]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_analysis/src/check/method/probe.rs
Rollup merge of #102488 - compiler-errors:gat-compatibility, r=oli-obk
[rust.git] / compiler / rustc_hir_analysis / src / check / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
22 use rustc_middle::ty::GenericParamDefKind;
23 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
24 use rustc_middle::ty::{InternalSubsts, SubstsRef};
25 use rustc_session::lint;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     is_suggestion: IsSuggestion,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, PartialEq, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213 }
214
215 #[derive(Clone, Debug, PartialEq, Eq)]
216 pub enum PickKind<'tcx> {
217     InherentImplPick,
218     ObjectPick,
219     TraitPick,
220     WhereClausePick(
221         // Trait
222         ty::PolyTraitRef<'tcx>,
223     ),
224 }
225
226 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
227
228 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
229 pub enum Mode {
230     // An expression of the form `receiver.method_name(...)`.
231     // Autoderefs are performed on `receiver`, lookup is done based on the
232     // `self` argument  of the method, and static methods aren't considered.
233     MethodCall,
234     // An expression of the form `Type::item` or `<T>::item`.
235     // No autoderefs are performed, lookup is done based on the type each
236     // implementation is for, and static methods are included.
237     Path,
238 }
239
240 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
241 pub enum ProbeScope {
242     // Assemble candidates coming only from traits in scope.
243     TraitsInScope,
244
245     // Assemble candidates coming from all traits.
246     AllTraits,
247 }
248
249 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
250     /// This is used to offer suggestions to users. It returns methods
251     /// that could have been called which have the desired return
252     /// type. Some effort is made to rule out methods that, if called,
253     /// would result in an error (basically, the same criteria we
254     /// would use to decide if a method is a plausible fit for
255     /// ambiguity purposes).
256     #[instrument(level = "debug", skip(self))]
257     pub fn probe_for_return_type(
258         &self,
259         span: Span,
260         mode: Mode,
261         return_type: Ty<'tcx>,
262         self_ty: Ty<'tcx>,
263         scope_expr_id: hir::HirId,
264     ) -> Vec<ty::AssocItem> {
265         let method_names = self
266             .probe_op(
267                 span,
268                 mode,
269                 None,
270                 Some(return_type),
271                 IsSuggestion(true),
272                 self_ty,
273                 scope_expr_id,
274                 ProbeScope::AllTraits,
275                 |probe_cx| Ok(probe_cx.candidate_method_names()),
276             )
277             .unwrap_or_default();
278         method_names
279             .iter()
280             .flat_map(|&method_name| {
281                 self.probe_op(
282                     span,
283                     mode,
284                     Some(method_name),
285                     Some(return_type),
286                     IsSuggestion(true),
287                     self_ty,
288                     scope_expr_id,
289                     ProbeScope::AllTraits,
290                     |probe_cx| probe_cx.pick(),
291                 )
292                 .ok()
293                 .map(|pick| pick.item)
294             })
295             .collect()
296     }
297
298     #[instrument(level = "debug", skip(self))]
299     pub fn probe_for_name(
300         &self,
301         span: Span,
302         mode: Mode,
303         item_name: Ident,
304         is_suggestion: IsSuggestion,
305         self_ty: Ty<'tcx>,
306         scope_expr_id: hir::HirId,
307         scope: ProbeScope,
308     ) -> PickResult<'tcx> {
309         self.probe_op(
310             span,
311             mode,
312             Some(item_name),
313             None,
314             is_suggestion,
315             self_ty,
316             scope_expr_id,
317             scope,
318             |probe_cx| probe_cx.pick(),
319         )
320     }
321
322     fn probe_op<OP, R>(
323         &'a self,
324         span: Span,
325         mode: Mode,
326         method_name: Option<Ident>,
327         return_type: Option<Ty<'tcx>>,
328         is_suggestion: IsSuggestion,
329         self_ty: Ty<'tcx>,
330         scope_expr_id: hir::HirId,
331         scope: ProbeScope,
332         op: OP,
333     ) -> Result<R, MethodError<'tcx>>
334     where
335         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
336     {
337         let mut orig_values = OriginalQueryValues::default();
338         let param_env_and_self_ty = self.canonicalize_query(
339             ParamEnvAnd { param_env: self.param_env, value: self_ty },
340             &mut orig_values,
341         );
342
343         let steps = if mode == Mode::MethodCall {
344             self.tcx.method_autoderef_steps(param_env_and_self_ty)
345         } else {
346             self.probe(|_| {
347                 // Mode::Path - the deref steps is "trivial". This turns
348                 // our CanonicalQuery into a "trivial" QueryResponse. This
349                 // is a bit inefficient, but I don't think that writing
350                 // special handling for this "trivial case" is a good idea.
351
352                 let infcx = &self.infcx;
353                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
354                     infcx.instantiate_canonical_with_fresh_inference_vars(
355                         span,
356                         &param_env_and_self_ty,
357                     );
358                 debug!(
359                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
360                     param_env_and_self_ty, self_ty
361                 );
362                 MethodAutoderefStepsResult {
363                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
364                         self_ty: self.make_query_response_ignoring_pending_obligations(
365                             canonical_inference_vars,
366                             self_ty,
367                         ),
368                         autoderefs: 0,
369                         from_unsafe_deref: false,
370                         unsize: false,
371                     }]),
372                     opt_bad_ty: None,
373                     reached_recursion_limit: false,
374                 }
375             })
376         };
377
378         // If our autoderef loop had reached the recursion limit,
379         // report an overflow error, but continue going on with
380         // the truncated autoderef list.
381         if steps.reached_recursion_limit {
382             self.probe(|_| {
383                 let ty = &steps
384                     .steps
385                     .last()
386                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
387                     .self_ty;
388                 let ty = self
389                     .probe_instantiate_query_response(span, &orig_values, ty)
390                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
391                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
392             });
393         }
394
395         // If we encountered an `_` type or an error type during autoderef, this is
396         // ambiguous.
397         if let Some(bad_ty) = &steps.opt_bad_ty {
398             if is_suggestion.0 {
399                 // Ambiguity was encountered during a suggestion. Just keep going.
400                 debug!("ProbeContext: encountered ambiguity in suggestion");
401             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
402                 // this case used to be allowed by the compiler,
403                 // so we do a future-compat lint here for the 2015 edition
404                 // (see https://github.com/rust-lang/rust/issues/46906)
405                 if self.tcx.sess.rust_2018() {
406                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
407                 } else {
408                     self.tcx.struct_span_lint_hir(
409                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
410                         scope_expr_id,
411                         span,
412                         "type annotations needed",
413                         |lint| lint,
414                     );
415                 }
416             } else {
417                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
418                 // an `Err`, report the right "type annotations needed" error pointing
419                 // to it.
