]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_typeck/src/closure.rs
Merge commit '2bb3996244cf1b89878da9e39841e9f6bf061602' into sync_cg_clif-2022-12-14
[rust.git] / compiler / rustc_hir_typeck / src / closure.rs
1 //! Code for type-checking closure expressions.
2
3 use super::{check_fn, Expectation, FnCtxt, GeneratorTypes};
4
5 use hir::def::DefKind;
6 use rustc_hir as hir;
7 use rustc_hir::def_id::LocalDefId;
8 use rustc_hir::lang_items::LangItem;
9 use rustc_hir_analysis::astconv::AstConv;
10 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
11 use rustc_infer::infer::LateBoundRegionConversionTime;
12 use rustc_infer::infer::{InferOk, InferResult};
13 use rustc_macros::{TypeFoldable, TypeVisitable};
14 use rustc_middle::ty::subst::InternalSubsts;
15 use rustc_middle::ty::visit::TypeVisitable;
16 use rustc_middle::ty::{self, Ty};
17 use rustc_span::source_map::Span;
18 use rustc_target::spec::abi::Abi;
19 use rustc_trait_selection::traits;
20 use rustc_trait_selection::traits::error_reporting::ArgKind;
21 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
22 use std::cmp;
23 use std::iter;
24
25 /// What signature do we *expect* the closure to have from context?
26 #[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
27 struct ExpectedSig<'tcx> {
28     /// Span that gave us this expectation, if we know that.
29     cause_span: Option<Span>,
30     sig: ty::PolyFnSig<'tcx>,
31 }
32
33 struct ClosureSignatures<'tcx> {
34     /// The signature users of the closure see.
35     bound_sig: ty::PolyFnSig<'tcx>,
36     /// The signature within the function body.
37     /// This mostly differs in the sense that lifetimes are now early bound and any
38     /// opaque types from the signature expectation are overridden in case there are
39     /// explicit hidden types written by the user in the closure signature.
40     liberated_sig: ty::FnSig<'tcx>,
41 }
42
43 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
44     #[instrument(skip(self, closure), level = "debug")]
45     pub fn check_expr_closure(
46         &self,
47         closure: &hir::Closure<'tcx>,
48         expr_span: Span,
49         expected: Expectation<'tcx>,
50     ) -> Ty<'tcx> {
51         trace!("decl = {:#?}", closure.fn_decl);
52
53         // It's always helpful for inference if we know the kind of
54         // closure sooner rather than later, so first examine the expected
55         // type, and see if can glean a closure kind from there.
56         let (expected_sig, expected_kind) = match expected.to_option(self) {
57             Some(ty) => self.deduce_expectations_from_expected_type(ty),
58             None => (None, None),
59         };
60         let body = self.tcx.hir().body(closure.body);
61         self.check_closure(closure, expr_span, expected_kind, body, expected_sig)
62     }
63
64     #[instrument(skip(self, closure, body), level = "debug", ret)]
65     fn check_closure(
66         &self,
67         closure: &hir::Closure<'tcx>,
68         expr_span: Span,
69         opt_kind: Option<ty::ClosureKind>,
70         body: &'tcx hir::Body<'tcx>,
71         expected_sig: Option<ExpectedSig<'tcx>>,
72     ) -> Ty<'tcx> {
73         trace!("decl = {:#?}", closure.fn_decl);
74         let expr_def_id = closure.def_id;
75         debug!(?expr_def_id);
76
77         let ClosureSignatures { bound_sig, liberated_sig } =
78             self.sig_of_closure(expr_def_id, closure.fn_decl, body, expected_sig);
79
80         debug!(?bound_sig, ?liberated_sig);
81
82         let mut fcx = FnCtxt::new(self, self.param_env.without_const(), body.value.hir_id);
83         let generator_types = check_fn(
84             &mut fcx,
85             liberated_sig,
86             closure.fn_decl,
87             expr_def_id,
88             body,
89             closure.movability,
90         );
91
92         let parent_substs = InternalSubsts::identity_for_item(
93             self.tcx,
94             self.tcx.typeck_root_def_id(expr_def_id.to_def_id()),
95         );
96
97         let tupled_upvars_ty = self.next_ty_var(TypeVariableOrigin {
98             kind: TypeVariableOriginKind::ClosureSynthetic,
99             span: self.tcx.def_span(expr_def_id),
100         });
101
102         if let Some(GeneratorTypes { resume_ty, yield_ty, interior, movability }) = generator_types
103         {
104             let generator_substs = ty::GeneratorSubsts::new(
105                 self.tcx,
106                 ty::GeneratorSubstsParts {
107                     parent_substs,
108                     resume_ty,
109                     yield_ty,
110                     return_ty: liberated_sig.output(),
111                     witness: interior,
112                     tupled_upvars_ty,
113                 },
114             );
115
116             return self.tcx.mk_generator(
117                 expr_def_id.to_def_id(),
118                 generator_substs.substs,
119                 movability,
120             );
121         }
122
123         // Tuple up the arguments and insert the resulting function type into
124         // the `closures` table.
