             if let Some(e) = expr_opt {
783                 // We still have to type-check `e` (issue #86188), but calling
784                 // `check_return_expr` only works inside fn bodies.
785                 self.check_expr(e);
786             }
787         } else if let Some(e) = expr_opt {
788             if self.ret_coercion_span.get().is_none() {
789                 self.ret_coercion_span.set(Some(e.span));
790             }
791             self.check_return_expr(e, true);
792         } else {
793             let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
794             if self.ret_coercion_span.get().is_none() {
795                 self.ret_coercion_span.set(Some(expr.span));
796             }
797             let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
798             if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
799                 coercion.coerce_forced_unit(
800                     self,
801                     &cause,
802                     &mut |db| {
803                         let span = fn_decl.output.span();
804                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
805                             db.span_label(
806                                 span,
807                                 format!("expected `{snippet}` because of this return type"),
808                             );
809                         }
810                     },
811                     true,
812                 );
813             } else {
814                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
815             }
816         }
817         self.tcx.types.never
818     }
819
820     /// `explicit_return` is `true` if we're checking an explicit `return expr`,
821     /// and `false` if we're checking a trailing expression.
822     pub(super) fn check_return_expr(
823         &self,
824         return_expr: &'tcx hir::Expr<'tcx>,
825         explicit_return: bool,
826     ) {
827         let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
828             span_bug!(return_expr.span, "check_return_expr called outside fn body")
829         });
830
831         let ret_ty = ret_coercion.borrow().expected_ty();
832         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
833         let mut span = return_expr.span;
834         // Use the span of the trailing expression for our cause,
835         // not the span of the entire function
836         if !explicit_return {
837             if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
838                 span = last_expr.span;
839             }
840         }
841         ret_coercion.borrow_mut().coerce(
842             self,
843             &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
844             return_expr,
845             return_expr_ty,
846         );
847
848         if let Some(fn_sig) = self.body_fn_sig()
849             && fn_sig.output().has_opaque_types()
850         {
851             // Point any obligations that were registered due to opaque type
852             // inference at the return expression.
853             self.select_obligations_where_possible(|errors| {
854                 self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
855             });
856         }
857     }
858
859     fn point_at_return_for_opaque_ty_error(
860         &self,
861         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
862         span: Span,
863         return_expr_ty: Ty<'tcx>,
864     ) {
865         // Don't point at the whole block if it's empty
866         if span == self.tcx.hir().span(self.body_id) {
867             return;
868         }
869         for err in errors {
870             let cause = &mut err.obligation.cause;
871             if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
872                 let new_cause = ObligationCause::new(
873                     cause.span,
874                     cause.body_id,
875                     ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
876                 );
877                 *cause = new_cause;
878             }
879         }
880     }
881
882     pub(crate) fn check_lhs_assignable(
883         &self,
884         lhs: &'tcx hir::Expr<'tcx>,
885         err_code: &'static str,
886         op_span: Span,
887         adjust_err: impl FnOnce(&mut Diagnostic),
888     ) {
889         if lhs.is_syntactic_place_expr() {
890             return;
891         }
892
893         // FIXME: Make this use Diagnostic once error codes can be dynamically set.
894         let mut err = self.tcx.sess.struct_span_err_with_code(
895             op_span,
896             "invalid left-hand side of assignment",
897             DiagnosticId::Error(err_code.into()),
898         );
899         err.span_label(lhs.span, "cannot assign to this expression");
900
901         self.comes_from_while_condition(lhs.hir_id, |expr| {
902             err.span_suggestion_verbose(
903                 expr.span.shrink_to_lo(),
904                 "you might have meant to use pattern destructuring",
905                 "let ",
906                 Applicability::MachineApplicable,
907             );
908         });
909
910         adjust_err(&mut err);
911
912         err.emit();
913     }
914
915     // Check if an expression `original_expr_id` comes from the condition of a while loop,
916     /// as opposed from the body of a while loop, which we can naively check by iterating
917     /// parents until we find a loop...
918     pub(super) fn comes_from_while_condition(
919         &self,
920         original_expr_id: HirId,
921         then: impl FnOnce(&hir::Expr<'_>),
922     ) {
923         let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
924         while let Some(node) = self.tcx.hir().find(parent) {
925             match node {
926                 hir::Node::Expr(hir::Expr {
927                     kind:
928                         hir::ExprKind::Loop(
929                             hir::Block {
930                                 expr:
931                                     Some(hir::Expr {
932                                         kind:
933                                             hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
934                                         ..
935                                     }),
936                                 ..
937                             },
938                             _,
939                             hir::LoopSource::While,
940                             _,
941                         ),
942                     ..
943                 }) => {
944                     // Check if our original expression is a child of the condition of a while loop
945                     let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
946                         self.tcx.hir().find_parent_node(*id)
947                     })
948                     .take_while(|id| *id != parent)
949                     .any(|id| id == expr.hir_id);
950                     // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
951                     // where `while let` was more likely intended.
952                     if expr_is_ancestor {
953                         then(expr);
954                     }
955                     break;
956                 }
957                 hir::Node::Item(_)
958                 | hir::Node::ImplItem(_)
959                 | hir::Node::TraitItem(_)
960                 | hir::Node::Crate(_) => break,
961                 _ => {
962                     parent = self.tcx.hir().get_parent_node(parent);
963                 }
964             }
965         }
966     }
967
968     // A generic function for checking the 'then' and 'else' clauses in an 'if'
969     // or 'if-else' expression.
970     fn check_then_else(
971         &self,
972         cond_expr: &'tcx hir::Expr<'tcx>,
973         then_expr: &'tcx hir::Expr<'tcx>,
974         opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
975         sp: Span,
976         orig_expected: Expectation<'tcx>,
977     ) -> Ty<'tcx> {
978         let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
979
980         self.warn_if_unreachable(
981             cond_expr.hir_id,
982             then_expr.span,
983             "block in `if` or `while` expression",
984         );
985
986         let cond_diverges = self.diverges.get();
987         self.diverges.set(Diverges::Maybe);
988
989         let expected = orig_expected.adjust_for_branches(self);
990         let then_ty = self.check_expr_with_expectation(then_expr, expected);
991         let then_diverges = self.diverges.get();
992         self.diverges.set(Diverges::Maybe);
993
994         // We've already taken the expected type's preferences
995         // into account when typing the `then` branch. To figure
996         // out the initial shot at a LUB, we thus only consider
997         // `expected` if it represents a *hard* constraint
998         // (`only_has_type`); otherwise, we just go with a
999         // fresh type variable.
1000         let coerce_to_ty = expected.coercion_target_type(self, sp);
1001         let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
1002
1003         coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
1004
1005         if let Some(else_expr) = opt_else_expr {
1006             let else_ty = self.check_expr_with_expectation(else_expr, expected);
1007             let else_diverges = self.diverges.get();
1008
1009             let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
1010             let if_cause = self.if_cause(
1011                 sp,
1012                 cond_expr.span,
1013                 then_expr,
1014                 else_expr,
1015                 then_ty,
1016                 else_ty,
1017                 opt_suggest_box_span,
1018             );
1019
1020             coerce.coerce(self, &if_cause, else_expr, else_ty);
1021
1022             // We won't diverge unless both branches do (or the condition does).
1023             self.diverges.set(cond_diverges | then_diverges & else_diverges);
1024         } else {
1025             self.if_fallback_coercion(sp, then_expr, &mut coerce);
1026
1027             // If the condition is false we can't diverge.
1028             self.diverges.set(cond_diverges);
1029         }
1030
1031         let result_ty = coerce.complete(self);
1032         if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
1033     }
1034
1035     /// Type check assignment expression `expr` of form `lhs = rhs`.
1036     /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
1037     fn check_expr_assign(
1038         &self,
1039         expr: &'tcx hir::Expr<'tcx>,
1040         expected: Expectation<'tcx>,
1041         lhs: &'tcx hir::Expr<'tcx>,
1042         rhs: &'tcx hir::Expr<'tcx>,
1043         span: Span,
1044     ) -> Ty<'tcx> {
1045         let expected_ty = expected.coercion_target_type(self, expr.span);
1046         if expected_ty == self.tcx.types.bool {
1047             // The expected type is `bool` but this will result in `()` so we can reasonably
1048             // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
1049             // The likely cause of this is `if foo = bar { .. }`.