420                 let ty = &bad_ty.ty;
421                 let ty = self
422                     .probe_instantiate_query_response(span, &orig_values, ty)
423                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
424                 let ty = self.structurally_resolved_type(span, ty.value);
425                 assert!(matches!(ty.kind(), ty::Error(_)));
426                 return Err(MethodError::NoMatch(NoMatchData {
427                     static_candidates: Vec::new(),
428                     unsatisfied_predicates: Vec::new(),
429                     out_of_scope_traits: Vec::new(),
430                     lev_candidate: None,
431                     mode,
432                 }));
433             }
434         }
435
436         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
437
438         // this creates one big transaction so that all type variables etc
439         // that we create during the probe process are removed later
440         self.probe(|_| {
441             let mut probe_cx = ProbeContext::new(
442                 self,
443                 span,
444                 mode,
445                 method_name,
446                 return_type,
447                 orig_values,
448                 steps.steps,
449                 is_suggestion,
450                 scope_expr_id,
451             );
452
453             probe_cx.assemble_inherent_candidates();
454             match scope {
455                 ProbeScope::TraitsInScope => {
456                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
457                 }
458                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
459             };
460             op(probe_cx)
461         })
462     }
463 }
464
465 pub fn provide(providers: &mut ty::query::Providers) {
466     providers.method_autoderef_steps = method_autoderef_steps;
467 }
468
469 fn method_autoderef_steps<'tcx>(
470     tcx: TyCtxt<'tcx>,
471     goal: CanonicalTyGoal<'tcx>,
472 ) -> MethodAutoderefStepsResult<'tcx> {
473     debug!("method_autoderef_steps({:?})", goal);
474
475     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
476         let ParamEnvAnd { param_env, value: self_ty } = goal;
477
478         let mut autoderef =
479             Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
480                 .include_raw_pointers()
481                 .silence_errors();
482         let mut reached_raw_pointer = false;
483         let mut steps: Vec<_> = autoderef
484             .by_ref()
485             .map(|(ty, d)| {
486                 let step = CandidateStep {
487                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
488                         inference_vars.clone(),
489                         ty,
490                     ),
491                     autoderefs: d,
492                     from_unsafe_deref: reached_raw_pointer,
493                     unsize: false,
494                 };
495                 if let ty::RawPtr(_) = ty.kind() {
496                     // all the subsequent steps will be from_unsafe_deref
497                     reached_raw_pointer = true;
498                 }
499                 step
500             })
501             .collect();
502
503         let final_ty = autoderef.final_ty(true);
504         let opt_bad_ty = match final_ty.kind() {
505             ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
506                 reached_raw_pointer,
507                 ty: infcx
508                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
509             }),
510             ty::Array(elem_ty, _) => {
511                 let dereferences = steps.len() - 1;
512
513                 steps.push(CandidateStep {
514                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
515                         inference_vars,
516                         infcx.tcx.mk_slice(*elem_ty),
517                     ),
518                     autoderefs: dereferences,
519                     // this could be from an unsafe deref if we had
520                     // a *mut/const [T; N]
521                     from_unsafe_deref: reached_raw_pointer,
522                     unsize: true,
523                 });
524
525                 None
526             }
527             _ => None,
528         };
529
530         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
531
532         MethodAutoderefStepsResult {
533             steps: tcx.arena.alloc_from_iter(steps),
534             opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
535             reached_recursion_limit: autoderef.reached_recursion_limit(),
536         }
537     })
538 }
539
540 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
541     fn new(
542         fcx: &'a FnCtxt<'a, 'tcx>,
543         span: Span,
544         mode: Mode,
545         method_name: Option<Ident>,
546         return_type: Option<Ty<'tcx>>,
547         orig_steps_var_values: OriginalQueryValues<'tcx>,
548         steps: &'tcx [CandidateStep<'tcx>],
549         is_suggestion: IsSuggestion,
550         scope_expr_id: hir::HirId,
551     ) -> ProbeContext<'a, 'tcx> {
552         ProbeContext {
553             fcx,
554             span,
555             mode,
556             method_name,
557             return_type,
558             inherent_candidates: Vec::new(),
559             extension_candidates: Vec::new(),
560             impl_dups: FxHashSet::default(),
561             orig_steps_var_values,
562             steps,
563             static_candidates: Vec::new(),
564             allow_similar_names: false,
565             private_candidate: None,
566             unsatisfied_predicates: Vec::new(),
567             is_suggestion,
568             scope_expr_id,
569         }
570     }
571
572     fn reset(&mut self) {
573         self.inherent_candidates.clear();
574         self.extension_candidates.clear();
575         self.impl_dups.clear();
576         self.static_candidates.clear();
577         self.private_candidate = None;
578     }
579
580     ///////////////////////////////////////////////////////////////////////////
581     // CANDIDATE ASSEMBLY
582
583     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
584         let is_accessible = if let Some(name) = self.method_name {
585             let item = candidate.item;
586             let def_scope = self
587                 .tcx
588                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
589                 .1;
590             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
591         } else {
592             true
593         };
594         if is_accessible {
595             if is_inherent {
596                 self.inherent_candidates.push(candidate);
597             } else {
598                 self.extension_candidates.push(candidate);
599             }
600         } else if self.private_candidate.is_none() {
601             self.private_candidate =
602                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
603         }
604     }
605
606     fn assemble_inherent_candidates(&mut self) {
607         for step in self.steps.iter() {
608             self.assemble_probe(&step.self_ty);
609         }
610     }
611
612     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
613         debug!("assemble_probe: self_ty={:?}", self_ty);
614         let raw_self_ty = self_ty.value.value;
615         match *raw_self_ty.kind() {
616             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
617                 // Subtle: we can't use `instantiate_query_response` here: using it will
618                 // commit to all of the type equalities assumed by inference going through
619                 // autoderef (see the `method-probe-no-guessing` test).
620                 //
621                 // However, in this code, it is OK if we end up with an object type that is
622                 // "more general" than the object type that we are evaluating. For *every*
623                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
624                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
625                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
626                 // of the iterations in the autoderef loop, so there is no problem with it
627                 // being discoverable in another one of these iterations.
628                 //
629                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
630                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
631                 // `CanonicalVarValues` will exactly give us such a generalization - it
632                 // will still match the original object type, but it won't pollute our
633                 // type variables in any form, so just do that!