125         let sig = bound_sig.map_bound(|sig| {
126             self.tcx.mk_fn_sig(
127                 iter::once(self.tcx.intern_tup(sig.inputs())),
128                 sig.output(),
129                 sig.c_variadic,
130                 sig.unsafety,
131                 sig.abi,
132             )
133         });
134
135         debug!(?sig, ?opt_kind);
136
137         let closure_kind_ty = match opt_kind {
138             Some(kind) => kind.to_ty(self.tcx),
139
140             // Create a type variable (for now) to represent the closure kind.
141             // It will be unified during the upvar inference phase (`upvar.rs`)
142             None => self.next_ty_var(TypeVariableOrigin {
143                 // FIXME(eddyb) distinguish closure kind inference variables from the rest.
144                 kind: TypeVariableOriginKind::ClosureSynthetic,
145                 span: expr_span,
146             }),
147         };
148
149         let closure_substs = ty::ClosureSubsts::new(
150             self.tcx,
151             ty::ClosureSubstsParts {
152                 parent_substs,
153                 closure_kind_ty,
154                 closure_sig_as_fn_ptr_ty: self.tcx.mk_fn_ptr(sig),
155                 tupled_upvars_ty,
156             },
157         );
158
159         self.tcx.mk_closure(expr_def_id.to_def_id(), closure_substs.substs)
160     }
161
162     /// Given the expected type, figures out what it can about this closure we
163     /// are about to type check:
164     #[instrument(skip(self), level = "debug")]
165     fn deduce_expectations_from_expected_type(
166         &self,
167         expected_ty: Ty<'tcx>,
168     ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
169         match *expected_ty.kind() {
170             ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs }) => self
171                 .deduce_signature_from_predicates(
172                     self.tcx.bound_explicit_item_bounds(def_id).subst_iter_copied(self.tcx, substs),
173                 ),
174             ty::Dynamic(ref object_type, ..) => {
175                 let sig = object_type.projection_bounds().find_map(|pb| {
176                     let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
177                     self.deduce_sig_from_projection(None, pb)
178                 });
179                 let kind = object_type
180                     .principal_def_id()
181                     .and_then(|did| self.tcx.fn_trait_kind_from_def_id(did));
182                 (sig, kind)
183             }
184             ty::Infer(ty::TyVar(vid)) => self.deduce_signature_from_predicates(
185                 self.obligations_for_self_ty(vid).map(|obl| (obl.predicate, obl.cause.span)),
186             ),
187             ty::FnPtr(sig) => {
188                 let expected_sig = ExpectedSig { cause_span: None, sig };
189                 (Some(expected_sig), Some(ty::ClosureKind::Fn))
190             }
191             _ => (None, None),
192         }
193     }
194
195     fn deduce_signature_from_predicates(
196         &self,
197         predicates: impl DoubleEndedIterator<Item = (ty::Predicate<'tcx>, Span)>,
198     ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
199         let mut expected_sig = None;
200         let mut expected_kind = None;
201
202         for obligation in traits::elaborate_predicates_with_span(
203             self.tcx,
204             // Reverse the obligations here, since `elaborate_*` uses a stack,
205             // and we want to keep inference generally in the same order of
206             // the registered obligations.
207             predicates.rev(),
208         ) {
209             debug!(?obligation.predicate);
210             let bound_predicate = obligation.predicate.kind();
211
212             // Given a Projection predicate, we can potentially infer
213             // the complete signature.