1050             let actual_ty = self.tcx.mk_unit();
1051             let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
1052             let lhs_ty = self.check_expr(&lhs);
1053             let rhs_ty = self.check_expr(&rhs);
1054             let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
1055                 (Applicability::MachineApplicable, true)
1056             } else if let ExprKind::Binary(
1057                 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1058                 _,
1059                 rhs_expr,
1060             ) = lhs.kind
1061             {
1062                 // if x == 1 && y == 2 { .. }
1063                 //                 +
1064                 let actual_lhs_ty = self.check_expr(&rhs_expr);
1065                 (Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
1066             } else if let ExprKind::Binary(
1067                 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1068                 lhs_expr,
1069                 _,
1070             ) = rhs.kind
1071             {
1072                 // if x == 1 && y == 2 { .. }
1073                 //       +
1074                 let actual_rhs_ty = self.check_expr(&lhs_expr);
1075                 (Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
1076             } else {
1077                 (Applicability::MaybeIncorrect, false)
1078             };
1079             if !lhs.is_syntactic_place_expr()
1080                 && lhs.is_approximately_pattern()
1081                 && !matches!(lhs.kind, hir::ExprKind::Lit(_))
1082             {
1083                 // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
1084                 let hir = self.tcx.hir();
1085                 if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1086                     hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
1087                 {
1088                     err.span_suggestion_verbose(
1089                         expr.span.shrink_to_lo(),
1090                         "you might have meant to use pattern matching",
1091                         "let ",
1092                         applicability,
1093                     );
1094                 };
1095             }
1096             if eq {
1097                 err.span_suggestion_verbose(
1098                     span.shrink_to_hi(),
1099                     "you might have meant to compare for equality",
1100                     '=',
1101                     applicability,
1102                 );
1103             }
1104
1105             // If the assignment expression itself is ill-formed, don't
1106             // bother emitting another error
1107             let reported = err.emit_unless(lhs_ty.references_error() || rhs_ty.references_error());
1108             return self.tcx.ty_error_with_guaranteed(reported);
1109         }
1110
1111         let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
1112
1113         let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
1114             if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
1115                 // Can only assign if the type is sized, so if `DerefMut` yields a type that is
1116                 // unsized, do not suggest dereferencing it.
1117                 let lhs_deref_ty_is_sized = self
1118                     .infcx
1119                     .type_implements_trait(
1120                         self.tcx.require_lang_item(LangItem::Sized, None),
1121                         [lhs_deref_ty],
1122                         self.param_env,
1123                     )
1124                     .may_apply();
1125                 if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
1126                     err.span_suggestion_verbose(
1127                         lhs.span.shrink_to_lo(),
1128                         "consider dereferencing here to assign to the mutably borrowed value",
1129                         "*",
1130                         Applicability::MachineApplicable,
1131                     );
1132                 }
1133             }
1134         };
1135
1136         // This is (basically) inlined `check_expr_coercable_to_type`, but we want
1137         // to suggest an additional fixup here in `suggest_deref_binop`.
1138         let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
1139         if let (_, Some(mut diag)) =
1140             self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
1141         {
1142             suggest_deref_binop(&mut diag, rhs_ty);
1143             diag.emit();
1144         }
1145
1146         self.check_lhs_assignable(lhs, "E0070", span, |err| {
1147             if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
1148                 suggest_deref_binop(err, rhs_ty);
1149             }
1150         });
1151
1152         self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
1153
1154         if lhs_ty.references_error() || rhs_ty.references_error() {
1155             self.tcx.ty_error()
1156         } else {
1157             self.tcx.mk_unit()
1158         }
1159     }
1160
1161     pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
1162         // for let statements, this is done in check_stmt
1163         let init = let_expr.init;
1164         self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1165         // otherwise check exactly as a let statement
1166         self.check_decl(let_expr.into());
1167         // but return a bool, for this is a boolean expression
1168         self.tcx.types.bool
1169     }
1170
1171     fn check_expr_loop(
1172         &self,
1173         body: &'tcx hir::Block<'tcx>,
1174         source: hir::LoopSource,
1175         expected: Expectation<'tcx>,
1176         expr: &'tcx hir::Expr<'tcx>,
1177     ) -> Ty<'tcx> {
1178         let coerce = match source {
1179             // you can only use break with a value from a normal `loop { }`
1180             hir::LoopSource::Loop => {
1181                 let coerce_to = expected.coercion_target_type(self, body.span);
1182                 Some(CoerceMany::new(coerce_to))
1183             }
1184
1185             hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1186         };
1187
1188         let ctxt = BreakableCtxt {
1189             coerce,
1190             may_break: false, // Will get updated if/when we find a `break`.
1191         };
1192
1193         let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1194             self.check_block_no_value(&body);
1195         });
1196
1197         if ctxt.may_break {
1198             // No way to know whether it's diverging because
1199             // of a `break` or an outer `break` or `return`.
1200             self.diverges.set(Diverges::Maybe);
1201         }
1202
1203         // If we permit break with a value, then result type is
1204         // the LUB of the breaks (possibly ! if none); else, it
1205         // is nil. This makes sense because infinite loops
1206         // (which would have type !) are only possible iff we
1207         // permit break with a value [1].
1208         if ctxt.coerce.is_none() && !ctxt.may_break {
1209             // [1]
1210             self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
1211         }
1212         ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
1213     }
1214
1215     /// Checks a method call.
1216     fn check_method_call(
1217         &self,
1218         expr: &'tcx hir::Expr<'tcx>,
1219         segment: &hir::PathSegment<'_>,
1220         rcvr: &'tcx hir::Expr<'tcx>,
1221         args: &'tcx [hir::Expr<'tcx>],
1222         expected: Expectation<'tcx>,
1223     ) -> Ty<'tcx> {
1224         let rcvr_t = self.check_expr(&rcvr);
1225         // no need to check for bot/err -- callee does that
1226         let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
1227         let span = segment.ident.span;
1228
1229         let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
1230             Ok(method) => {
1231                 // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
1232                 // trigger this codepath causing `structurally_resolved_type` to emit an error.
1233
1234                 self.write_method_call(expr.hir_id, method);
1235                 Ok(method)
1236             }
1237             Err(error) => {
1238                 if segment.ident.name != kw::Empty {
1239                     if let Some(mut err) = self.report_method_error(
1240                         span,
1241                         rcvr_t,
1242                         segment.ident,
1243                         SelfSource::MethodCall(rcvr),
1244                         error,
1245                         Some((rcvr, args)),
1246                     ) {
1247                         err.emit();
1248                     }
1249                 }
1250                 Err(())
1251             }
1252         };
1253
1254         // Call the generic checker.
1255         self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
1256     }
1257
1258     fn check_expr_cast(
1259         &self,
1260         e: &'tcx hir::Expr<'tcx>,
1261         t: &'tcx hir::Ty<'tcx>,
1262         expr: &'tcx hir::Expr<'tcx>,
1263     ) -> Ty<'tcx> {
1264         // Find the type of `e`. Supply hints based on the type we are casting to,
1265         // if appropriate.
1266         let t_cast = self.to_ty_saving_user_provided_ty(t);
1267         let t_cast = self.resolve_vars_if_possible(t_cast);
1268         let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1269         let t_expr = self.resolve_vars_if_possible(t_expr);
1270
1271         // Eagerly check for some obvious errors.
1272         if t_expr.references_error() || t_cast.references_error() {
1273             self.tcx.ty_error()
1274         } else {
1275             // Defer other checks until we're done type checking.