634                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
635                     self.fcx
636                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
637
638                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
639                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
640                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
641                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
642                 }
643             }
644             ty::Adt(def, _) => {
645                 let def_id = def.did();
646                 self.assemble_inherent_impl_candidates_for_type(def_id);
647                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
648                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
649                 }
650             }
651             ty::Foreign(did) => {
652                 self.assemble_inherent_impl_candidates_for_type(did);
653                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
654                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
655                 }
656             }
657             ty::Param(p) => {
658                 self.assemble_inherent_candidates_from_param(p);
659             }
660             ty::Bool
661             | ty::Char
662             | ty::Int(_)
663             | ty::Uint(_)
664             | ty::Float(_)
665             | ty::Str
666             | ty::Array(..)
667             | ty::Slice(_)
668             | ty::RawPtr(_)
669             | ty::Ref(..)
670             | ty::Never
671             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
672             _ => {}
673         }
674     }
675
676     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
677         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
678             bug!("unexpected incoherent type: {:?}", self_ty)
679         };
680         for &impl_def_id in self.tcx.incoherent_impls(simp) {
681             self.assemble_inherent_impl_probe(impl_def_id);
682         }
683     }
684
685     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
686         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
687         for &impl_def_id in impl_def_ids.iter() {
688             self.assemble_inherent_impl_probe(impl_def_id);
689         }
690     }
691
692     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
693         if !self.impl_dups.insert(impl_def_id) {
694             return; // already visited
695         }
696
697         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
698
699         for item in self.impl_or_trait_item(impl_def_id) {
700             if !self.has_applicable_self(&item) {
701                 // No receiver declared. Not a candidate.
702                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
703                 continue;
704             }
705
706             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
707             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
708
709             debug!("impl_ty: {:?}", impl_ty);
710
711             // Determine the receiver type that the method itself expects.
712             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
713             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
714
715             // We can't use normalize_associated_types_in as it will pollute the
716             // fcx's fulfillment context after this probe is over.
717             // Note: we only normalize `xform_self_ty` here since the normalization
718             // of the return type can lead to inference results that prohibit
719             // valid candidates from being found, see issue #85671
720             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
721             // which might be caused by the `param_env` itself. The clauses of the `param_env`
722             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
723             // see issue #89650
724             let cause = traits::ObligationCause::misc(self.span, self.body_id);
725             let selcx = &mut traits::SelectionContext::new(self.fcx);
726             let traits::Normalized { value: xform_self_ty, obligations } =
727                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
728             debug!(
729                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
730                 xform_self_ty, xform_ret_ty
731             );
732
733             self.push_candidate(
734                 Candidate {
735                     xform_self_ty,
736                     xform_ret_ty,
737                     item,
738                     kind: InherentImplCandidate(impl_substs, obligations),
739                     import_ids: smallvec![],
740                 },
741                 true,
742             );
743         }
744     }
745
746     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
747         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
748
749         let principal = match self_ty.kind() {
750             ty::Dynamic(ref data, ..) => Some(data),
751             _ => None,
752         }
753         .and_then(|data| data.principal())
754         .unwrap_or_else(|| {
755             span_bug!(
756                 self.span,
757                 "non-object {:?} in assemble_inherent_candidates_from_object",
758                 self_ty
759             )
760         });
761
762         // It is illegal to invoke a method on a trait instance that refers to
763         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
764         // will be reported by `object_safety.rs` if the method refers to the
765         // `Self` type anywhere other than the receiver. Here, we use a
766         // substitution that replaces `Self` with the object type itself. Hence,
767         // a `&self` method will wind up with an argument type like `&dyn Trait`.
768         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
769         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
770             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
771
772             let (xform_self_ty, xform_ret_ty) =
773                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
774             this.push_candidate(
775                 Candidate {
776                     xform_self_ty,
777                     xform_ret_ty,
778                     item,
779                     kind: ObjectCandidate,
780                     import_ids: smallvec![],
781                 },
782                 true,
783             );
784         });
785     }
786
787     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
788         // FIXME: do we want to commit to this behavior for param bounds?
789         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
790
791         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
792             let bound_predicate = predicate.kind();
793             match bound_predicate.skip_binder() {
794                 ty::PredicateKind::Trait(trait_predicate) => {
795                     match *trait_predicate.trait_ref.self_ty().kind() {
796                         ty::Param(p) if p == param_ty => {
797                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
798                         }
799                         _ => None,
800                     }
801                 }
802                 ty::PredicateKind::Subtype(..)
803                 | ty::PredicateKind::Coerce(..)
804                 | ty::PredicateKind::Projection(..)
805                 | ty::PredicateKind::RegionOutlives(..)
806                 | ty::PredicateKind::WellFormed(..)
807                 | ty::PredicateKind::ObjectSafe(..)
808                 | ty::PredicateKind::ClosureKind(..)
809                 | ty::PredicateKind::TypeOutlives(..)
810                 | ty::PredicateKind::ConstEvaluatable(..)
811                 | ty::PredicateKind::ConstEquate(..)
812                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
813             }
814         });
815
816         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
817             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
818
819             let (xform_self_ty, xform_ret_ty) =
820                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
821
822             // Because this trait derives from a where-clause, it
823             // should not contain any inference variables or other
824             // artifacts. This means it is safe to put into the
825             // `WhereClauseCandidate` and (eventually) into the
826             // `WhereClausePick`.
827             assert!(!trait_ref.substs.needs_infer());
828
829             this.push_candidate(
830                 Candidate {
831                     xform_self_ty,
832                     xform_ret_ty,
833                     item,
834                     kind: WhereClauseCandidate(poly_trait_ref),
835                     import_ids: smallvec![],
836                 },
837                 true,
838             );
839         });
840     }
841
842     // Do a search through a list of bounds, using a callback to actually
843     // create the candidates.
