]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_analysis/src/check/method/probe.rs
Auto merge of #102783 - RalfJung:tls, r=thomcc
[rust.git] / compiler / rustc_hir_analysis / src / check / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
22 use rustc_middle::ty::GenericParamDefKind;
23 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
24 use rustc_middle::ty::{InternalSubsts, SubstsRef};
25 use rustc_session::lint;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     is_suggestion: IsSuggestion,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, PartialEq, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213 }
214
215 #[derive(Clone, Debug, PartialEq, Eq)]
216 pub enum PickKind<'tcx> {
217     InherentImplPick,
218     ObjectPick,
219     TraitPick,
220     WhereClausePick(
221         // Trait
222         ty::PolyTraitRef<'tcx>,
223     ),
224 }
225
226 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
227
228 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
229 pub enum Mode {
230     // An expression of the form `receiver.method_name(...)`.
231     // Autoderefs are performed on `receiver`, lookup is done based on the
232     // `self` argument  of the method, and static methods aren't considered.
233     MethodCall,
234     // An expression of the form `Type::item` or `<T>::item`.
235     // No autoderefs are performed, lookup is done based on the type each
236     // implementation is for, and static methods are included.
237     Path,
238 }
239
240 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
241 pub enum ProbeScope {
242     // Assemble candidates coming only from traits in scope.
243     TraitsInScope,
244
245     // Assemble candidates coming from all traits.
246     AllTraits,
247 }
248
249 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
250     /// This is used to offer suggestions to users. It returns methods
251     /// that could have been called which have the desired return
252     /// type. Some effort is made to rule out methods that, if called,
253     /// would result in an error (basically, the same criteria we
254     /// would use to decide if a method is a plausible fit for
255     /// ambiguity purposes).
256     #[instrument(level = "debug", skip(self))]
257     pub fn probe_for_return_type(
258         &self,
259         span: Span,
260         mode: Mode,
261         return_type: Ty<'tcx>,
262         self_ty: Ty<'tcx>,
263         scope_expr_id: hir::HirId,
264     ) -> Vec<ty::AssocItem> {
265         let method_names = self
266             .probe_op(
267                 span,
268                 mode,
269                 None,
270                 Some(return_type),
271                 IsSuggestion(true),
272                 self_ty,
273                 scope_expr_id,
274                 ProbeScope::AllTraits,
275                 |probe_cx| Ok(probe_cx.candidate_method_names()),
276             )
277             .unwrap_or_default();
278         method_names
279             .iter()
280             .flat_map(|&method_name| {
281                 self.probe_op(
282                     span,
283                     mode,
284                     Some(method_name),
285                     Some(return_type),
286                     IsSuggestion(true),
287                     self_ty,
288                     scope_expr_id,
289                     ProbeScope::AllTraits,
290                     |probe_cx| probe_cx.pick(),
291                 )
292                 .ok()
293                 .map(|pick| pick.item)
294             })
295             .collect()
296     }
297
298     #[instrument(level = "debug", skip(self))]
299     pub fn probe_for_name(
300         &self,
301         span: Span,
302         mode: Mode,
303         item_name: Ident,
304         is_suggestion: IsSuggestion,
305         self_ty: Ty<'tcx>,
306         scope_expr_id: hir::HirId,
307         scope: ProbeScope,
308     ) -> PickResult<'tcx> {
309         self.probe_op(
310             span,
311             mode,
312             Some(item_name),
313             None,
314             is_suggestion,
315             self_ty,
316             scope_expr_id,
317             scope,
318             |probe_cx| probe_cx.pick(),
319         )
320     }
321
322     fn probe_op<OP, R>(
323         &'a self,
324         span: Span,
325         mode: Mode,
326         method_name: Option<Ident>,
327         return_type: Option<Ty<'tcx>>,
328         is_suggestion: IsSuggestion,
329         self_ty: Ty<'tcx>,
330         scope_expr_id: hir::HirId,
331         scope: ProbeScope,
332         op: OP,
333     ) -> Result<R, MethodError<'tcx>>
334     where
335         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
336     {
337         let mut orig_values = OriginalQueryValues::default();
338         let param_env_and_self_ty = self.canonicalize_query(
339             ParamEnvAnd { param_env: self.param_env, value: self_ty },
340             &mut orig_values,
341         );
342
343         let steps = if mode == Mode::MethodCall {
344             self.tcx.method_autoderef_steps(param_env_and_self_ty)
345         } else {
346             self.probe(|_| {
347                 // Mode::Path - the deref steps is "trivial". This turns
348                 // our CanonicalQuery into a "trivial" QueryResponse. This
349                 // is a bit inefficient, but I don't think that writing
350                 // special handling for this "trivial case" is a good idea.