214             if expected_sig.is_none()
215                 && let ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) = bound_predicate.skip_binder()
216             {
217                 expected_sig = self.normalize(
218                     obligation.cause.span,
219                     self.deduce_sig_from_projection(
220                     Some(obligation.cause.span),
221                         bound_predicate.rebind(proj_predicate),
222                     ),
223                 );
224             }
225
226             // Even if we can't infer the full signature, we may be able to
227             // infer the kind. This can occur when we elaborate a predicate
228             // like `F : Fn<A>`. Note that due to subtyping we could encounter
229             // many viable options, so pick the most restrictive.
230             let trait_def_id = match bound_predicate.skip_binder() {
231                 ty::PredicateKind::Clause(ty::Clause::Projection(data)) => {
232                     Some(data.projection_ty.trait_def_id(self.tcx))
233                 }
234                 ty::PredicateKind::Clause(ty::Clause::Trait(data)) => Some(data.def_id()),
235                 _ => None,
236             };
237             if let Some(closure_kind) =
238                 trait_def_id.and_then(|def_id| self.tcx.fn_trait_kind_from_def_id(def_id))
239             {
240                 expected_kind = Some(
241                     expected_kind
242                         .map_or_else(|| closure_kind, |current| cmp::min(current, closure_kind)),
243                 );
244             }
245         }
246
247         (expected_sig, expected_kind)
248     }
249
250     /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
251     /// everything we need to know about a closure or generator.
252     ///
253     /// The `cause_span` should be the span that caused us to
254     /// have this expected signature, or `None` if we can't readily
255     /// know that.
256     #[instrument(level = "debug", skip(self, cause_span), ret)]
257     fn deduce_sig_from_projection(
258         &self,
259         cause_span: Option<Span>,
260         projection: ty::PolyProjectionPredicate<'tcx>,
261     ) -> Option<ExpectedSig<'tcx>> {
262         let tcx = self.tcx;
263
264         let trait_def_id = projection.trait_def_id(tcx);
265
266         let is_fn = tcx.is_fn_trait(trait_def_id);
267         let gen_trait = tcx.require_lang_item(LangItem::Generator, cause_span);
268         let is_gen = gen_trait == trait_def_id;
269         if !is_fn && !is_gen {
270             debug!("not fn or generator");
271             return None;
272         }
273
274         if is_gen {
275             // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return`
276             // associated item and not yield.
277             let return_assoc_item = self.tcx.associated_item_def_ids(gen_trait)[1];
278             if return_assoc_item != projection.projection_def_id() {
279                 debug!("not return assoc item of generator");
280                 return None;
281             }
282         }
283
284         let input_tys = if is_fn {
285             let arg_param_ty = projection.skip_binder().projection_ty.substs.type_at(1);
286             let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty);
287             debug!(?arg_param_ty);
288
289             match arg_param_ty.kind() {
290                 &ty::Tuple(tys) => tys,
291                 _ => return None,
292             }
293         } else {
294             // Generators with a `()` resume type may be defined with 0 or 1 explicit arguments,
295             // else they must have exactly 1 argument. For now though, just give up in this case.
296             return None;
297         };
298
299         // Since this is a return parameter type it is safe to unwrap.
300         let ret_param_ty = projection.skip_binder().term.ty().unwrap();
301         let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty);
302         debug!(?ret_param_ty);
303
304         let sig = projection.rebind(self.tcx.mk_fn_sig(
305             input_tys.iter(),
306             ret_param_ty,
307             false,
308             hir::Unsafety::Normal,
309             Abi::Rust,
310         ));
311
312         Some(ExpectedSig { cause_span, sig })
313     }
314
315     fn sig_of_closure(
316         &self,
317         expr_def_id: LocalDefId,
318         decl: &hir::FnDecl<'_>,
319         body: &hir::Body<'_>,
320         expected_sig: Option<ExpectedSig<'tcx>>,
321     ) -> ClosureSignatures<'tcx> {
322         if let Some(e) = expected_sig {
323             self.sig_of_closure_with_expectation(expr_def_id, decl, body, e)
324         } else {
325             self.sig_of_closure_no_expectation(expr_def_id, decl, body)
326         }
327     }
328
329     /// If there is no expected signature, then we will convert the
330     /// types that the user gave into a signature.