844     fn elaborate_bounds<F>(
845         &mut self,
846         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
847         mut mk_cand: F,
848     ) where
849         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
850     {
851         let tcx = self.tcx;
852         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
853             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
854             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
855                 if !self.has_applicable_self(&item) {
856                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
857                 } else {
858                     mk_cand(self, bound_trait_ref, item);
859                 }
860             }
861         }
862     }
863
864     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
865         let mut duplicates = FxHashSet::default();
866         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
867         if let Some(applicable_traits) = opt_applicable_traits {
868             for trait_candidate in applicable_traits.iter() {
869                 let trait_did = trait_candidate.def_id;
870                 if duplicates.insert(trait_did) {
871                     self.assemble_extension_candidates_for_trait(
872                         &trait_candidate.import_ids,
873                         trait_did,
874                     );
875                 }
876             }
877         }
878     }
879
880     fn assemble_extension_candidates_for_all_traits(&mut self) {
881         let mut duplicates = FxHashSet::default();
882         for trait_info in suggest::all_traits(self.tcx) {
883             if duplicates.insert(trait_info.def_id) {
884                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
885             }
886         }
887     }
888
889     pub fn matches_return_type(
890         &self,
891         method: &ty::AssocItem,
892         self_ty: Option<Ty<'tcx>>,
893         expected: Ty<'tcx>,
894     ) -> bool {
895         match method.kind {
896             ty::AssocKind::Fn => {
897                 let fty = self.tcx.bound_fn_sig(method.def_id);
898                 self.probe(|_| {
899                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
900                     let fty = fty.subst(self.tcx, substs);
901                     let fty =
902                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
903
904                     if let Some(self_ty) = self_ty {
905                         if self
906                             .at(&ObligationCause::dummy(), self.param_env)
907                             .sup(fty.inputs()[0], self_ty)
908                             .is_err()
909                         {
910                             return false;
911                         }
912                     }
913                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
914                 })
915             }
916             _ => false,
917         }
918     }
919
920     fn assemble_extension_candidates_for_trait(
921         &mut self,
922         import_ids: &SmallVec<[LocalDefId; 1]>,
923         trait_def_id: DefId,
924     ) {
925         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
926         let trait_substs = self.fresh_item_substs(trait_def_id);
927         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
928
929         if self.tcx.is_trait_alias(trait_def_id) {
930             // For trait aliases, assume all supertraits are relevant.
931             let bounds = iter::once(ty::Binder::dummy(trait_ref));
932             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
933                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
934
935                 let (xform_self_ty, xform_ret_ty) =
936                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
937                 this.push_candidate(
938                     Candidate {
939                         xform_self_ty,
940                         xform_ret_ty,
941                         item,
942                         import_ids: import_ids.clone(),
943                         kind: TraitCandidate(new_trait_ref),
944                     },
945                     false,
946                 );
947             });
948         } else {
949             debug_assert!(self.tcx.is_trait(trait_def_id));
950             for item in self.impl_or_trait_item(trait_def_id) {
951                 // Check whether `trait_def_id` defines a method with suitable name.
952                 if !self.has_applicable_self(&item) {
953                     debug!("method has inapplicable self");
954                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
955                     continue;
956                 }
957
958                 let (xform_self_ty, xform_ret_ty) =
959                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
960                 self.push_candidate(
961                     Candidate {
962                         xform_self_ty,
963                         xform_ret_ty,
964                         item,
965                         import_ids: import_ids.clone(),
966                         kind: TraitCandidate(trait_ref),
967                     },
968                     false,
969                 );
970             }
971         }
972     }
973
974     fn candidate_method_names(&self) -> Vec<Ident> {
975         let mut set = FxHashSet::default();
976         let mut names: Vec<_> = self
977             .inherent_candidates
978             .iter()
979             .chain(&self.extension_candidates)
980             .filter(|candidate| {
981                 if let Some(return_ty) = self.return_type {
982                     self.matches_return_type(&candidate.item, None, return_ty)
983                 } else {
984                     true
985                 }
986             })
987             .map(|candidate| candidate.item.ident(self.tcx))
988             .filter(|&name| set.insert(name))
989             .collect();
990
991         // Sort them by the name so we have a stable result.
992         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
993         names
994     }
995
996     ///////////////////////////////////////////////////////////////////////////
997     // THE ACTUAL SEARCH
998
999     fn pick(mut self) -> PickResult<'tcx> {
1000         assert!(self.method_name.is_some());
1001
1002         if let Some(r) = self.pick_core() {
1003             return r;
1004         }
1005
1006         debug!("pick: actual search failed, assemble diagnostics");
1007
1008         let static_candidates = mem::take(&mut self.static_candidates);
1009         let private_candidate = self.private_candidate.take();
1010         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1011
1012         // things failed, so lets look at all traits, for diagnostic purposes now:
1013         self.reset();
1014
1015         let span = self.span;
1016         let tcx = self.tcx;
1017
1018         self.assemble_extension_candidates_for_all_traits();
1019
1020         let out_of_scope_traits = match self.pick_core() {
1021             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1022             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1023             Some(Err(MethodError::Ambiguity(v))) => v
1024                 .into_iter()
1025                 .map(|source| match source {
1026                     CandidateSource::Trait(id) => id,
1027                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1028                         Some(id) => id,
1029                         None => span_bug!(span, "found inherent method when looking at traits"),
1030                     },
1031                 })
1032                 .collect(),
1033             Some(Err(MethodError::NoMatch(NoMatchData {
1034                 out_of_scope_traits: others, ..
1035             }))) => {
1036                 assert!(others.is_empty());
1037                 vec![]
1038             }
1039             _ => vec![],
1040         };
1041
1042         if let Some((kind, def_id)) = private_candidate {
1043             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1044         }
1045         let lev_candidate = self.probe_for_lev_candidate()?;
1046
1047         Err(MethodError::NoMatch(NoMatchData {
1048             static_candidates,
1049             unsatisfied_predicates,
1050             out_of_scope_traits,
1051             lev_candidate,
1052             mode: self.mode,
1053         }))
1054     }
1055
1056     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1057         let mut unstable_candidates = Vec::new();
1058         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1059
1060         // In this case unstable picking is done by `pick_method`.
1061         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1062             return pick;
1063         }
1064
1065         match pick {
1066             // Emit a lint if there are unstable candidates alongside the stable ones.
1067             //
1068             // We suppress warning if we're picking the method only because it is a
1069             // suggestion.