351
352                 let infcx = &self.infcx;
353                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
354                     infcx.instantiate_canonical_with_fresh_inference_vars(
355                         span,
356                         &param_env_and_self_ty,
357                     );
358                 debug!(
359                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
360                     param_env_and_self_ty, self_ty
361                 );
362                 MethodAutoderefStepsResult {
363                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
364                         self_ty: self.make_query_response_ignoring_pending_obligations(
365                             canonical_inference_vars,
366                             self_ty,
367                         ),
368                         autoderefs: 0,
369                         from_unsafe_deref: false,
370                         unsize: false,
371                     }]),
372                     opt_bad_ty: None,
373                     reached_recursion_limit: false,
374                 }
375             })
376         };
377
378         // If our autoderef loop had reached the recursion limit,
379         // report an overflow error, but continue going on with
380         // the truncated autoderef list.
381         if steps.reached_recursion_limit {
382             self.probe(|_| {
383                 let ty = &steps
384                     .steps
385                     .last()
386                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
387                     .self_ty;
388                 let ty = self
389                     .probe_instantiate_query_response(span, &orig_values, ty)
390                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
391                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
392             });
393         }
394
395         // If we encountered an `_` type or an error type during autoderef, this is
396         // ambiguous.
397         if let Some(bad_ty) = &steps.opt_bad_ty {
398             if is_suggestion.0 {
399                 // Ambiguity was encountered during a suggestion. Just keep going.
400                 debug!("ProbeContext: encountered ambiguity in suggestion");
401             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
402                 // this case used to be allowed by the compiler,
403                 // so we do a future-compat lint here for the 2015 edition
404                 // (see https://github.com/rust-lang/rust/issues/46906)
405                 if self.tcx.sess.rust_2018() {
406                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
407                 } else {
408                     self.tcx.struct_span_lint_hir(
409                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
410                         scope_expr_id,
411                         span,
412                         "type annotations needed",
413                         |lint| lint,
414                     );
415                 }
416             } else {
417                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
418                 // an `Err`, report the right "type annotations needed" error pointing
419                 // to it.
420                 let ty = &bad_ty.ty;
421                 let ty = self
422                     .probe_instantiate_query_response(span, &orig_values, ty)
423                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
424                 let ty = self.structurally_resolved_type(span, ty.value);
425                 assert!(matches!(ty.kind(), ty::Error(_)));
426                 return Err(MethodError::NoMatch(NoMatchData {
427                     static_candidates: Vec::new(),
428                     unsatisfied_predicates: Vec::new(),
429                     out_of_scope_traits: Vec::new(),
430                     lev_candidate: None,
431                     mode,
432                 }));
433             }
434         }
435
436         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
437
438         // this creates one big transaction so that all type variables etc
439         // that we create during the probe process are removed later
440         self.probe(|_| {
441             let mut probe_cx = ProbeContext::new(
442                 self,
443                 span,
444                 mode,
445                 method_name,
446                 return_type,
447                 orig_values,
448                 steps.steps,
449                 is_suggestion,
450                 scope_expr_id,
451             );
452
453             probe_cx.assemble_inherent_candidates();
454             match scope {
455                 ProbeScope::TraitsInScope => {
456                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
457                 }
458                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
459             };
460             op(probe_cx)
461         })
462     }
463 }
464
465 pub fn provide(providers: &mut ty::query::Providers) {
466     providers.method_autoderef_steps = method_autoderef_steps;
467 }
468
469 fn method_autoderef_steps<'tcx>(
470     tcx: TyCtxt<'tcx>,
471     goal: CanonicalTyGoal<'tcx>,
472 ) -> MethodAutoderefStepsResult<'tcx> {
473     debug!("method_autoderef_steps({:?})", goal);
474
475     let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
476     let ParamEnvAnd { param_env, value: self_ty } = goal;
477
478     let mut autoderef =
479         Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
480             .include_raw_pointers()
481             .silence_errors();