331     #[instrument(skip(self, expr_def_id, decl, body), level = "debug")]
332     fn sig_of_closure_no_expectation(
333         &self,
334         expr_def_id: LocalDefId,
335         decl: &hir::FnDecl<'_>,
336         body: &hir::Body<'_>,
337     ) -> ClosureSignatures<'tcx> {
338         let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, body);
339
340         self.closure_sigs(expr_def_id, body, bound_sig)
341     }
342
343     /// Invoked to compute the signature of a closure expression. This
344     /// combines any user-provided type annotations (e.g., `|x: u32|
345     /// -> u32 { .. }`) with the expected signature.
346     ///
347     /// The approach is as follows:
348     ///
349     /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
350     /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
351     ///   - If we have no expectation `E`, then the signature of the closure is `S`.
352     ///   - Otherwise, the signature of the closure is E. Moreover:
353     ///     - Skolemize the late-bound regions in `E`, yielding `E'`.
354     ///     - Instantiate all the late-bound regions bound in the closure within `S`
355     ///       with fresh (existential) variables, yielding `S'`
356     ///     - Require that `E' = S'`
357     ///       - We could use some kind of subtyping relationship here,
358     ///         I imagine, but equality is easier and works fine for
359     ///         our purposes.
360     ///
361     /// The key intuition here is that the user's types must be valid
362     /// from "the inside" of the closure, but the expectation
363     /// ultimately drives the overall signature.
364     ///
365     /// # Examples
366     ///
367     /// ```ignore (illustrative)
368     /// fn with_closure<F>(_: F)
369     ///   where F: Fn(&u32) -> &u32 { .. }
370     ///
371     /// with_closure(|x: &u32| { ... })
372     /// ```
373     ///
374     /// Here:
375     /// - E would be `fn(&u32) -> &u32`.
376     /// - S would be `fn(&u32) ->
377     /// - E' is `&'!0 u32 -> &'!0 u32`
378     /// - S' is `&'?0 u32 -> ?T`
379     ///
380     /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
381     ///
382     /// # Arguments
383     ///
384     /// - `expr_def_id`: the `LocalDefId` of the closure expression
385     /// - `decl`: the HIR declaration of the closure
386     /// - `body`: the body of the closure
387     /// - `expected_sig`: the expected signature (if any). Note that
388     ///   this is missing a binder: that is, there may be late-bound
389     ///   regions with depth 1, which are bound then by the closure.
390     #[instrument(skip(self, expr_def_id, decl, body), level = "debug")]
391     fn sig_of_closure_with_expectation(
392         &self,
393         expr_def_id: LocalDefId,
394         decl: &hir::FnDecl<'_>,
395         body: &hir::Body<'_>,
396         expected_sig: ExpectedSig<'tcx>,
397     ) -> ClosureSignatures<'tcx> {
398         // Watch out for some surprises and just ignore the
399         // expectation if things don't see to match up with what we
400         // expect.
401         if expected_sig.sig.c_variadic() != decl.c_variadic {
402             return self.sig_of_closure_no_expectation(expr_def_id, decl, body);
403         } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
404             return self.sig_of_closure_with_mismatched_number_of_arguments(
405                 expr_def_id,
406                 decl,
407                 body,
408                 expected_sig,
409             );
410         }
411
412         // Create a `PolyFnSig`. Note the oddity that late bound
413         // regions appearing free in `expected_sig` are now bound up
414         // in this binder we are creating.
415         assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
416         let bound_sig = expected_sig.sig.map_bound(|sig| {
417             self.tcx.mk_fn_sig(
418                 sig.inputs().iter().cloned(),
419                 sig.output(),
420                 sig.c_variadic,
421                 hir::Unsafety::Normal,
422                 Abi::RustCall,
423             )
424         });
425
426         // `deduce_expectations_from_expected_type` introduces
427         // late-bound lifetimes defined elsewhere, which we now
428         // anonymize away, so as not to confuse the user.
429         let bound_sig = self.tcx.anonymize_late_bound_regions(bound_sig);
430
431         let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig);
432
433         // Up till this point, we have ignored the annotations that the user
434         // gave. This function will check that they unify successfully.
435         // Along the way, it also writes out entries for types that the user
436         // wrote into our typeck results, which are then later used by the privacy
437         // check.