1070             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1071                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1072                 pick
1073             }
1074             Some(_) => pick,
1075             None => self.pick_all_method(None),
1076         }
1077     }
1078
1079     fn pick_all_method(
1080         &mut self,
1081         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1082     ) -> Option<PickResult<'tcx>> {
1083         let steps = self.steps.clone();
1084         steps
1085             .iter()
1086             .filter(|step| {
1087                 debug!("pick_all_method: step={:?}", step);
1088                 // skip types that are from a type error or that would require dereferencing
1089                 // a raw pointer
1090                 !step.self_ty.references_error() && !step.from_unsafe_deref
1091             })
1092             .flat_map(|step| {
1093                 let InferOk { value: self_ty, obligations: _ } = self
1094                     .fcx
1095                     .probe_instantiate_query_response(
1096                         self.span,
1097                         &self.orig_steps_var_values,
1098                         &step.self_ty,
1099                     )
1100                     .unwrap_or_else(|_| {
1101                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1102                     });
1103                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1104                     .or_else(|| {
1105                         self.pick_autorefd_method(
1106                             step,
1107                             self_ty,
1108                             hir::Mutability::Not,
1109                             unstable_candidates.as_deref_mut(),
1110                         )
1111                         .or_else(|| {
1112                             self.pick_autorefd_method(
1113                                 step,
1114                                 self_ty,
1115                                 hir::Mutability::Mut,
1116                                 unstable_candidates.as_deref_mut(),
1117                             )
1118                         })
1119                         .or_else(|| {
1120                             self.pick_const_ptr_method(
1121                                 step,
1122                                 self_ty,
1123                                 unstable_candidates.as_deref_mut(),
1124                             )
1125                         })
1126                     })
1127             })
1128             .next()
1129     }
1130
1131     /// For each type `T` in the step list, this attempts to find a method where
1132     /// the (transformed) self type is exactly `T`. We do however do one
1133     /// transformation on the adjustment: if we are passing a region pointer in,
1134     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1135     /// to transparently pass `&mut` pointers, in particular, without consuming
1136     /// them for their entire lifetime.
1137     fn pick_by_value_method(
1138         &mut self,
1139         step: &CandidateStep<'tcx>,
1140         self_ty: Ty<'tcx>,
1141         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1142     ) -> Option<PickResult<'tcx>> {
1143         if step.unsize {
1144             return None;
1145         }
1146
1147         self.pick_method(self_ty, unstable_candidates).map(|r| {
1148             r.map(|mut pick| {
1149                 pick.autoderefs = step.autoderefs;
1150
1151                 // Insert a `&*` or `&mut *` if this is a reference type:
1152                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1153                     pick.autoderefs += 1;
1154                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1155                         mutbl,
1156                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1157                     })
1158                 }
1159
1160                 pick
1161             })
1162         })
1163     }
1164
1165     fn pick_autorefd_method(
1166         &mut self,
1167         step: &CandidateStep<'tcx>,
1168         self_ty: Ty<'tcx>,
1169         mutbl: hir::Mutability,
1170         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1171     ) -> Option<PickResult<'tcx>> {
1172         let tcx = self.tcx;
1173
1174         // In general, during probing we erase regions.
1175         let region = tcx.lifetimes.re_erased;
1176
1177         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1178         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1179             r.map(|mut pick| {
1180                 pick.autoderefs = step.autoderefs;
1181                 pick.autoref_or_ptr_adjustment =
1182                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1183                 pick
1184             })
1185         })
1186     }
1187
1188     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1189     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1190     /// autorefs would require dereferencing the pointer, which is not safe.
1191     fn pick_const_ptr_method(
1192         &mut self,
1193         step: &CandidateStep<'tcx>,
1194         self_ty: Ty<'tcx>,
1195         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1196     ) -> Option<PickResult<'tcx>> {
1197         // Don't convert an unsized reference to ptr
1198         if step.unsize {
1199             return None;
1200         }
1201
1202         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1203             return None;
1204         };
1205
1206         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1207         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1208         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1209             r.map(|mut pick| {
1210                 pick.autoderefs = step.autoderefs;
1211                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1212                 pick
1213             })
1214         })
1215     }
1216
1217     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1218         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1219
1220         let mut possibly_unsatisfied_predicates = Vec::new();
1221         let mut unstable_candidates = Vec::new();
1222
1223         for (kind, candidates) in
1224             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1225         {
1226             debug!("searching {} candidates", kind);
1227             let res = self.consider_candidates(
1228                 self_ty,
1229                 candidates.iter(),
1230                 &mut possibly_unsatisfied_predicates,
1231                 Some(&mut unstable_candidates),
1232             );
1233             if let Some(pick) = res {
1234                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1235                     if let Ok(p) = &pick {
1236                         // Emit a lint if there are unstable candidates alongside the stable ones.
1237                         //
1238                         // We suppress warning if we're picking the method only because it is a
1239                         // suggestion.
1240                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1241                     }
1242                 }
1243                 return Some(pick);
1244             }
1245         }
1246
1247         debug!("searching unstable candidates");
1248         let res = self.consider_candidates(
1249             self_ty,
1250             unstable_candidates.iter().map(|(c, _)| c),
1251             &mut possibly_unsatisfied_predicates,
1252             None,
1253         );
1254         if res.is_none() {
1255             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1256         }
1257         res
1258     }
1259
1260     fn pick_method(
1261         &mut self,
1262         self_ty: Ty<'tcx>,
1263         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1264     ) -> Option<PickResult<'tcx>> {
1265         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1266             return self.pick_method_with_unstable(self_ty);
1267         }
1268
1269         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1270
1271         let mut possibly_unsatisfied_predicates = Vec::new();
1272
1273         for (kind, candidates) in
1274             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1275         {
1276             debug!("searching {} candidates", kind);
1277             let res = self.consider_candidates(
1278                 self_ty,
1279                 candidates.iter(),
1280                 &mut possibly_unsatisfied_predicates,
1281                 unstable_candidates.as_deref_mut(),
1282             );
1283             if let Some(pick) = res {
1284                 return Some(pick);
1285             }
1286         }
1287
1288         // `pick_method` may be called twice for the same self_ty if no stable methods
1289         // match. Only extend once.