482     let mut reached_raw_pointer = false;
483     let mut steps: Vec<_> = autoderef
484         .by_ref()
485         .map(|(ty, d)| {
486             let step = CandidateStep {
487                 self_ty: infcx
488                     .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
489                 autoderefs: d,
490                 from_unsafe_deref: reached_raw_pointer,
491                 unsize: false,
492             };
493             if let ty::RawPtr(_) = ty.kind() {
494                 // all the subsequent steps will be from_unsafe_deref
495                 reached_raw_pointer = true;
496             }
497             step
498         })
499         .collect();
500
501     let final_ty = autoderef.final_ty(true);
502     let opt_bad_ty = match final_ty.kind() {
503         ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
504             reached_raw_pointer,
505             ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
506         }),
507         ty::Array(elem_ty, _) => {
508             let dereferences = steps.len() - 1;
509
510             steps.push(CandidateStep {
511                 self_ty: infcx.make_query_response_ignoring_pending_obligations(
512                     inference_vars,
513                     infcx.tcx.mk_slice(*elem_ty),
514                 ),
515                 autoderefs: dereferences,
516                 // this could be from an unsafe deref if we had
517                 // a *mut/const [T; N]
518                 from_unsafe_deref: reached_raw_pointer,
519                 unsize: true,
520             });
521
522             None
523         }
524         _ => None,
525     };
526
527     debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
528
529     MethodAutoderefStepsResult {
530         steps: tcx.arena.alloc_from_iter(steps),
531         opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
532         reached_recursion_limit: autoderef.reached_recursion_limit(),
533     }
534 }
535
536 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
537     fn new(
538         fcx: &'a FnCtxt<'a, 'tcx>,
539         span: Span,
540         mode: Mode,
541         method_name: Option<Ident>,
542         return_type: Option<Ty<'tcx>>,
543         orig_steps_var_values: OriginalQueryValues<'tcx>,
544         steps: &'tcx [CandidateStep<'tcx>],
545         is_suggestion: IsSuggestion,
546         scope_expr_id: hir::HirId,
547     ) -> ProbeContext<'a, 'tcx> {
548         ProbeContext {
549             fcx,
550             span,
551             mode,
552             method_name,
553             return_type,
554             inherent_candidates: Vec::new(),
555             extension_candidates: Vec::new(),
556             impl_dups: FxHashSet::default(),
557             orig_steps_var_values,
558             steps,
559             static_candidates: Vec::new(),
560             allow_similar_names: false,
561             private_candidate: None,
562             unsatisfied_predicates: Vec::new(),
563             is_suggestion,
564             scope_expr_id,
565         }
566     }
567
568     fn reset(&mut self) {
569         self.inherent_candidates.clear();
570         self.extension_candidates.clear();
571         self.impl_dups.clear();
572         self.static_candidates.clear();
573         self.private_candidate = None;
574     }
575
576     ///////////////////////////////////////////////////////////////////////////
577     // CANDIDATE ASSEMBLY
578
579     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
580         let is_accessible = if let Some(name) = self.method_name {
581             let item = candidate.item;
582             let def_scope = self
583                 .tcx
584                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
585                 .1;
586             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
587         } else {
588             true
589         };
590         if is_accessible {
591             if is_inherent {
592                 self.inherent_candidates.push(candidate);
593             } else {
594                 self.extension_candidates.push(candidate);
595             }
596         } else if self.private_candidate.is_none() {
597             self.private_candidate =
598                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
599         }
600     }
601
602     fn assemble_inherent_candidates(&mut self) {
603         for step in self.steps.iter() {
604             self.assemble_probe(&step.self_ty);
605         }
606     }
607
608     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
609         debug!("assemble_probe: self_ty={:?}", self_ty);
610         let raw_self_ty = self_ty.value.value;
611         match *raw_self_ty.kind() {
612             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
613                 // Subtle: we can't use `instantiate_query_response` here: using it will
614                 // commit to all of the type equalities assumed by inference going through
615                 // autoderef (see the `method-probe-no-guessing` test).
616                 //
617                 // However, in this code, it is OK if we end up with an object type that is
618                 // "more general" than the object type that we are evaluating. For *every*
619                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
620                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
621                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
622                 // of the iterations in the autoderef loop, so there is no problem with it
623                 // being discoverable in another one of these iterations.