1276             let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1277             match cast::CastCheck::new(
1278                 self,
1279                 e,
1280                 t_expr,
1281                 t_cast,
1282                 t.span,
1283                 expr.span,
1284                 self.param_env.constness(),
1285             ) {
1286                 Ok(cast_check) => {
1287                     debug!(
1288                         "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1289                         t_cast, t_expr, cast_check,
1290                     );
1291                     deferred_cast_checks.push(cast_check);
1292                     t_cast
1293                 }
1294                 Err(_) => self.tcx.ty_error(),
1295             }
1296         }
1297     }
1298
1299     fn check_expr_array(
1300         &self,
1301         args: &'tcx [hir::Expr<'tcx>],
1302         expected: Expectation<'tcx>,
1303         expr: &'tcx hir::Expr<'tcx>,
1304     ) -> Ty<'tcx> {
1305         let element_ty = if !args.is_empty() {
1306             let coerce_to = expected
1307                 .to_option(self)
1308                 .and_then(|uty| match *uty.kind() {
1309                     ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1310                     _ => None,
1311                 })
1312                 .unwrap_or_else(|| {
1313                     self.next_ty_var(TypeVariableOrigin {
1314                         kind: TypeVariableOriginKind::TypeInference,
1315                         span: expr.span,
1316                     })
1317                 });
1318             let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1319             assert_eq!(self.diverges.get(), Diverges::Maybe);
1320             for e in args {
1321                 let e_ty = self.check_expr_with_hint(e, coerce_to);
1322                 let cause = self.misc(e.span);
1323                 coerce.coerce(self, &cause, e, e_ty);
1324             }
1325             coerce.complete(self)
1326         } else {
1327             self.next_ty_var(TypeVariableOrigin {
1328                 kind: TypeVariableOriginKind::TypeInference,
1329                 span: expr.span,
1330             })
1331         };
1332         let array_len = args.len() as u64;
1333         self.suggest_array_len(expr, array_len);
1334         self.tcx.mk_array(element_ty, array_len)
1335     }
1336
1337     fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
1338         let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
1339             !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
1340         });
1341         let Some((_,
1342             hir::Node::Local(hir::Local { ty: Some(ty), .. })
1343             | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
1344         ) = parent_node else {
1345             return
1346         };
1347         if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
1348             && let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
1349             && let Some(span) = self.tcx.hir().opt_span(hir_id)
1350         {
1351             match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
1352                 Some(mut err) => {
1353                     err.span_suggestion(
1354                         span,
1355                         "consider specifying the array length",
1356                         array_len,
1357                         Applicability::MaybeIncorrect,
1358                     );
1359                     err.emit();
1360                 }
1361                 None => ()
1362             }
1363         }
1364     }
1365
1366     fn check_expr_const_block(
1367         &self,
1368         anon_const: &'tcx hir::AnonConst,
1369         expected: Expectation<'tcx>,
1370         _expr: &'tcx hir::Expr<'tcx>,
1371     ) -> Ty<'tcx> {
1372         let body = self.tcx.hir().body(anon_const.body);
1373
1374         // Create a new function context.
1375         let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
1376         crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
1377
1378         let ty = fcx.check_expr_with_expectation(&body.value, expected);
1379         fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
1380         fcx.write_ty(anon_const.hir_id, ty);
1381         ty
1382     }
1383
1384     fn check_expr_repeat(
1385         &self,
1386         element: &'tcx hir::Expr<'tcx>,
1387         count: &'tcx hir::ArrayLen,
1388         expected: Expectation<'tcx>,
1389         expr: &'tcx hir::Expr<'tcx>,
1390     ) -> Ty<'tcx> {
1391         let tcx = self.tcx;
1392         let count = self.array_length_to_const(count);
1393         if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
1394             self.suggest_array_len(expr, count);
1395         }
1396
1397         let uty = match expected {
1398             ExpectHasType(uty) => match *uty.kind() {
1399                 ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1400                 _ => None,
1401             },
1402             _ => None,
1403         };
1404
1405         let (element_ty, t) = match uty {
1406             Some(uty) => {
1407                 self.check_expr_coercable_to_type(&element, uty, None);
1408                 (uty, uty)
1409             }
1410             None => {
1411                 let ty = self.next_ty_var(TypeVariableOrigin {
1412                     kind: TypeVariableOriginKind::MiscVariable,
1413                     span: element.span,
1414                 });
1415                 let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
1416                 (element_ty, ty)
1417             }
1418         };
1419
1420         if element_ty.references_error() {
1421             return tcx.ty_error();
1422         }
1423
1424         self.check_repeat_element_needs_copy_bound(element, count, element_ty);
1425
1426         tcx.mk_ty(ty::Array(t, count))
1427     }
1428
1429     fn check_repeat_element_needs_copy_bound(
1430         &self,
1431         element: &hir::Expr<'_>,
1432         count: ty::Const<'tcx>,
1433         element_ty: Ty<'tcx>,
1434     ) {
1435         let tcx = self.tcx;
1436         // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
1437         match &element.kind {
1438             hir::ExprKind::ConstBlock(..) => return,
1439             hir::ExprKind::Path(qpath) => {
1440                 let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
1441                 if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
1442                 {
1443                     return;
1444                 }
1445             }
1446             _ => {}
1447         }
1448         // If someone calls a const fn, they can extract that call out into a separate constant (or a const
1449         // block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
1450         let is_const_fn = match element.kind {
1451             hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
1452                 ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
1453                 _ => false,
1454             },
1455             _ => false,
1456         };
1457
1458         // If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
1459         // don't copy that one element, we move it. Only check for Copy if the length is larger.
1460         if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
1461             let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
1462             let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
1463             self.require_type_meets(element_ty, element.span, code, lang_item);
1464         }
1465     }
1466
1467     fn check_expr_tuple(
1468         &self,
1469         elts: &'tcx [hir::Expr<'tcx>],
1470         expected: Expectation<'tcx>,
1471         expr: &'tcx hir::Expr<'tcx>,
1472     ) -> Ty<'tcx> {
1473         let flds = expected.only_has_type(self).and_then(|ty| {
1474             let ty = self.resolve_vars_with_obligations(ty);
1475             match ty.kind() {
1476                 ty::Tuple(flds) => Some(&flds[..]),
1477                 _ => None,
1478             }
1479         });
1480
1481         let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1482             Some(fs) if i < fs.len() => {
1483                 let ety = fs[i];
1484                 self.check_expr_coercable_to_type(&e, ety, None);
1485                 ety
1486             }
1487             _ => self.check_expr_with_expectation(&e, NoExpectation),
1488         });
1489         let tuple = self.tcx.mk_tup(elt_ts_iter);
1490         if tuple.references_error() {
1491             self.tcx.ty_error()
1492         } else {
1493             self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
1494             tuple
1495         }
1496     }
1497
1498     fn check_expr_struct(
1499         &self,
1500         expr: &hir::Expr<'_>,
1501         expected: Expectation<'tcx>,
1502         qpath: &QPath<'_>,
1503         fields: &'tcx [hir::ExprField<'tcx>],
1504         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1505     ) -> Ty<'tcx> {
1506         // Find the relevant variant
1507         let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
1508             self.check_struct_fields_on_error(fields, base_expr);
1509             return self.tcx.ty_error();
1510         };
1511
1512         // Prohibit struct expressions when non-exhaustive flag is set.
1513         let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1514         if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
1515             self.tcx
1516                 .sess
1517                 .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1518         }
1519
1520         self.check_expr_struct_fields(
1521             adt_ty,
1522             expected,
1523             expr.hir_id,
1524             qpath.span(),
1525             variant,
1526             fields,
1527             base_expr,
1528             expr.span,
1529         );
1530
1531         self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
1532         adt_ty
1533     }
1534
1535     fn check_expr_struct_fields(
1536         &self,
1537         adt_ty: Ty<'tcx>,
1538         expected: Expectation<'tcx>,
1539         expr_id: hir::HirId,
1540         span: Span,
1541         variant: &'tcx ty::VariantDef,
1542         ast_fields: &'tcx [hir::ExprField<'tcx>],
1543         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1544         expr_span: Span,
1545     ) {
1546         let tcx = self.tcx;
1547
1548         let expected_inputs =
1549             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
1550         let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
1551             expected_inputs.get(0).cloned().unwrap_or(adt_ty)
1552         } else {
1553             adt_ty
1554         };
1555         // re-link the regions that EIfEO can erase.
1556         self.demand_eqtype(span, adt_ty_hint, adt_ty);
1557
1558         let ty::Adt(adt, substs) = adt_ty.kind() else {
1559             span_bug!(span, "non-ADT passed to check_expr_struct_fields");
1560         };
1561         let adt_kind = adt.adt_kind();
1562
1563         let mut remaining_fields = variant
1564             .fields
1565             .iter()
1566             .enumerate()
1567             .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
1568             .collect::<FxHashMap<_, _>>();
1569
1570         let mut seen_fields = FxHashMap::default();
1571
1572         let mut error_happened = false;
1573
1574         // Type-check each field.
1575         for (idx, field) in ast_fields.iter().enumerate() {
1576             let ident = tcx.adjust_ident(field.ident, variant.def_id);
1577             let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
1578                 seen_fields.insert(ident, field.span);
1579                 self.write_field_index(field.hir_id, i);
1580
1581                 // We don't look at stability attributes on
1582                 // struct-like enums (yet...), but it's definitely not
1583                 // a bug to have constructed one.
1584                 if adt_kind != AdtKind::Enum {
1585                     tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
1586                 }
1587
1588                 self.field_ty(field.span, v_field, substs)
1589             } else {
1590                 error_happened = true;
1591                 if let Some(prev_span) = seen_fields.get(&ident) {
1592                     tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
1593                         span: field.ident.span,
1594                         prev_span: *prev_span,
1595                         ident,
1596                     });
1597                 } else {
1598                     self.report_unknown_field(
1599                         adt_ty,
1600                         variant,
1601                         field,
1602                         ast_fields,
1603                         adt.variant_descr(),
1604                         expr_span,
1605                     );
1606                 }
1607
1608                 tcx.ty_error()
1609             };
1610
1611             // Make sure to give a type to the field even if there's
1612             // an error, so we can continue type-checking.