1290         if unstable_candidates.is_some() {
1291             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1292         }
1293         None
1294     }
1295
1296     fn consider_candidates<'b, ProbesIter>(
1297         &self,
1298         self_ty: Ty<'tcx>,
1299         probes: ProbesIter,
1300         possibly_unsatisfied_predicates: &mut Vec<(
1301             ty::Predicate<'tcx>,
1302             Option<ty::Predicate<'tcx>>,
1303             Option<ObligationCause<'tcx>>,
1304         )>,
1305         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1306     ) -> Option<PickResult<'tcx>>
1307     where
1308         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1309         'tcx: 'b,
1310     {
1311         let mut applicable_candidates: Vec<_> = probes
1312             .clone()
1313             .map(|probe| {
1314                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1315             })
1316             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1317             .collect();
1318
1319         debug!("applicable_candidates: {:?}", applicable_candidates);
1320
1321         if applicable_candidates.len() > 1 {
1322             if let Some(pick) =
1323                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1324             {
1325                 return Some(Ok(pick));
1326             }
1327         }
1328
1329         if let Some(uc) = unstable_candidates {
1330             applicable_candidates.retain(|&(p, _)| {
1331                 if let stability::EvalResult::Deny { feature, .. } =
1332                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1333                 {
1334                     uc.push((p.clone(), feature));
1335                     return false;
1336                 }
1337                 true
1338             });
1339         }
1340
1341         if applicable_candidates.len() > 1 {
1342             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1343             return Some(Err(MethodError::Ambiguity(sources)));
1344         }
1345
1346         applicable_candidates.pop().map(|(probe, status)| {
1347             if status == ProbeResult::Match {
1348                 Ok(probe.to_unadjusted_pick(self_ty))
1349             } else {
1350                 Err(MethodError::BadReturnType)
1351             }
1352         })
1353     }
1354
1355     fn emit_unstable_name_collision_hint(
1356         &self,
1357         stable_pick: &Pick<'_>,
1358         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1359     ) {
1360         let def_kind = stable_pick.item.kind.as_def_kind();
1361         self.tcx.struct_span_lint_hir(
1362             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1363             self.scope_expr_id,
1364             self.span,
1365             format!(
1366                 "{} {} with this name may be added to the standard library in the future",
1367                 def_kind.article(),
1368                 def_kind.descr(stable_pick.item.def_id),
1369             ),
1370             |lint| {
1371                 match (stable_pick.item.kind, stable_pick.item.container) {
1372                     (ty::AssocKind::Fn, _) => {
1373                         // FIXME: This should be a `span_suggestion` instead of `help`
1374                         // However `self.span` only
1375                         // highlights the method name, so we can't use it. Also consider reusing
1376                         // the code from `report_method_error()`.
1377                         lint.help(&format!(
1378                             "call with fully qualified syntax `{}(...)` to keep using the current \
1379                              method",
1380                             self.tcx.def_path_str(stable_pick.item.def_id),
1381                         ));
1382                     }
1383                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1384                         let def_id = stable_pick.item.container_id(self.tcx);
1385                         lint.span_suggestion(
1386                             self.span,
1387                             "use the fully qualified path to the associated const",
1388                             format!(
1389                                 "<{} as {}>::{}",
1390                                 stable_pick.self_ty,
1391                                 self.tcx.def_path_str(def_id),
1392                                 stable_pick.item.name
1393                             ),
1394                             Applicability::MachineApplicable,
1395                         );
1396                     }
1397                     _ => {}
1398                 }
1399                 if self.tcx.sess.is_nightly_build() {
1400                     for (candidate, feature) in unstable_candidates {
1401                         lint.help(&format!(
1402                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1403                             feature,
1404                             self.tcx.def_path_str(candidate.item.def_id),
1405                         ));
1406                     }
1407                 }
1408
1409                 lint
1410             },
1411         );
1412     }
1413
1414     fn select_trait_candidate(
1415         &self,
1416         trait_ref: ty::TraitRef<'tcx>,
1417     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1418         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1419         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1420         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1421         traits::SelectionContext::new(self).select(&obligation)
1422     }
1423
1424     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1425         match candidate.kind {
1426             InherentImplCandidate(..) => {
1427                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1428             }
1429             ObjectCandidate | WhereClauseCandidate(_) => {
1430                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1431             }
1432             TraitCandidate(trait_ref) => self.probe(|_| {
1433                 let _ = self
1434                     .at(&ObligationCause::dummy(), self.param_env)
1435                     .define_opaque_types(false)
1436                     .sup(candidate.xform_self_ty, self_ty);
1437                 match self.select_trait_candidate(trait_ref) {
1438                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1439                         // If only a single impl matches, make the error message point
1440                         // to that impl.
1441                         CandidateSource::Impl(impl_data.impl_def_id)
1442                     }
1443                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1444                 }
1445             }),
1446         }
1447     }
1448
1449     fn consider_probe(
1450         &self,
1451         self_ty: Ty<'tcx>,
1452         probe: &Candidate<'tcx>,
1453         possibly_unsatisfied_predicates: &mut Vec<(
1454             ty::Predicate<'tcx>,
1455             Option<ty::Predicate<'tcx>>,
1456             Option<ObligationCause<'tcx>>,
1457         )>,
1458     ) -> ProbeResult {
1459         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1460
1461         self.probe(|_| {
1462             // First check that the self type can be related.
1463             let sub_obligations = match self
1464                 .at(&ObligationCause::dummy(), self.param_env)
1465                 .define_opaque_types(false)
1466                 .sup(probe.xform_self_ty, self_ty)
1467             {
1468                 Ok(InferOk { obligations, value: () }) => obligations,
1469                 Err(err) => {
1470                     debug!("--> cannot relate self-types {:?}", err);
1471                     return ProbeResult::NoMatch;
1472                 }
1473             };
1474
1475             let mut result = ProbeResult::Match;
1476             let mut xform_ret_ty = probe.xform_ret_ty;
1477             debug!(?xform_ret_ty);
1478
1479             let selcx = &mut traits::SelectionContext::new(self);
1480             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1481
1482             let mut parent_pred = None;
1483
1484             // If so, impls may carry other conditions (e.g., where
1485             // clauses) that must be considered. Make sure that those
1486             // match as well (or at least may match, sometimes we
1487             // don't have enough information to fully evaluate).
1488             match probe.kind {
1489                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1490                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1491                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1492                     // for why this is necessary
1493                     let traits::Normalized {
1494                         value: normalized_xform_ret_ty,
1495                         obligations: normalization_obligations,
1496                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1497                     xform_ret_ty = normalized_xform_ret_ty;
1498                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1499
1500                     // Check whether the impl imposes obligations we have to worry about.
1501                     let impl_def_id = probe.item.container_id(self.tcx);
1502                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1503                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1504                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1505                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1506
1507                     // Convert the bounds into obligations.
1508                     let impl_obligations = traits::predicates_for_generics(
1509                         move |_, _| cause.clone(),
1510                         self.param_env,
1511                         impl_bounds,
1512                     );
1513
1514                     let candidate_obligations = impl_obligations
1515                         .chain(norm_obligations.into_iter())
1516                         .chain(ref_obligations.iter().cloned())
1517                         .chain(normalization_obligations.into_iter());
1518
1519                     // Evaluate those obligations to see if they might possibly hold.