624                 //
625                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
626                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
627                 // `CanonicalVarValues` will exactly give us such a generalization - it
628                 // will still match the original object type, but it won't pollute our
629                 // type variables in any form, so just do that!
630                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
631                     self.fcx
632                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
633
634                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
635                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
636                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
637                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
638                 }
639             }
640             ty::Adt(def, _) => {
641                 let def_id = def.did();
642                 self.assemble_inherent_impl_candidates_for_type(def_id);
643                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
644                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
645                 }
646             }
647             ty::Foreign(did) => {
648                 self.assemble_inherent_impl_candidates_for_type(did);
649                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
650                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
651                 }
652             }
653             ty::Param(p) => {
654                 self.assemble_inherent_candidates_from_param(p);
655             }
656             ty::Bool
657             | ty::Char
658             | ty::Int(_)
659             | ty::Uint(_)
660             | ty::Float(_)
661             | ty::Str
662             | ty::Array(..)
663             | ty::Slice(_)
664             | ty::RawPtr(_)
665             | ty::Ref(..)
666             | ty::Never
667             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
668             _ => {}
669         }
670     }
671
672     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
673         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
674             bug!("unexpected incoherent type: {:?}", self_ty)
675         };
676         for &impl_def_id in self.tcx.incoherent_impls(simp) {
677             self.assemble_inherent_impl_probe(impl_def_id);
678         }
679     }
680
681     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
682         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
683         for &impl_def_id in impl_def_ids.iter() {
684             self.assemble_inherent_impl_probe(impl_def_id);
685         }
686     }
687
688     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
689         if !self.impl_dups.insert(impl_def_id) {
690             return; // already visited
691         }
692
693         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
694
695         for item in self.impl_or_trait_item(impl_def_id) {
696             if !self.has_applicable_self(&item) {
697                 // No receiver declared. Not a candidate.
698                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
699                 continue;
700             }
701
702             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
703             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
704
705             debug!("impl_ty: {:?}", impl_ty);
706
707             // Determine the receiver type that the method itself expects.
708             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
709             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
710
711             // We can't use normalize_associated_types_in as it will pollute the
712             // fcx's fulfillment context after this probe is over.
713             // Note: we only normalize `xform_self_ty` here since the normalization
714             // of the return type can lead to inference results that prohibit
715             // valid candidates from being found, see issue #85671
716             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
717             // which might be caused by the `param_env` itself. The clauses of the `param_env`
718             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
719             // see issue #89650
720             let cause = traits::ObligationCause::misc(self.span, self.body_id);
721             let selcx = &mut traits::SelectionContext::new(self.fcx);
722             let traits::Normalized { value: xform_self_ty, obligations } =
723                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
724             debug!(
725                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
726                 xform_self_ty, xform_ret_ty
727             );
728
729             self.push_candidate(
730                 Candidate {
731                     xform_self_ty,
732                     xform_ret_ty,
733                     item,
734                     kind: InherentImplCandidate(impl_substs, obligations),
735                     import_ids: smallvec![],
736                 },
737                 true,
738             );
739         }
740     }
741
742     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
743         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
744
745         let principal = match self_ty.kind() {
746             ty::Dynamic(ref data, ..) => Some(data),
747             _ => None,
748         }
749         .and_then(|data| data.principal())
750         .unwrap_or_else(|| {
751             span_bug!(
752                 self.span,
753                 "non-object {:?} in assemble_inherent_candidates_from_object",
754                 self_ty
755             )
756         });
757
758         // It is illegal to invoke a method on a trait instance that refers to
759         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
760         // will be reported by `object_safety.rs` if the method refers to the
761         // `Self` type anywhere other than the receiver. Here, we use a
762         // substitution that replaces `Self` with the object type itself. Hence,
763         // a `&self` method will wind up with an argument type like `&dyn Trait`.
764         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
765         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
766             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
767
768             let (xform_self_ty, xform_ret_ty) =
769                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
770             this.push_candidate(
771                 Candidate {
772                     xform_self_ty,
773                     xform_ret_ty,
774                     item,
775                     kind: ObjectCandidate,
776                     import_ids: smallvec![],
777                 },
778                 true,
779             );
780         });
781     }
782
783     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
784         // FIXME: do we want to commit to this behavior for param bounds?