1613             let ty = self.check_expr_with_hint(&field.expr, field_type);
1614             let (_, diag) =
1615                 self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
1616
1617             if let Some(mut diag) = diag {
1618                 if idx == ast_fields.len() - 1 {
1619                     if remaining_fields.is_empty() {
1620                         self.suggest_fru_from_range(field, variant, substs, &mut diag);
1621                         diag.emit();
1622                     } else {
1623                         diag.stash(field.span, StashKey::MaybeFruTypo);
1624                     }
1625                 } else {
1626                     diag.emit();
1627                 }
1628             }
1629         }
1630
1631         // Make sure the programmer specified correct number of fields.
1632         if adt_kind == AdtKind::Union {
1633             if ast_fields.len() != 1 {
1634                 struct_span_err!(
1635                     tcx.sess,
1636                     span,
1637                     E0784,
1638                     "union expressions should have exactly one field",
1639                 )
1640                 .emit();
1641             }
1642         }
1643
1644         // If check_expr_struct_fields hit an error, do not attempt to populate
1645         // the fields with the base_expr. This could cause us to hit errors later
1646         // when certain fields are assumed to exist that in fact do not.
1647         if error_happened {
1648             if let Some(base_expr) = base_expr {
1649                 self.check_expr(base_expr);
1650             }
1651             return;
1652         }
1653
1654         if let Some(base_expr) = base_expr {
1655             // FIXME: We are currently creating two branches here in order to maintain
1656             // consistency. But they should be merged as much as possible.
1657             let fru_tys = if self.tcx.features().type_changing_struct_update {
1658                 if adt.is_struct() {
1659                     // Make some fresh substitutions for our ADT type.
1660                     let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
1661                     // We do subtyping on the FRU fields first, so we can
1662                     // learn exactly what types we expect the base expr
1663                     // needs constrained to be compatible with the struct
1664                     // type we expect from the expectation value.
1665                     let fru_tys = variant
1666                         .fields
1667                         .iter()
1668                         .map(|f| {
1669                             let fru_ty = self.normalize(
1670                                 expr_span,
1671                                 self.field_ty(base_expr.span, f, fresh_substs),
1672                             );
1673                             let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
1674                             if let Some(_) = remaining_fields.remove(&ident) {
1675                                 let target_ty = self.field_ty(base_expr.span, f, substs);
1676                                 let cause = self.misc(base_expr.span);
1677                                 match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
1678                                     Ok(InferOk { obligations, value: () }) => {
1679                                         self.register_predicates(obligations)
1680                                     }
1681                                     Err(_) => {
1682                                         // This should never happen, since we're just subtyping the
1683                                         // remaining_fields, but it's fine to emit this, I guess.
1684                                         self.err_ctxt()
1685                                             .report_mismatched_types(
1686                                                 &cause,
1687                                                 target_ty,
1688                                                 fru_ty,
1689                                                 FieldMisMatch(variant.name, ident.name),
1690                                             )
1691                                             .emit();
1692                                     }
1693                                 }
1694                             }
1695                             self.resolve_vars_if_possible(fru_ty)
1696                         })
1697                         .collect();
1698                     // The use of fresh substs that we have subtyped against
1699                     // our base ADT type's fields allows us to guide inference
1700                     // along so that, e.g.
1701                     // ```
1702                     // MyStruct<'a, F1, F2, const C: usize> {
1703                     //     f: F1,
1704                     //     // Other fields that reference `'a`, `F2`, and `C`
1705                     // }
1706                     //
1707                     // let x = MyStruct {
1708                     //    f: 1usize,
1709                     //    ..other_struct
1710                     // };
1711                     // ```
1712                     // will have the `other_struct` expression constrained to
1713                     // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
1714                     // This is important to allow coercions to happen in
1715                     // `other_struct` itself. See `coerce-in-base-expr.rs`.
1716                     let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
1717                     self.check_expr_has_type_or_error(
1718                         base_expr,
1719                         self.resolve_vars_if_possible(fresh_base_ty),
1720                         |_| {},
1721                     );
1722                     fru_tys
1723                 } else {
1724                     // Check the base_expr, regardless of a bad expected adt_ty, so we can get
1725                     // type errors on that expression, too.
1726                     self.check_expr(base_expr);
1727                     self.tcx
1728                         .sess
1729                         .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1730                     return;
1731                 }
1732             } else {
1733                 self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
1734                     let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
1735                     let same_adt = match (adt_ty.kind(), base_ty.kind()) {
1736                         (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
1737                         _ => false,
1738                     };
1739                     if self.tcx.sess.is_nightly_build() && same_adt {
1740                         feature_err(
1741                             &self.tcx.sess.parse_sess,
1742                             sym::type_changing_struct_update,
1743                             base_expr.span,
1744                             "type changing struct updating is experimental",
1745                         )
1746                         .emit();
1747                     }
1748                 });
1749                 match adt_ty.kind() {
1750                     ty::Adt(adt, substs) if adt.is_struct() => variant
1751                         .fields
1752                         .iter()
1753                         .map(|f| self.normalize(expr_span, f.ty(self.tcx, substs)))
1754                         .collect(),
1755                     _ => {
1756                         self.tcx
1757                             .sess
1758                             .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1759                         return;
1760                     }
1761                 }
1762             };
1763             self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
1764         } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
1765             debug!(?remaining_fields);
1766             let private_fields: Vec<&ty::FieldDef> = variant
1767                 .fields
1768                 .iter()
1769                 .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
1770                 .collect();
1771
1772             if !private_fields.is_empty() {
1773                 self.report_private_fields(adt_ty, span, private_fields, ast_fields);
1774             } else {
1775                 self.report_missing_fields(
1776                     adt_ty,
1777                     span,
1778                     remaining_fields,
1779                     variant,
1780                     ast_fields,
1781                     substs,
1782                 );
1783             }
1784         }
1785     }
1786
1787     fn check_struct_fields_on_error(
1788         &self,
1789         fields: &'tcx [hir::ExprField<'tcx>],
1790         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1791     ) {
1792         for field in fields {
1793             self.check_expr(&field.expr);
1794         }
1795         if let Some(base) = *base_expr {
1796             self.check_expr(&base);
1797         }
1798     }
1799
1800     /// Report an error for a struct field expression when there are fields which aren't provided.
1801     ///
1802     /// ```text
1803     /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
1804     ///  --> src/main.rs:8:5
1805     ///   |
1806     /// 8 |     foo::Foo {};
1807     ///   |     ^^^^^^^^ missing `you_can_use_this_field`
1808     ///
1809     /// error: aborting due to previous error
1810     /// ```
1811     fn report_missing_fields(
1812         &self,
1813         adt_ty: Ty<'tcx>,
1814         span: Span,
1815         remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
1816         variant: &'tcx ty::VariantDef,
1817         ast_fields: &'tcx [hir::ExprField<'tcx>],
1818         substs: SubstsRef<'tcx>,
1819     ) {
1820         let len = remaining_fields.len();
1821
1822         let mut displayable_field_names: Vec<&str> =
1823             remaining_fields.keys().map(|ident| ident.as_str()).collect();
1824         // sorting &str primitives here, sort_unstable is ok
1825         displayable_field_names.sort_unstable();
1826
1827         let mut truncated_fields_error = String::new();
1828         let remaining_fields_names = match &displayable_field_names[..] {
1829             [field1] => format!("`{}`", field1),
1830             [field1, field2] => format!("`{field1}` and `{field2}`"),
1831             [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
1832             _ => {
1833                 truncated_fields_error =
1834                     format!(" and {} other field{}", len - 3, pluralize!(len - 3));
1835                 displayable_field_names
1836                     .iter()
1837                     .take(3)
1838                     .map(|n| format!("`{n}`"))
1839                     .collect::<Vec<_>>()
1840                     .join(", ")
1841             }
1842         };
1843
1844         let mut err = struct_span_err!(
1845             self.tcx.sess,
1846             span,
1847             E0063,
1848             "missing field{} {}{} in initializer of `{}`",
1849             pluralize!(len),
1850             remaining_fields_names,
1851             truncated_fields_error,
1852             adt_ty
1853         );
1854         err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
1855
1856         if let Some(last) = ast_fields.last() {
1857             self.suggest_fru_from_range(last, variant, substs, &mut err);
1858         }
1859
1860         err.emit();
1861     }
1862
1863     /// If the last field is a range literal, but it isn't supposed to be, then they probably
1864     /// meant to use functional update syntax.