1520                     for o in candidate_obligations {
1521                         let o = self.resolve_vars_if_possible(o);
1522                         if !self.predicate_may_hold(&o) {
1523                             result = ProbeResult::NoMatch;
1524                             possibly_unsatisfied_predicates.push((
1525                                 o.predicate,
1526                                 None,
1527                                 Some(o.cause),
1528                             ));
1529                         }
1530                     }
1531                 }
1532
1533                 ObjectCandidate | WhereClauseCandidate(..) => {
1534                     // These have no additional conditions to check.
1535                 }
1536
1537                 TraitCandidate(trait_ref) => {
1538                     if let Some(method_name) = self.method_name {
1539                         // Some trait methods are excluded for arrays before 2021.
1540                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1541                         if self_ty.is_array() && !method_name.span.rust_2021() {
1542                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1543                             if trait_def.skip_array_during_method_dispatch {
1544                                 return ProbeResult::NoMatch;
1545                             }
1546                         }
1547                     }
1548                     let predicate =
1549                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1550                     parent_pred = Some(predicate);
1551                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1552                     if !self.predicate_may_hold(&obligation) {
1553                         result = ProbeResult::NoMatch;
1554                         if self.probe(|_| {
1555                             match self.select_trait_candidate(trait_ref) {
1556                                 Err(_) => return true,
1557                                 Ok(Some(impl_source))
1558                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1559                                 {
1560                                     for obligation in impl_source.borrow_nested_obligations() {
1561                                         // Determine exactly which obligation wasn't met, so
1562                                         // that we can give more context in the error.
1563                                         if !self.predicate_may_hold(obligation) {
1564                                             let nested_predicate =
1565                                                 self.resolve_vars_if_possible(obligation.predicate);
1566                                             let predicate =
1567                                                 self.resolve_vars_if_possible(predicate);
1568                                             let p = if predicate == nested_predicate {
1569                                                 // Avoid "`MyStruct: Foo` which is required by
1570                                                 // `MyStruct: Foo`" in E0599.
1571                                                 None
1572                                             } else {
1573                                                 Some(predicate)
1574                                             };
1575                                             possibly_unsatisfied_predicates.push((
1576                                                 nested_predicate,
1577                                                 p,
1578                                                 Some(obligation.cause.clone()),
1579                                             ));
1580                                         }
1581                                     }
1582                                 }
1583                                 _ => {
1584                                     // Some nested subobligation of this predicate
1585                                     // failed.
1586                                     let predicate = self.resolve_vars_if_possible(predicate);
1587                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1588                                 }
1589                             }
1590                             false
1591                         }) {
1592                             // This candidate's primary obligation doesn't even
1593                             // select - don't bother registering anything in
1594                             // `potentially_unsatisfied_predicates`.
1595                             return ProbeResult::NoMatch;
1596                         }
1597                     }
1598                 }
1599             }
1600
1601             // Evaluate those obligations to see if they might possibly hold.
1602             for o in sub_obligations {
1603                 let o = self.resolve_vars_if_possible(o);
1604                 if !self.predicate_may_hold(&o) {
1605                     result = ProbeResult::NoMatch;
1606                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1607                 }
1608             }
1609
1610             if let ProbeResult::Match = result {
1611                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1612                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1613                     debug!(
1614                         "comparing return_ty {:?} with xform ret ty {:?}",
1615                         return_ty, probe.xform_ret_ty
1616                     );
1617                     if self
1618                         .at(&ObligationCause::dummy(), self.param_env)
1619                         .define_opaque_types(false)
1620                         .sup(return_ty, xform_ret_ty)
1621                         .is_err()
1622                     {
1623                         return ProbeResult::BadReturnType;
1624                     }
1625                 }
1626             }
1627
1628             result
1629         })
1630     }
1631
1632     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1633     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1634     /// external interface of the method can be determined from the trait, it's ok not to decide.
1635     /// We can basically just collapse all of the probes for various impls into one where-clause
1636     /// probe. This will result in a pending obligation so when more type-info is available we can
1637     /// make the final decision.
1638     ///
1639     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1640     ///
1641     /// ```ignore (illustrative)
1642     /// trait Foo { ... }
1643     /// impl Foo for Vec<i32> { ... }
1644     /// impl Foo for Vec<usize> { ... }
1645     /// ```
1646     ///
1647     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1648     /// use, so it's ok to just commit to "using the method from the trait Foo".
1649     fn collapse_candidates_to_trait_pick(
1650         &self,
1651         self_ty: Ty<'tcx>,
1652         probes: &[(&Candidate<'tcx>, ProbeResult)],
1653     ) -> Option<Pick<'tcx>> {
1654         // Do all probes correspond to the same trait?
1655         let container = probes[0].0.item.trait_container(self.tcx)?;
1656         for (p, _) in &probes[1..] {
1657             let p_container = p.item.trait_container(self.tcx)?;
1658             if p_container != container {
1659                 return None;
1660             }
1661         }
1662
1663         // FIXME: check the return type here somehow.
1664         // If so, just use this trait and call it a day.
1665         Some(Pick {
1666             item: probes[0].0.item,
1667             kind: TraitPick,
1668             import_ids: probes[0].0.import_ids.clone(),
1669             autoderefs: 0,
1670             autoref_or_ptr_adjustment: None,
1671             self_ty,
1672         })
1673     }
1674
1675     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1676     /// candidate method where the method name may have been misspelled. Similarly to other
1677     /// Levenshtein based suggestions, we provide at most one such suggestion.
1678     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1679         debug!("probing for method names similar to {:?}", self.method_name);
1680
1681         let steps = self.steps.clone();
1682         self.probe(|_| {
1683             let mut pcx = ProbeContext::new(
1684                 self.fcx,
1685                 self.span,
1686                 self.mode,
1687                 self.method_name,
1688                 self.return_type,
1689                 self.orig_steps_var_values.clone(),
1690                 steps,
1691                 IsSuggestion(true),
1692                 self.scope_expr_id,
1693             );
1694             pcx.allow_similar_names = true;
1695             pcx.assemble_inherent_candidates();
1696
1697             let method_names = pcx.candidate_method_names();
1698             pcx.allow_similar_names = false;
1699             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1700                 .iter()
1701                 .filter_map(|&method_name| {
1702                     pcx.reset();
1703                     pcx.method_name = Some(method_name);
1704                     pcx.assemble_inherent_candidates();
1705                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1706                 })
1707                 .collect();
1708
1709             if applicable_close_candidates.is_empty() {
1710                 Ok(None)
1711             } else {
1712                 let best_name = {
1713                     let names = applicable_close_candidates
1714                         .iter()
1715                         .map(|cand| cand.name)
1716                         .collect::<Vec<Symbol>>();
1717                     find_best_match_for_name_with_substrings(
1718                         &names,
1719                         self.method_name.unwrap().name,
1720                         None,
1721                     )
1722                 }
1723                 .unwrap();
1724                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1725             }
1726         })
1727     }
1728
1729     ///////////////////////////////////////////////////////////////////////////
1730     // MISCELLANY
1731     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1732         // "Fast track" -- check for usage of sugar when in method call
1733         // mode.