785         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
786
787         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
788             let bound_predicate = predicate.kind();
789             match bound_predicate.skip_binder() {
790                 ty::PredicateKind::Trait(trait_predicate) => {
791                     match *trait_predicate.trait_ref.self_ty().kind() {
792                         ty::Param(p) if p == param_ty => {
793                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
794                         }
795                         _ => None,
796                     }
797                 }
798                 ty::PredicateKind::Subtype(..)
799                 | ty::PredicateKind::Coerce(..)
800                 | ty::PredicateKind::Projection(..)
801                 | ty::PredicateKind::RegionOutlives(..)
802                 | ty::PredicateKind::WellFormed(..)
803                 | ty::PredicateKind::ObjectSafe(..)
804                 | ty::PredicateKind::ClosureKind(..)
805                 | ty::PredicateKind::TypeOutlives(..)
806                 | ty::PredicateKind::ConstEvaluatable(..)
807                 | ty::PredicateKind::ConstEquate(..)
808                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
809             }
810         });
811
812         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
813             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
814
815             let (xform_self_ty, xform_ret_ty) =
816                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
817
818             // Because this trait derives from a where-clause, it
819             // should not contain any inference variables or other
820             // artifacts. This means it is safe to put into the
821             // `WhereClauseCandidate` and (eventually) into the
822             // `WhereClausePick`.
823             assert!(!trait_ref.substs.needs_infer());
824
825             this.push_candidate(
826                 Candidate {
827                     xform_self_ty,
828                     xform_ret_ty,
829                     item,
830                     kind: WhereClauseCandidate(poly_trait_ref),
831                     import_ids: smallvec![],
832                 },
833                 true,
834             );
835         });
836     }
837
838     // Do a search through a list of bounds, using a callback to actually
839     // create the candidates.
840     fn elaborate_bounds<F>(
841         &mut self,
842         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
843         mut mk_cand: F,
844     ) where
845         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
846     {
847         let tcx = self.tcx;
848         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
849             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
850             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
851                 if !self.has_applicable_self(&item) {
852                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
853                 } else {
854                     mk_cand(self, bound_trait_ref, item);
855                 }
856             }
857         }
858     }
859
860     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
861         let mut duplicates = FxHashSet::default();
862         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
863         if let Some(applicable_traits) = opt_applicable_traits {
864             for trait_candidate in applicable_traits.iter() {
865                 let trait_did = trait_candidate.def_id;
866                 if duplicates.insert(trait_did) {
867                     self.assemble_extension_candidates_for_trait(
868                         &trait_candidate.import_ids,
869                         trait_did,
870                     );
871                 }
872             }
873         }
874     }
875
876     fn assemble_extension_candidates_for_all_traits(&mut self) {
877         let mut duplicates = FxHashSet::default();
878         for trait_info in suggest::all_traits(self.tcx) {
879             if duplicates.insert(trait_info.def_id) {
880                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
881             }
882         }
883     }
884
885     pub fn matches_return_type(
886         &self,
887         method: &ty::AssocItem,
888         self_ty: Option<Ty<'tcx>>,
889         expected: Ty<'tcx>,
890     ) -> bool {
891         match method.kind {
892             ty::AssocKind::Fn => {
893                 let fty = self.tcx.bound_fn_sig(method.def_id);
894                 self.probe(|_| {
895                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
896                     let fty = fty.subst(self.tcx, substs);
897                     let fty =
898                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
899
900                     if let Some(self_ty) = self_ty {
901                         if self
902                             .at(&ObligationCause::dummy(), self.param_env)
903                             .sup(fty.inputs()[0], self_ty)
904                             .is_err()
905                         {
906                             return false;
907                         }
908                     }
909                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
910                 })
911             }
912             _ => false,
913         }
914     }
915
916     fn assemble_extension_candidates_for_trait(
917         &mut self,
918         import_ids: &SmallVec<[LocalDefId; 1]>,
919         trait_def_id: DefId,
920     ) {
921         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
922         let trait_substs = self.fresh_item_substs(trait_def_id);
923         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
924
925         if self.tcx.is_trait_alias(trait_def_id) {
926             // For trait aliases, assume all supertraits are relevant.