1865     fn suggest_fru_from_range(
1866         &self,
1867         last_expr_field: &hir::ExprField<'tcx>,
1868         variant: &ty::VariantDef,
1869         substs: SubstsRef<'tcx>,
1870         err: &mut Diagnostic,
1871     ) {
1872         // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
1873         if let ExprKind::Struct(
1874                 QPath::LangItem(LangItem::Range, ..),
1875                 [range_start, range_end],
1876                 _,
1877             ) = last_expr_field.expr.kind
1878             && let variant_field =
1879                 variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
1880             && let range_def_id = self.tcx.lang_items().range_struct()
1881             && variant_field
1882                 .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
1883                 .map(|adt| adt.did())
1884                 != range_def_id
1885         {
1886             // Suppress any range expr type mismatches
1887             if let Some(mut diag) = self
1888                 .tcx
1889                 .sess
1890                 .diagnostic()
1891                 .steal_diagnostic(last_expr_field.span, StashKey::MaybeFruTypo)
1892             {
1893                 diag.delay_as_bug();
1894             }
1895
1896             // Use a (somewhat arbitrary) filtering heuristic to avoid printing
1897             // expressions that are either too long, or have control character
1898             //such as newlines in them.
1899             let expr = self
1900                 .tcx
1901                 .sess
1902                 .source_map()
1903                 .span_to_snippet(range_end.expr.span)
1904                 .ok()
1905                 .filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));
1906
1907             let fru_span = self
1908                 .tcx
1909                 .sess
1910                 .source_map()
1911                 .span_extend_while(range_start.span, |c| c.is_whitespace())
1912                 .unwrap_or(range_start.span).shrink_to_hi().to(range_end.span);
1913
1914             err.subdiagnostic(TypeMismatchFruTypo {
1915                 expr_span: range_start.span,
1916                 fru_span,
1917                 expr,
1918             });
1919         }
1920     }
1921
1922     /// Report an error for a struct field expression when there are invisible fields.
1923     ///
1924     /// ```text
1925     /// error: cannot construct `Foo` with struct literal syntax due to private fields
1926     ///  --> src/main.rs:8:5
1927     ///   |
1928     /// 8 |     foo::Foo {};
1929     ///   |     ^^^^^^^^
1930     ///
1931     /// error: aborting due to previous error
1932     /// ```
1933     fn report_private_fields(
1934         &self,
1935         adt_ty: Ty<'tcx>,
1936         span: Span,
1937         private_fields: Vec<&ty::FieldDef>,
1938         used_fields: &'tcx [hir::ExprField<'tcx>],
1939     ) {
1940         let mut err = self.tcx.sess.struct_span_err(
1941             span,
1942             &format!(
1943                 "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
1944             ),
1945         );
1946         let (used_private_fields, remaining_private_fields): (
1947             Vec<(Symbol, Span, bool)>,
1948             Vec<(Symbol, Span, bool)>,
1949         ) = private_fields
1950             .iter()
1951             .map(|field| {
1952                 match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
1953                     Some(used_field) => (field.name, used_field.span, true),
1954                     None => (field.name, self.tcx.def_span(field.did), false),
1955                 }
1956             })
1957             .partition(|field| field.2);
1958         err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
1959         if !remaining_private_fields.is_empty() {
1960             let remaining_private_fields_len = remaining_private_fields.len();
1961             let names = match &remaining_private_fields
1962                 .iter()
1963                 .map(|(name, _, _)| name)
1964                 .collect::<Vec<_>>()[..]
1965             {
1966                 _ if remaining_private_fields_len > 6 => String::new(),
1967                 [name] => format!("`{name}` "),
1968                 [names @ .., last] => {
1969                     let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
1970                     format!("{} and `{last}` ", names.join(", "))
1971                 }
1972                 [] => unreachable!(),
1973             };
1974             err.note(format!(
1975                 "... and other private field{s} {names}that {were} not provided",
1976                 s = pluralize!(remaining_private_fields_len),
1977                 were = pluralize!("was", remaining_private_fields_len),
1978             ));
1979         }
1980         err.emit();
1981     }
1982
1983     fn report_unknown_field(
1984         &self,
1985         ty: Ty<'tcx>,
1986         variant: &'tcx ty::VariantDef,
1987         field: &hir::ExprField<'_>,
1988         skip_fields: &[hir::ExprField<'_>],
1989         kind_name: &str,
1990         expr_span: Span,
1991     ) {
1992         if variant.is_recovered() {
1993             self.set_tainted_by_errors(
1994                 self.tcx
1995                     .sess
1996                     .delay_span_bug(expr_span, "parser recovered but no error was emitted"),
1997             );
1998             return;
1999         }
2000         let mut err = self.err_ctxt().type_error_struct_with_diag(
2001             field.ident.span,
2002             |actual| match ty.kind() {
2003                 ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
2004                     self.tcx.sess,
2005                     field.ident.span,
2006                     E0559,
2007                     "{} `{}::{}` has no field named `{}`",
2008                     kind_name,
2009                     actual,
2010                     variant.name,
2011                     field.ident
2012                 ),
2013                 _ => struct_span_err!(
2014                     self.tcx.sess,
2015                     field.ident.span,
2016                     E0560,
2017                     "{} `{}` has no field named `{}`",
2018                     kind_name,
2019                     actual,
2020                     field.ident
2021                 ),
2022             },
2023             ty,
2024         );
2025
2026         let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
2027         match variant.ctor_kind() {
2028             Some(CtorKind::Fn) => match ty.kind() {
2029                 ty::Adt(adt, ..) if adt.is_enum() => {
2030                     err.span_label(
2031                         variant_ident_span,
2032                         format!(
2033                             "`{adt}::{variant}` defined here",
2034                             adt = ty,
2035                             variant = variant.name,
2036                         ),
2037                     );
2038                     err.span_label(field.ident.span, "field does not exist");
2039                     err.span_suggestion_verbose(
2040                         expr_span,
2041                         &format!(
2042                             "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
2043                             adt = ty,
2044                             variant = variant.name,
2045                         ),
2046                         format!(
2047                             "{adt}::{variant}(/* fields */)",
2048                             adt = ty,
2049                             variant = variant.name,
2050                         ),
2051                         Applicability::HasPlaceholders,
2052                     );
2053                 }
2054                 _ => {
2055                     err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
2056                     err.span_label(field.ident.span, "field does not exist");
2057                     err.span_suggestion_verbose(
2058                         expr_span,
2059                         &format!(
2060                             "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
2061                             adt = ty,
2062                             kind_name = kind_name,
2063                         ),
2064                         format!("{adt}(/* fields */)", adt = ty),
2065                         Applicability::HasPlaceholders,
2066                     );
2067                 }
2068             },
2069             _ => {
2070                 // prevent all specified fields from being suggested
2071                 let skip_fields = skip_fields.iter().map(|x| x.ident.name);
2072                 if let Some(field_name) = self.suggest_field_name(
2073                     variant,
2074                     field.ident.name,
2075                     skip_fields.collect(),
2076                     expr_span,
2077                 ) {
2078                     err.span_suggestion(
2079                         field.ident.span,
2080                         "a field with a similar name exists",
2081                         field_name,
2082                         Applicability::MaybeIncorrect,
2083                     );
2084                 } else {
2085                     match ty.kind() {
2086                         ty::Adt(adt, ..) => {
2087                             if adt.is_enum() {
2088                                 err.span_label(
2089                                     field.ident.span,
2090                                     format!("`{}::{}` does not have this field", ty, variant.name),
2091                                 );
2092                             } else {
2093                                 err.span_label(
2094                                     field.ident.span,
2095                                     format!("`{ty}` does not have this field"),
2096                                 );
2097                             }
2098                             let available_field_names =
2099                                 self.available_field_names(variant, expr_span);
2100                             if !available_field_names.is_empty() {
2101                                 err.note(&format!(
2102                                     "available fields are: {}",
2103                                     self.name_series_display(available_field_names)
2104                                 ));
2105                             }
2106                         }
2107                         _ => bug!("non-ADT passed to report_unknown_field"),
2108                     }
2109                 };
2110             }
2111         }
2112         err.emit();
2113     }
2114
2115     // Return a hint about the closest match in field names
2116     fn suggest_field_name(
2117         &self,
2118         variant: &'tcx ty::VariantDef,
2119         field: Symbol,
2120         skip: Vec<Symbol>,
2121         // The span where stability will be checked
2122         span: Span,
2123     ) -> Option<Symbol> {
2124         let names = variant
2125             .fields
2126             .iter()
2127             .filter_map(|field| {
2128                 // ignore already set fields and private fields from non-local crates
2129                 // and unstable fields.