1734         //
1735         // In Path mode (i.e., resolving a value like `T::next`), consider any
1736         // associated value (i.e., methods, constants) but not types.
1737         match self.mode {
1738             Mode::MethodCall => item.fn_has_self_parameter,
1739             Mode::Path => match item.kind {
1740                 ty::AssocKind::Type => false,
1741                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1742             },
1743         }
1744         // FIXME -- check for types that deref to `Self`,
1745         // like `Rc<Self>` and so on.
1746         //
1747         // Note also that the current code will break if this type
1748         // includes any of the type parameters defined on the method
1749         // -- but this could be overcome.
1750     }
1751
1752     fn record_static_candidate(&mut self, source: CandidateSource) {
1753         self.static_candidates.push(source);
1754     }
1755
1756     #[instrument(level = "debug", skip(self))]
1757     fn xform_self_ty(
1758         &self,
1759         item: &ty::AssocItem,
1760         impl_ty: Ty<'tcx>,
1761         substs: SubstsRef<'tcx>,
1762     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1763         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1764             let sig = self.xform_method_sig(item.def_id, substs);
1765             (sig.inputs()[0], Some(sig.output()))
1766         } else {
1767             (impl_ty, None)
1768         }
1769     }
1770
1771     #[instrument(level = "debug", skip(self))]
1772     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1773         let fn_sig = self.tcx.bound_fn_sig(method);
1774         debug!(?fn_sig);
1775
1776         assert!(!substs.has_escaping_bound_vars());
1777
1778         // It is possible for type parameters or early-bound lifetimes
1779         // to appear in the signature of `self`. The substitutions we
1780         // are given do not include type/lifetime parameters for the
1781         // method yet. So create fresh variables here for those too,
1782         // if there are any.
1783         let generics = self.tcx.generics_of(method);
1784         assert_eq!(substs.len(), generics.parent_count as usize);
1785
1786         let xform_fn_sig = if generics.params.is_empty() {
1787             fn_sig.subst(self.tcx, substs)
1788         } else {
1789             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1790                 let i = param.index as usize;
1791                 if i < substs.len() {
1792                     substs[i]
1793                 } else {
1794                     match param.kind {
1795                         GenericParamDefKind::Lifetime => {
1796                             // In general, during probe we erase regions.
1797                             self.tcx.lifetimes.re_erased.into()
1798                         }
1799                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1800                             self.var_for_def(self.span, param)
1801                         }
1802                     }
1803                 }
1804             });
1805             fn_sig.subst(self.tcx, substs)
1806         };
1807
1808         self.erase_late_bound_regions(xform_fn_sig)
1809     }
1810
1811     /// Gets the type of an impl and generate substitutions with inference vars.
1812     fn impl_ty_and_substs(
1813         &self,
1814         impl_def_id: DefId,
1815     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1816         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1817     }
1818
1819     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1820         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1821             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1822             GenericParamDefKind::Type { .. } => self
1823                 .next_ty_var(TypeVariableOrigin {
1824                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1825                     span: self.tcx.def_span(def_id),
1826                 })
1827                 .into(),
1828             GenericParamDefKind::Const { .. } => {
1829                 let span = self.tcx.def_span(def_id);
1830                 let origin = ConstVariableOrigin {
1831                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1832                     span,
1833                 };
1834                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1835             }
1836         })
1837     }
1838
1839     /// Replaces late-bound-regions bound by `value` with `'static` using
1840     /// `ty::erase_late_bound_regions`.
1841     ///
1842     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1843     /// method matching. It is reasonable during the probe phase because we don't consider region
1844     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1845     /// rather than creating fresh region variables. This is nice for two reasons:
1846     ///
1847     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1848     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1849     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1850     ///
1851     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1852     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1853     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1854     ///    region got replaced with the same variable, which requires a bit more coordination
1855     ///    and/or tracking the substitution and
1856     ///    so forth.
1857     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1858     where
1859         T: TypeFoldable<'tcx>,
1860     {
1861         self.tcx.erase_late_bound_regions(value)
1862     }
1863
1864     /// Finds the method with the appropriate name (or return type, as the case may be). If
1865     /// `allow_similar_names` is set, find methods with close-matching names.
1866     // The length of the returned iterator is nearly always 0 or 1 and this
1867     // method is fairly hot.
1868     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1869         if let Some(name) = self.method_name {
1870             if self.allow_similar_names {
1871                 let max_dist = max(name.as_str().len(), 3) / 3;
1872                 self.tcx
1873                     .associated_items(def_id)
1874                     .in_definition_order()
1875                     .filter(|x| {
1876                         if x.kind.namespace() != Namespace::ValueNS {
1877                             return false;
1878                         }
1879                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1880                         {
1881                             Some(d) => d > 0,
1882                             None => false,
1883                         }
1884                     })
1885                     .copied()
1886                     .collect()
1887             } else {
1888                 self.fcx
1889                     .associated_value(def_id, name)
1890                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1891             }
1892         } else {
1893             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1894         }
1895     }
1896 }
1897
1898 impl<'tcx> Candidate<'tcx> {
1899     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1900         Pick {
1901             item: self.item,
1902             kind: match self.kind {
1903                 InherentImplCandidate(..) => InherentImplPick,
1904                 ObjectCandidate => ObjectPick,
1905                 TraitCandidate(_) => TraitPick,
1906                 WhereClauseCandidate(ref trait_ref) => {
1907                     // Only trait derived from where-clauses should
1908                     // appear here, so they should not contain any
1909                     // inference variables or other artifacts. This
1910                     // means they are safe to put into the
1911                     // `WhereClausePick`.
1912                     assert!(
1913                         !trait_ref.skip_binder().substs.needs_infer()
1914                             && !trait_ref.skip_binder().substs.has_placeholders()
1915                     );
1916
1917                     WhereClausePick(*trait_ref)
1918                 }
1919             },
1920             import_ids: self.import_ids.clone(),
1921             autoderefs: 0,
1922             autoref_or_ptr_adjustment: None,
1923             self_ty,
1924         }
1925     }
1926 }