927             let bounds = iter::once(ty::Binder::dummy(trait_ref));
928             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
929                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
930
931                 let (xform_self_ty, xform_ret_ty) =
932                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
933                 this.push_candidate(
934                     Candidate {
935                         xform_self_ty,
936                         xform_ret_ty,
937                         item,
938                         import_ids: import_ids.clone(),
939                         kind: TraitCandidate(new_trait_ref),
940                     },
941                     false,
942                 );
943             });
944         } else {
945             debug_assert!(self.tcx.is_trait(trait_def_id));
946             for item in self.impl_or_trait_item(trait_def_id) {
947                 // Check whether `trait_def_id` defines a method with suitable name.
948                 if !self.has_applicable_self(&item) {
949                     debug!("method has inapplicable self");
950                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
951                     continue;
952                 }
953
954                 let (xform_self_ty, xform_ret_ty) =
955                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
956                 self.push_candidate(
957                     Candidate {
958                         xform_self_ty,
959                         xform_ret_ty,
960                         item,
961                         import_ids: import_ids.clone(),
962                         kind: TraitCandidate(trait_ref),
963                     },
964                     false,
965                 );
966             }
967         }
968     }
969
970     fn candidate_method_names(&self) -> Vec<Ident> {
971         let mut set = FxHashSet::default();
972         let mut names: Vec<_> = self
973             .inherent_candidates
974             .iter()
975             .chain(&self.extension_candidates)
976             .filter(|candidate| {
977                 if let Some(return_ty) = self.return_type {
978                     self.matches_return_type(&candidate.item, None, return_ty)
979                 } else {
980                     true
981                 }
982             })
983             .map(|candidate| candidate.item.ident(self.tcx))
984             .filter(|&name| set.insert(name))
985             .collect();
986
987         // Sort them by the name so we have a stable result.
988         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
989         names
990     }
991
992     ///////////////////////////////////////////////////////////////////////////
993     // THE ACTUAL SEARCH
994
995     fn pick(mut self) -> PickResult<'tcx> {
996         assert!(self.method_name.is_some());
997
998         if let Some(r) = self.pick_core() {
999             return r;
1000         }
1001
1002         debug!("pick: actual search failed, assemble diagnostics");
1003
1004         let static_candidates = mem::take(&mut self.static_candidates);
1005         let private_candidate = self.private_candidate.take();
1006         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1007
1008         // things failed, so lets look at all traits, for diagnostic purposes now:
1009         self.reset();
1010
1011         let span = self.span;
1012         let tcx = self.tcx;
1013
1014         self.assemble_extension_candidates_for_all_traits();
1015
1016         let out_of_scope_traits = match self.pick_core() {
1017             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1018             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1019             Some(Err(MethodError::Ambiguity(v))) => v
1020                 .into_iter()
1021                 .map(|source| match source {
1022                     CandidateSource::Trait(id) => id,
1023                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1024                         Some(id) => id,
1025                         None => span_bug!(span, "found inherent method when looking at traits"),
1026                     },
1027                 })
1028                 .collect(),
1029             Some(Err(MethodError::NoMatch(NoMatchData {
1030                 out_of_scope_traits: others, ..
1031             }))) => {
1032                 assert!(others.is_empty());
1033                 vec![]
1034             }
1035             _ => vec![],
1036         };
1037
1038         if let Some((kind, def_id)) = private_candidate {
1039             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1040         }
1041         let lev_candidate = self.probe_for_lev_candidate()?;
1042
1043         Err(MethodError::NoMatch(NoMatchData {
1044             static_candidates,
1045             unsatisfied_predicates,
1046             out_of_scope_traits,
1047             lev_candidate,
1048             mode: self.mode,
1049         }))
1050     }
1051
1052     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1053         let mut unstable_candidates = Vec::new();
1054         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1055
1056         // In this case unstable picking is done by `pick_method`.
1057         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1058             return pick;
1059         }
1060
1061         match pick {
1062             // Emit a lint if there are unstable candidates alongside the stable ones.
1063             //
1064             // We suppress warning if we're picking the method only because it is a
1065             // suggestion.