2130                 if skip.iter().any(|&x| x == field.name)
2131                     || (!variant.def_id.is_local() && !field.vis.is_public())
2132                     || matches!(
2133                         self.tcx.eval_stability(field.did, None, span, None),
2134                         stability::EvalResult::Deny { .. }
2135                     )
2136                 {
2137                     None
2138                 } else {
2139                     Some(field.name)
2140                 }
2141             })
2142             .collect::<Vec<Symbol>>();
2143
2144         find_best_match_for_name(&names, field, None)
2145     }
2146
2147     fn available_field_names(
2148         &self,
2149         variant: &'tcx ty::VariantDef,
2150         access_span: Span,
2151     ) -> Vec<Symbol> {
2152         variant
2153             .fields
2154             .iter()
2155             .filter(|field| {
2156                 let def_scope = self
2157                     .tcx
2158                     .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
2159                     .1;
2160                 field.vis.is_accessible_from(def_scope, self.tcx)
2161                     && !matches!(
2162                         self.tcx.eval_stability(field.did, None, access_span, None),
2163                         stability::EvalResult::Deny { .. }
2164                     )
2165             })
2166             .filter(|field| !self.tcx.is_doc_hidden(field.did))
2167             .map(|field| field.name)
2168             .collect()
2169     }
2170
2171     fn name_series_display(&self, names: Vec<Symbol>) -> String {
2172         // dynamic limit, to never omit just one field
2173         let limit = if names.len() == 6 { 6 } else { 5 };
2174         let mut display =
2175             names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
2176         if names.len() > limit {
2177             display = format!("{} ... and {} others", display, names.len() - limit);
2178         }
2179         display
2180     }
2181
2182     // Check field access expressions
2183     fn check_field(
2184         &self,
2185         expr: &'tcx hir::Expr<'tcx>,
2186         base: &'tcx hir::Expr<'tcx>,
2187         field: Ident,
2188     ) -> Ty<'tcx> {
2189         debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
2190         let base_ty = self.check_expr(base);
2191         let base_ty = self.structurally_resolved_type(base.span, base_ty);
2192         let mut private_candidate = None;
2193         let mut autoderef = self.autoderef(expr.span, base_ty);
2194         while let Some((deref_base_ty, _)) = autoderef.next() {
2195             debug!("deref_base_ty: {:?}", deref_base_ty);
2196             match deref_base_ty.kind() {
2197                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2198                     debug!("struct named {:?}", deref_base_ty);
2199                     let (ident, def_scope) =
2200                         self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
2201                     let fields = &base_def.non_enum_variant().fields;
2202                     if let Some(index) = fields
2203                         .iter()
2204                         .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
2205                     {
2206                         let field = &fields[index];
2207                         let field_ty = self.field_ty(expr.span, field, substs);
2208                         // Save the index of all fields regardless of their visibility in case
2209                         // of error recovery.
2210                         self.write_field_index(expr.hir_id, index);
2211                         let adjustments = self.adjust_steps(&autoderef);
2212                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2213                             self.apply_adjustments(base, adjustments);
2214                             self.register_predicates(autoderef.into_obligations());
2215
2216                             self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
2217                             return field_ty;
2218                         }
2219                         private_candidate = Some((adjustments, base_def.did(), field_ty));
2220                     }
2221                 }
2222                 ty::Tuple(tys) => {
2223                     let fstr = field.as_str();
2224                     if let Ok(index) = fstr.parse::<usize>() {
2225                         if fstr == index.to_string() {
2226                             if let Some(&field_ty) = tys.get(index) {
2227                                 let adjustments = self.adjust_steps(&autoderef);
2228                                 self.apply_adjustments(base, adjustments);
2229                                 self.register_predicates(autoderef.into_obligations());
2230
2231                                 self.write_field_index(expr.hir_id, index);
2232                                 return field_ty;
2233                             }
2234                         }
2235                     }
2236                 }
2237                 _ => {}
2238             }
2239         }
2240         self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
2241
2242         if let Some((adjustments, did, field_ty)) = private_candidate {
2243             // (#90483) apply adjustments to avoid ExprUseVisitor from
2244             // creating erroneous projection.
2245             self.apply_adjustments(base, adjustments);
2246             self.ban_private_field_access(expr, base_ty, field, did);
2247             return field_ty;
2248         }
2249
2250         if field.name == kw::Empty {
2251         } else if self.method_exists(field, base_ty, expr.hir_id, true) {
2252             self.ban_take_value_of_method(expr, base_ty, field);
2253         } else if !base_ty.is_primitive_ty() {
2254             self.ban_nonexisting_field(field, base, expr, base_ty);
2255         } else {
2256             let field_name = field.to_string();
2257             let mut err = type_error_struct!(
2258                 self.tcx().sess,
2259                 field.span,
2260                 base_ty,
2261                 E0610,
2262                 "`{base_ty}` is a primitive type and therefore doesn't have fields",
2263             );
2264             let is_valid_suffix = |field: &str| {
2265                 if field == "f32" || field == "f64" {
2266                     return true;
2267                 }
2268                 let mut chars = field.chars().peekable();
2269                 match chars.peek() {
2270                     Some('e') | Some('E') => {
2271                         chars.next();
2272                         if let Some(c) = chars.peek()
2273                             && !c.is_numeric() && *c != '-' && *c != '+'
2274                         {
2275                             return false;
2276                         }
2277                         while let Some(c) = chars.peek() {
2278                             if !c.is_numeric() {
2279                                 break;
2280                             }
2281                             chars.next();
2282                         }
2283                     }
2284                     _ => (),
2285                 }
2286                 let suffix = chars.collect::<String>();
2287                 suffix.is_empty() || suffix == "f32" || suffix == "f64"
2288             };
2289             let maybe_partial_suffix = |field: &str| -> Option<&str> {
2290                 let first_chars = ['f', 'l'];
2291                 if field.len() >= 1
2292                     && field.to_lowercase().starts_with(first_chars)
2293                     && field[1..].chars().all(|c| c.is_ascii_digit())
2294                 {
2295                     if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
2296                 } else {
2297                     None
2298                 }
2299             };
2300             if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
2301                 && let ExprKind::Lit(Spanned {
2302                     node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
2303                     ..
2304                 }) = base.kind
2305                 && !base.span.from_expansion()
2306             {
2307                 if is_valid_suffix(&field_name) {
2308                     err.span_suggestion_verbose(
2309                         field.span.shrink_to_lo(),
2310                         "if intended to be a floating point literal, consider adding a `0` after the period",
2311                         '0',
2312                         Applicability::MaybeIncorrect,
2313                     );
2314                 } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
2315                     err.span_suggestion_verbose(
2316                         field.span,
2317                         format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
2318                         format!("0{correct_suffix}"),
2319                         Applicability::MaybeIncorrect,
2320                     );
2321                 }
2322             }
2323             err.emit();
2324         }
2325
2326         self.tcx().ty_error()
2327     }
2328
2329     fn suggest_await_on_field_access(
2330         &self,
2331         err: &mut Diagnostic,
2332         field_ident: Ident,
2333         base: &'tcx hir::Expr<'tcx>,
2334         ty: Ty<'tcx>,
2335     ) {
2336         let Some(output_ty) = self.get_impl_future_output_ty(ty) else { return; };
2337         let mut add_label = true;
2338         if let ty::Adt(def, _) = output_ty.kind() {
2339             // no field access on enum type
2340             if !def.is_enum() {
2341                 if def
2342                     .non_enum_variant()
2343                     .fields
2344                     .iter()
2345                     .any(|field| field.ident(self.tcx) == field_ident)
2346                 {
2347                     add_label = false;
2348                     err.span_label(
2349                         field_ident.span,
2350                         "field not available in `impl Future`, but it is available in its `Output`",
2351                     );
2352                     err.span_suggestion_verbose(
2353                         base.span.shrink_to_hi(),
2354                         "consider `await`ing on the `Future` and access the field of its `Output`",
2355                         ".await",
2356                         Applicability::MaybeIncorrect,
2357                     );
2358                 }
2359             }
2360         }
2361         if add_label {
2362             err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
2363         }
2364     }
2365
2366     fn ban_nonexisting_field(
2367         &self,
2368         ident: Ident,
2369         base: &'tcx hir::Expr<'tcx>,
2370         expr: &'tcx hir::Expr<'tcx>,
2371         base_ty: Ty<'tcx>,
2372     ) {
2373         debug!(
2374             "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
2375             ident, base, expr, base_ty
2376         );
2377         let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
2378
2379         match *base_ty.peel_refs().kind() {
2380             ty::Array(_, len) => {
2381                 self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
2382             }
2383             ty::RawPtr(..) => {
2384                 self.suggest_first_deref_field(&mut err, expr, base, ident);
2385             }
2386             ty::Adt(def, _) if !def.is_enum() => {
2387                 self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
2388             }
2389             ty::Param(param_ty) => {
2390                 self.point_at_param_definition(&mut err, param_ty);
2391             }
2392             ty::Alias(ty::Opaque, _) => {
2393                 self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
2394             }
2395             _ => {}
2396         }
2397
2398         self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
2399             if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
2400                 def.non_enum_variant().fields.iter().any(|field| {
2401                     field.ident(self.tcx) == ident
2402                         && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
2403                 })
2404             } else if let ty::Tuple(tys) = output_ty.kind()
2405                 && let Ok(idx) = ident.as_str().parse::<usize>()
2406             {
2407                 idx < tys.len()
2408             } else {
2409                 false
2410             }
2411         });
2412
2413         if ident.name == kw::Await {
2414             // We know by construction that `<expr>.await` is either on Rust 2015
2415             // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
2416             err.note("to `.await` a `Future`, switch to Rust 2018 or later");
2417             err.help_use_latest_edition();
2418         }
2419
2420         err.emit();
2421     }
2422
2423     fn ban_private_field_access(
2424         &self,
2425         expr: &hir::Expr<'_>,
2426         expr_t: Ty<'tcx>,
2427         field: Ident,
2428         base_did: DefId,
2429     ) {
2430         let struct_path = self.tcx().def_path_str(base_did);
2431         let kind_name = self.tcx().def_kind(base_did).descr(base_did);
2432         let mut err = struct_span_err!(
2433             self.tcx().sess,
2434             field.span,
2435             E0616,
2436             "field `{field}` of {kind_name} `{struct_path}` is private",
2437         );
2438         err.span_label(field.span, "private field");
2439         // Also check if an accessible method exists, which is often what is meant.