438         match self.merge_supplied_sig_with_expectation(expr_def_id, decl, body, closure_sigs) {
439             Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
440             Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, body),
441         }
442     }
443
444     fn sig_of_closure_with_mismatched_number_of_arguments(
445         &self,
446         expr_def_id: LocalDefId,
447         decl: &hir::FnDecl<'_>,
448         body: &hir::Body<'_>,
449         expected_sig: ExpectedSig<'tcx>,
450     ) -> ClosureSignatures<'tcx> {
451         let hir = self.tcx.hir();
452         let expr_map_node = hir.get_by_def_id(expr_def_id);
453         let expected_args: Vec<_> = expected_sig
454             .sig
455             .skip_binder()
456             .inputs()
457             .iter()
458             .map(|ty| ArgKind::from_expected_ty(*ty, None))
459             .collect();
460         let (closure_span, closure_arg_span, found_args) =
461             match self.get_fn_like_arguments(expr_map_node) {
462                 Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args),
463                 None => (None, None, Vec::new()),
464             };
465         let expected_span =
466             expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id));
467         self.report_arg_count_mismatch(
468             expected_span,
469             closure_span,
470             expected_args,
471             found_args,
472             true,
473             closure_arg_span,
474         )
475         .emit();
476
477         let error_sig = self.error_sig_of_closure(decl);
478
479         self.closure_sigs(expr_def_id, body, error_sig)
480     }
481
482     /// Enforce the user's types against the expectation. See
483     /// `sig_of_closure_with_expectation` for details on the overall
484     /// strategy.
485     #[instrument(level = "debug", skip(self, expr_def_id, decl, body, expected_sigs))]
486     fn merge_supplied_sig_with_expectation(
487         &self,
488         expr_def_id: LocalDefId,
489         decl: &hir::FnDecl<'_>,
490         body: &hir::Body<'_>,
491         mut expected_sigs: ClosureSignatures<'tcx>,
492     ) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
493         // Get the signature S that the user gave.
494         //
495         // (See comment on `sig_of_closure_with_expectation` for the
496         // meaning of these letters.)
497         let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, body);
498
499         debug!(?supplied_sig);
500
501         // FIXME(#45727): As discussed in [this comment][c1], naively
502         // forcing equality here actually results in suboptimal error
503         // messages in some cases.  For now, if there would have been
504         // an obvious error, we fallback to declaring the type of the
505         // closure to be the one the user gave, which allows other
506         // error message code to trigger.
507         //
508         // However, I think [there is potential to do even better
509         // here][c2], since in *this* code we have the precise span of
510         // the type parameter in question in hand when we report the
511         // error.
512         //
513         // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
514         // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
515         self.commit_if_ok(|_| {
516             let mut all_obligations = vec![];
517             let inputs: Vec<_> = iter::zip(
518                 decl.inputs,
519                 supplied_sig.inputs().skip_binder(), // binder moved to (*) below
520             )
521             .map(|(hir_ty, &supplied_ty)| {
522                 // Instantiate (this part of..) S to S', i.e., with fresh variables.
523                 self.replace_bound_vars_with_fresh_vars(
524                     hir_ty.span,
525                     LateBoundRegionConversionTime::FnCall,
526                     // (*) binder moved to here
527                     supplied_sig.inputs().rebind(supplied_ty),
528                 )
529             })
530             .collect();
531
532             // The liberated version of this signature should be a subtype
533             // of the liberated form of the expectation.
534             for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
535                 iter::zip(decl.inputs, &inputs),
536                 expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
537             ) {
538                 // Check that E' = S'.
539                 let cause = self.misc(hir_ty.span);
540                 let InferOk { value: (), obligations } =
541                     self.at(&cause, self.param_env).eq(*expected_ty, supplied_ty)?;
542                 all_obligations.extend(obligations);
543             }
544
545             let supplied_output_ty = self.replace_bound_vars_with_fresh_vars(
546                 decl.output.span(),
547                 LateBoundRegionConversionTime::FnCall,
548                 supplied_sig.output(),
549             );
550             let cause = &self.misc(decl.output.span());
551             let InferOk { value: (), obligations } = self
552                 .at(cause, self.param_env)
553                 .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?;
554             all_obligations.extend(obligations);
555
556             let inputs = inputs.into_iter().map(|ty| self.resolve_vars_if_possible(ty));
557
558             expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
559                 inputs,
560                 supplied_output_ty,
561                 expected_sigs.liberated_sig.c_variadic,
562                 hir::Unsafety::Normal,
563                 Abi::RustCall,
564             );
565
566             Ok(InferOk { value: expected_sigs, obligations: all_obligations })
567         })
568     }
569
570     /// If there is no expected signature, then we will convert the
571     /// types that the user gave into a signature.