2440         if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
2441         {
2442             self.suggest_method_call(
2443                 &mut err,
2444                 &format!("a method `{field}` also exists, call it with parentheses"),
2445                 field,
2446                 expr_t,
2447                 expr,
2448                 None,
2449             );
2450         }
2451         err.emit();
2452     }
2453
2454     fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
2455         let mut err = type_error_struct!(
2456             self.tcx().sess,
2457             field.span,
2458             expr_t,
2459             E0615,
2460             "attempted to take value of method `{field}` on type `{expr_t}`",
2461         );
2462         err.span_label(field.span, "method, not a field");
2463         let expr_is_call =
2464             if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
2465                 self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
2466             {
2467                 expr.hir_id == callee.hir_id
2468             } else {
2469                 false
2470             };
2471         let expr_snippet =
2472             self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
2473         let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
2474         let after_open = expr.span.lo() + rustc_span::BytePos(1);
2475         let before_close = expr.span.hi() - rustc_span::BytePos(1);
2476
2477         if expr_is_call && is_wrapped {
2478             err.multipart_suggestion(
2479                 "remove wrapping parentheses to call the method",
2480                 vec![
2481                     (expr.span.with_hi(after_open), String::new()),
2482                     (expr.span.with_lo(before_close), String::new()),
2483                 ],
2484                 Applicability::MachineApplicable,
2485             );
2486         } else if !self.expr_in_place(expr.hir_id) {
2487             // Suggest call parentheses inside the wrapping parentheses
2488             let span = if is_wrapped {
2489                 expr.span.with_lo(after_open).with_hi(before_close)
2490             } else {
2491                 expr.span
2492             };
2493             self.suggest_method_call(
2494                 &mut err,
2495                 "use parentheses to call the method",
2496                 field,
2497                 expr_t,
2498                 expr,
2499                 Some(span),
2500             );
2501         } else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
2502             && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
2503             && let ExprKind::Field(base_expr, _) = expr.kind
2504             && adt_def.variants().len() == 1
2505             && adt_def
2506                 .variants()
2507                 .iter()
2508                 .next()
2509                 .unwrap()
2510                 .fields
2511                 .iter()
2512                 .any(|f| f.ident(self.tcx) == field)
2513         {
2514             err.multipart_suggestion(
2515                 "to access the field, dereference first",
2516                 vec![
2517                     (base_expr.span.shrink_to_lo(), "(*".to_string()),
2518                     (base_expr.span.shrink_to_hi(), ")".to_string()),
2519                 ],
2520                 Applicability::MaybeIncorrect,
2521             );
2522         } else {
2523             err.help("methods are immutable and cannot be assigned to");
2524         }
2525
2526         err.emit();
2527     }
2528
2529     fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
2530         let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
2531         let generic_param = generics.type_param(&param, self.tcx);
2532         if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
2533             return;
2534         }
2535         let param_def_id = generic_param.def_id;
2536         let param_hir_id = match param_def_id.as_local() {
2537             Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
2538             None => return,
2539         };
2540         let param_span = self.tcx.hir().span(param_hir_id);
2541         let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
2542
2543         err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
2544     }
2545
2546     fn suggest_fields_on_recordish(
2547         &self,
2548         err: &mut Diagnostic,
2549         def: ty::AdtDef<'tcx>,
2550         field: Ident,
2551         access_span: Span,
2552     ) {
2553         if let Some(suggested_field_name) =
2554             self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
2555         {
2556             err.span_suggestion(
2557                 field.span,
2558                 "a field with a similar name exists",
2559                 suggested_field_name,
2560                 Applicability::MaybeIncorrect,
2561             );
2562         } else {
2563             err.span_label(field.span, "unknown field");
2564             let struct_variant_def = def.non_enum_variant();
2565             let field_names = self.available_field_names(struct_variant_def, access_span);
2566             if !field_names.is_empty() {
2567                 err.note(&format!(
2568                     "available fields are: {}",
2569                     self.name_series_display(field_names),
2570                 ));
2571             }
2572         }
2573     }
2574
2575     fn maybe_suggest_array_indexing(
2576         &self,
2577         err: &mut Diagnostic,
2578         expr: &hir::Expr<'_>,
2579         base: &hir::Expr<'_>,
2580         field: Ident,
2581         len: ty::Const<'tcx>,
2582     ) {
2583         if let (Some(len), Ok(user_index)) =
2584             (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
2585             && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
2586         {
2587             let help = "instead of using tuple indexing, use array indexing";
2588             let suggestion = format!("{base}[{field}]");
2589             let applicability = if len < user_index {
2590                 Applicability::MachineApplicable
2591             } else {
2592                 Applicability::MaybeIncorrect
2593             };
2594             err.span_suggestion(expr.span, help, suggestion, applicability);
2595         }
2596     }
2597
2598     fn suggest_first_deref_field(
2599         &self,
2600         err: &mut Diagnostic,
2601         expr: &hir::Expr<'_>,
2602         base: &hir::Expr<'_>,
2603         field: Ident,
2604     ) {
2605         if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
2606             let msg = format!("`{base}` is a raw pointer; try dereferencing it");
2607             let suggestion = format!("(*{base}).{field}");
2608             err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
2609         }
2610     }
2611
2612     fn no_such_field_err(
2613         &self,
2614         field: Ident,
2615         expr_t: Ty<'tcx>,
2616         id: HirId,
2617     ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
2618         let span = field.span;
2619         debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
2620
2621         let mut err = type_error_struct!(
2622             self.tcx().sess,
2623             field.span,
2624             expr_t,
2625             E0609,
2626             "no field `{field}` on type `{expr_t}`",
2627         );
2628
2629         // try to add a suggestion in case the field is a nested field of a field of the Adt
2630         let mod_id = self.tcx.parent_module(id).to_def_id();
2631         if let Some((fields, substs)) =
2632             self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
2633         {
2634             let candidate_fields: Vec<_> = fields
2635                 .filter_map(|candidate_field| {
2636                     self.check_for_nested_field_satisfying(
2637                         span,
2638                         &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
2639                         candidate_field,
2640                         substs,
2641                         vec![],
2642                         mod_id,
2643                     )
2644                 })
2645                 .map(|mut field_path| {
2646                     field_path.pop();
2647                     field_path
2648                         .iter()
2649                         .map(|id| id.name.to_ident_string())
2650                         .collect::<Vec<String>>()
2651                         .join(".")
2652                 })
2653                 .collect::<Vec<_>>();
2654
2655             let len = candidate_fields.len();
2656             if len > 0 {
2657                 err.span_suggestions(
2658                     field.span.shrink_to_lo(),
2659                     format!(
2660                         "{} of the expressions' fields {} a field of the same name",
2661                         if len > 1 { "some" } else { "one" },
2662                         if len > 1 { "have" } else { "has" },
2663                     ),
2664                     candidate_fields.iter().map(|path| format!("{path}.")),
2665                     Applicability::MaybeIncorrect,
2666                 );
2667             }
2668         }
2669         err
2670     }
2671
2672     pub(crate) fn get_field_candidates_considering_privacy(
2673         &self,
2674         span: Span,
2675         base_ty: Ty<'tcx>,
2676         mod_id: DefId,
2677     ) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
2678         debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
2679
2680         for (base_t, _) in self.autoderef(span, base_ty) {
2681             match base_t.kind() {
2682                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2683                     let tcx = self.tcx;
2684                     let fields = &base_def.non_enum_variant().fields;
2685                     // Some struct, e.g. some that impl `Deref`, have all private fields
2686                     // because you're expected to deref them to access the _real_ fields.
2687                     // This, for example, will help us suggest accessing a field through a `Box<T>`.
2688                     if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
2689                         continue;
2690                     }
2691                     return Some((
2692                         fields
2693                             .iter()
2694                             .filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
2695                             // For compile-time reasons put a limit on number of fields we search
2696                             .take(100),
2697                         substs,
2698                     ));
2699                 }
2700                 _ => {}
2701             }
2702         }
2703         None
2704     }
2705
2706     /// This method is called after we have encountered a missing field error to recursively
2707     /// search for the field
2708     pub(crate) fn check_for_nested_field_satisfying(
2709         &self,
2710         span: Span,
2711         matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
2712         candidate_field: &ty::FieldDef,
2713         subst: SubstsRef<'tcx>,
2714         mut field_path: Vec<Ident>,
2715         mod_id: DefId,
2716     ) -> Option<Vec<Ident>> {
2717         debug!(
2718             "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
2719             span, candidate_field, field_path
2720         );
2721
2722         if field_path.len() > 3 {
2723             // For compile-time reasons and to avoid infinite recursion we only check for fields
2724             // up to a depth of three
2725             None
2726         } else {
2727             field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
2728             let field_ty = candidate_field.ty(self.tcx, subst);
2729             if matches(candidate_field, field_ty) {
2730                 return Some(field_path);
2731             } else if let Some((nested_fields, subst)) =
2732                 self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
2733             {
2734                 // recursively search fields of `candidate_field` if it's a ty::Adt
2735                 for field in nested_fields {
2736                     if let Some(field_path) = self.check_for_nested_field_satisfying(
2737                         span,
2738                         matches,
2739                         field,
2740                         subst,
2741                         field_path.clone(),
2742                         mod_id,
2743                     ) {
2744                         return Some(field_path);
2745                     }
2746                 }
2747             }
2748             None
2749         }
2750     }
2751
2752     fn check_expr_index(
2753         &self,
2754         base: &'tcx hir::Expr<'tcx>,
2755         idx: &'tcx hir::Expr<'tcx>,
2756         expr: &'tcx hir::Expr<'tcx>,
2757     ) -> Ty<'tcx> {
2758         let base_t = self.check_expr(&base);
2759         let idx_t = self.check_expr(&idx);
2760
2761         if base_t.references_error() {
2762             base_t
2763         } else if idx_t.references_error() {
2764             idx_t
2765         } else {
2766             let base_t = self.structurally_resolved_type(base.span, base_t);
2767             match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
2768                 Some((index_ty, element_ty)) => {
2769                     // two-phase not needed because index_ty is never mutable
2770                     self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
2771                     self.select_obligations_where_possible(|errors| {
2772                         self.point_at_index_if_possible(errors, idx.span)
2773                     });
2774                     element_ty
2775                 }
2776                 None => {
2777                     let mut err = type_error_struct!(
2778                         self.tcx.sess,
2779                         expr.span,
2780                         base_t,
2781                         E0608,
2782                         "cannot index into a value of type `{base_t}`",
2783                     );
2784                     // Try to give some advice about indexing tuples.
2785                     if let ty::Tuple(..) = base_t.kind() {
2786                         let mut needs_note = true;
2787                         // If the index is an integer, we can show the actual
2788                         // fixed expression:
2789                         if let ExprKind::Lit(ref lit) = idx.kind {
2790                             if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
2791                                 let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
2792                                 if let Ok(snip) = snip {
2793                                     err.span_suggestion(
2794                                         expr.span,
2795                                         "to access tuple elements, use",
2796                                         format!("{snip}.{i}"),
2797                                         Applicability::MachineApplicable,
2798                                     );
2799                                     needs_note = false;
2800                                 }
2801                             }
2802                         }
2803                         if needs_note {
2804                             err.help(
2805                                 "to access tuple elements, use tuple indexing \
2806                                         syntax (e.g., `tuple.0`)",
2807                             );
2808                         }
2809                     }
2810                     let reported = err.emit();
2811                     self.tcx.ty_error_with_guaranteed(reported)
2812                 }
2813             }
2814         }
2815     }
2816
2817     fn point_at_index_if_possible(
2818         &self,
2819         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
2820         span: Span,
2821     ) {
2822         for error in errors {
2823             match error.obligation.predicate.kind().skip_binder() {
2824                 ty::PredicateKind::Clause(ty::Clause::Trait(predicate))
2825                     if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
2826                 }
2827                 _ => continue,
2828             }
2829             error.obligation.cause.span = span;
2830         }
2831     }
2832
2833     fn check_expr_yield(
2834         &self,
2835         value: &'tcx hir::Expr<'tcx>,
2836         expr: &'tcx hir::Expr<'tcx>,
2837         src: &'tcx hir::YieldSource,
2838     ) -> Ty<'tcx> {
2839         match self.resume_yield_tys {
2840             Some((resume_ty, yield_ty)) => {
2841                 self.check_expr_coercable_to_type(&value, yield_ty, None);
2842
2843                 resume_ty
2844             }
2845             // Given that this `yield` expression was generated as a result of lowering a `.await`,
2846             // we know that the yield type must be `()`; however, the context won't contain this
2847             // information. Hence, we check the source of the yield expression here and check its
2848             // value's type against `()` (this check should always hold).
2849             None if src.is_await() => {
2850                 self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
2851                 self.tcx.mk_unit()
2852             }
2853             _ => {
2854                 self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
2855                 // Avoid expressions without types during writeback (#78653).
2856                 self.check_expr(value);
2857                 self.tcx.mk_unit()
2858             }
2859         }
2860     }
2861
2862     fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
2863         let needs = if is_input { Needs::None } else { Needs::MutPlace };
2864         let ty = self.check_expr_with_needs(expr, needs);
2865         self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
2866
2867         if !is_input && !expr.is_syntactic_place_expr() {
2868             let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
2869             err.span_label(expr.span, "cannot assign to this expression");
2870             err.emit();
2871         }
2872
2873         // If this is an input value, we require its type to be fully resolved
2874         // at this point. This allows us to provide helpful coercions which help
2875         // pass the type candidate list in a later pass.
2876         //
2877         // We don't require output types to be resolved at this point, which
2878         // allows them to be inferred based on how they are used later in the
2879         // function.
2880         if is_input {
2881             let ty = self.structurally_resolved_type(expr.span, ty);
2882             match *ty.kind() {
2883                 ty::FnDef(..) => {
2884                     let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
2885                     self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
2886                 }
2887                 ty::Ref(_, base_ty, mutbl) => {
2888                     let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
2889                     self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
2890                 }
2891                 _ => {}
2892             }
2893         }
2894     }
2895
2896     fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
2897         for (op, _op_sp) in asm.operands {
2898             match op {
2899                 hir::InlineAsmOperand::In { expr, .. } => {
2900                     self.check_expr_asm_operand(expr, true);
2901                 }
2902                 hir::InlineAsmOperand::Out { expr: Some(expr), .. }
2903                 | hir::InlineAsmOperand::InOut { expr, .. } => {
2904                     self.check_expr_asm_operand(expr, false);
2905                 }
2906                 hir::InlineAsmOperand::Out { expr: None, .. } => {}
2907                 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
2908                     self.check_expr_asm_operand(in_expr, true);
2909                     if let Some(out_expr) = out_expr {
2910                         self.check_expr_asm_operand(out_expr, false);
2911                     }
2912                 }
2913                 // `AnonConst`s have their own body and is type-checked separately.
2914                 // As they don't flow into the type system we don't need them to
2915                 // be well-formed.
2916                 hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
2917                 hir::InlineAsmOperand::SymStatic { .. } => {}
2918             }
2919         }
2920         if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
2921             self.tcx.types.never
2922         } else {
2923             self.tcx.mk_unit()
2924         }
2925     }
2926 }