572     ///
573     /// Also, record this closure signature for later.
574     #[instrument(skip(self, decl, body), level = "debug", ret)]
575     fn supplied_sig_of_closure(
576         &self,
577         expr_def_id: LocalDefId,
578         decl: &hir::FnDecl<'_>,
579         body: &hir::Body<'_>,
580     ) -> ty::PolyFnSig<'tcx> {
581         let astconv: &dyn AstConv<'_> = self;
582
583         trace!("decl = {:#?}", decl);
584         debug!(?body.generator_kind);
585
586         let hir_id = self.tcx.hir().local_def_id_to_hir_id(expr_def_id);
587         let bound_vars = self.tcx.late_bound_vars(hir_id);
588
589         // First, convert the types that the user supplied (if any).
590         let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a));
591         let supplied_return = match decl.output {
592             hir::FnRetTy::Return(ref output) => astconv.ast_ty_to_ty(&output),
593             hir::FnRetTy::DefaultReturn(_) => match body.generator_kind {
594                 // In the case of the async block that we create for a function body,
595                 // we expect the return type of the block to match that of the enclosing
596                 // function.
597                 Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => {
598                     debug!("closure is async fn body");
599                     self.deduce_future_output_from_obligations(expr_def_id, body.id().hir_id)
600                         .unwrap_or_else(|| {
601                             // AFAIK, deducing the future output
602                             // always succeeds *except* in error cases
603                             // like #65159. I'd like to return Error
604                             // here, but I can't because I can't
605                             // easily (and locally) prove that we
606                             // *have* reported an
607                             // error. --nikomatsakis
608                             astconv.ty_infer(None, decl.output.span())
609                         })
610                 }
611
612                 _ => astconv.ty_infer(None, decl.output.span()),
613             },
614         };
615
616         let result = ty::Binder::bind_with_vars(
617             self.tcx.mk_fn_sig(
618                 supplied_arguments,
619                 supplied_return,
620                 decl.c_variadic,
621                 hir::Unsafety::Normal,
622                 Abi::RustCall,
623             ),
624             bound_vars,
625         );
626         // Astconv can't normalize inputs or outputs with escaping bound vars,
627         // so normalize them here, after we've wrapped them in a binder.
628         let result = self.normalize(self.tcx.hir().span(hir_id), result);
629
630         let c_result = self.inh.infcx.canonicalize_response(result);
631         self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
632
633         result
634     }
635
636     /// Invoked when we are translating the generator that results
637     /// from desugaring an `async fn`. Returns the "sugared" return
638     /// type of the `async fn` -- that is, the return type that the
639     /// user specified. The "desugared" return type is an `impl
640     /// Future<Output = T>`, so we do this by searching through the
641     /// obligations to extract the `T`.
642     #[instrument(skip(self), level = "debug", ret)]
643     fn deduce_future_output_from_obligations(
644         &self,
645         expr_def_id: LocalDefId,
646         body_id: hir::HirId,
647     ) -> Option<Ty<'tcx>> {
648         let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
649             span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn")
650         });
651
652         let ret_ty = ret_coercion.borrow().expected_ty();
653         let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
654
655         let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
656             // Search for a pending obligation like
657             //
658             // `<R as Future>::Output = T`
659             //
660             // where R is the return type we are expecting. This type `T`
661             // will be our output.
662             let bound_predicate = predicate.kind();
663             if let ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) =
664                 bound_predicate.skip_binder()
665             {
666                 self.deduce_future_output_from_projection(
667                     span,
668                     bound_predicate.rebind(proj_predicate),
669                 )
670             } else {
671                 None
672             }
673         };
674
675         let output_ty = match *ret_ty.kind() {
676             ty::Infer(ty::TyVar(ret_vid)) => {
677                 self.obligations_for_self_ty(ret_vid).find_map(|obligation| {
678                     get_future_output(obligation.predicate, obligation.cause.span)
679                 })?
680             }
681             ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs }) => self
682                 .tcx
683                 .bound_explicit_item_bounds(def_id)
684                 .subst_iter_copied(self.tcx, substs)
685                 .find_map(|(p, s)| get_future_output(p, s))?,
686             ty::Error(_) => return None,
687             ty::Alias(ty::Projection, proj)
688                 if self.tcx.def_kind(proj.def_id) == DefKind::ImplTraitPlaceholder =>
689             {
690                 self.tcx
691                     .bound_explicit_item_bounds(proj.def_id)
692                     .subst_iter_copied(self.tcx, proj.substs)
693                     .find_map(|(p, s)| get_future_output(p, s))?
694             }
695             _ => span_bug!(
696                 self.tcx.def_span(expr_def_id),
697                 "async fn generator return type not an inference variable: {ret_ty}"
698             ),
699         };
700
701         // async fn that have opaque types in their return type need to redo the conversion to inference variables
702         // as they fetch the still opaque version from the signature.
703         let InferOk { value: output_ty, obligations } = self
704             .replace_opaque_types_with_inference_vars(
705                 output_ty,
706                 body_id,
707                 self.tcx.def_span(expr_def_id),
708                 self.param_env,
709             );
710         self.register_predicates(obligations);
711
712         Some(output_ty)
713     }
714
715     /// Given a projection like
716     ///
717     /// `<X as Future>::Output = T`
718     ///
719     /// where `X` is some type that has no late-bound regions, returns
720     /// `Some(T)`. If the projection is for some other trait, returns
721     /// `None`.
722     fn deduce_future_output_from_projection(
723         &self,
724         cause_span: Span,
725         predicate: ty::PolyProjectionPredicate<'tcx>,
726     ) -> Option<Ty<'tcx>> {
727         debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
728
729         // We do not expect any bound regions in our predicate, so
730         // skip past the bound vars.
731         let Some(predicate) = predicate.no_bound_vars() else {
732             debug!("deduce_future_output_from_projection: has late-bound regions");
733             return None;
734         };
735
736         // Check that this is a projection from the `Future` trait.
737         let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx);
738         let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
739         if trait_def_id != future_trait {
740             debug!("deduce_future_output_from_projection: not a future");
741             return None;
742         }
743
744         // The `Future` trait has only one associated item, `Output`,
745         // so check that this is what we see.
746         let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
747         if output_assoc_item != predicate.projection_ty.def_id {
748             span_bug!(
749                 cause_span,
750                 "projecting associated item `{:?}` from future, which is not Output `{:?}`",
751                 predicate.projection_ty.def_id,
752                 output_assoc_item,
753             );
754         }
755
756         // Extract the type from the projection. Note that there can
757         // be no bound variables in this type because the "self type"
758         // does not have any regions in it.
759         let output_ty = self.resolve_vars_if_possible(predicate.term);
760         debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
761         // This is a projection on a Fn trait so will always be a type.
762         Some(output_ty.ty().unwrap())
763     }
764
765     /// Converts the types that the user supplied, in case that doing
766     /// so should yield an error, but returns back a signature where
767     /// all parameters are of type `TyErr`.
768     fn error_sig_of_closure(&self, decl: &hir::FnDecl<'_>) -> ty::PolyFnSig<'tcx> {
769         let astconv: &dyn AstConv<'_> = self;
770
771         let supplied_arguments = decl.inputs.iter().map(|a| {
772             // Convert the types that the user supplied (if any), but ignore them.
773             astconv.ast_ty_to_ty(a);
774             self.tcx.ty_error()
775         });
776
777         if let hir::FnRetTy::Return(ref output) = decl.output {
778             astconv.ast_ty_to_ty(&output);
779         }
780
781         let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
782             supplied_arguments,
783             self.tcx.ty_error(),
784             decl.c_variadic,
785             hir::Unsafety::Normal,
786             Abi::RustCall,
787         ));
788
789         debug!("supplied_sig_of_closure: result={:?}", result);
790
791         result
792     }
793
794     fn closure_sigs(
795         &self,
796         expr_def_id: LocalDefId,
797         body: &hir::Body<'_>,
798         bound_sig: ty::PolyFnSig<'tcx>,
799     ) -> ClosureSignatures<'tcx> {
800         let liberated_sig =
801             self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig);
802         let liberated_sig = self.normalize(body.value.span, liberated_sig);
803         ClosureSignatures { bound_sig, liberated_sig }
804     }
805 }