1066             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1067                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1068                 pick
1069             }
1070             Some(_) => pick,
1071             None => self.pick_all_method(None),
1072         }
1073     }
1074
1075     fn pick_all_method(
1076         &mut self,
1077         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1078     ) -> Option<PickResult<'tcx>> {
1079         let steps = self.steps.clone();
1080         steps
1081             .iter()
1082             .filter(|step| {
1083                 debug!("pick_all_method: step={:?}", step);
1084                 // skip types that are from a type error or that would require dereferencing
1085                 // a raw pointer
1086                 !step.self_ty.references_error() && !step.from_unsafe_deref
1087             })
1088             .flat_map(|step| {
1089                 let InferOk { value: self_ty, obligations: _ } = self
1090                     .fcx
1091                     .probe_instantiate_query_response(
1092                         self.span,
1093                         &self.orig_steps_var_values,
1094                         &step.self_ty,
1095                     )
1096                     .unwrap_or_else(|_| {
1097                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1098                     });
1099                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1100                     .or_else(|| {
1101                         self.pick_autorefd_method(
1102                             step,
1103                             self_ty,
1104                             hir::Mutability::Not,
1105                             unstable_candidates.as_deref_mut(),
1106                         )
1107                         .or_else(|| {
1108                             self.pick_autorefd_method(
1109                                 step,
1110                                 self_ty,
1111                                 hir::Mutability::Mut,
1112                                 unstable_candidates.as_deref_mut(),
1113                             )
1114                         })
1115                         .or_else(|| {
1116                             self.pick_const_ptr_method(
1117                                 step,
1118                                 self_ty,
1119                                 unstable_candidates.as_deref_mut(),
1120                             )
1121                         })
1122                     })
1123             })
1124             .next()
1125     }
1126
1127     /// For each type `T` in the step list, this attempts to find a method where
1128     /// the (transformed) self type is exactly `T`. We do however do one
1129     /// transformation on the adjustment: if we are passing a region pointer in,
1130     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1131     /// to transparently pass `&mut` pointers, in particular, without consuming
1132     /// them for their entire lifetime.
1133     fn pick_by_value_method(
1134         &mut self,
1135         step: &CandidateStep<'tcx>,
1136         self_ty: Ty<'tcx>,
1137         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1138     ) -> Option<PickResult<'tcx>> {
1139         if step.unsize {
1140             return None;
1141         }
1142
1143         self.pick_method(self_ty, unstable_candidates).map(|r| {
1144             r.map(|mut pick| {
1145                 pick.autoderefs = step.autoderefs;
1146
1147                 // Insert a `&*` or `&mut *` if this is a reference type:
1148                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1149                     pick.autoderefs += 1;
1150                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1151                         mutbl,
1152                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1153                     })
1154                 }
1155
1156                 pick
1157             })
1158         })
1159     }
1160
1161     fn pick_autorefd_method(
1162         &mut self,
1163         step: &CandidateStep<'tcx>,
1164         self_ty: Ty<'tcx>,
1165         mutbl: hir::Mutability,
1166         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1167     ) -> Option<PickResult<'tcx>> {
1168         let tcx = self.tcx;
1169
1170         // In general, during probing we erase regions.
1171         let region = tcx.lifetimes.re_erased;
1172
1173         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1174         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1175             r.map(|mut pick| {
1176                 pick.autoderefs = step.autoderefs;
1177                 pick.autoref_or_ptr_adjustment =
1178                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1179                 pick
1180             })
1181         })
1182     }
1183
1184     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1185     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1186     /// autorefs would require dereferencing the pointer, which is not safe.
1187     fn pick_const_ptr_method(
1188         &mut self,
1189         step: &CandidateStep<'tcx>,
1190         self_ty: Ty<'tcx>,
1191         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1192     ) -> Option<PickResult<'tcx>> {
1193         // Don't convert an unsized reference to ptr
1194         if step.unsize {
1195             return None;
1196         }
1197
1198         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1199             return None;
1200         };
1201
1202         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1203         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1204         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1205             r.map(|mut pick| {
1206                 pick.autoderefs = step.autoderefs;
1207                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1208                 pick
1209             })
1210         })
1211     }
1212
1213     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1214         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1215
1216         let mut possibly_unsatisfied_predicates = Vec::new();
1217         let mut unstable_candidates = Vec::new();
1218
1219         for (kind, candidates) in
1220             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1221         {
1222             debug!("searching {} candidates", kind);
1223             let res = self.consider_candidates(
1224                 self_ty,
1225                 candidates.iter(),
1226                 &mut possibly_unsatisfied_predicates,
1227                 Some(&mut unstable_candidates),
1228             );
1229             if let Some(pick) = res {
1230                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1231                     if let Ok(p) = &pick {
1232                         // Emit a lint if there are unstable candidates alongside the stable ones.
1233                         //
1234                         // We suppress warning if we're picking the method only because it is a
1235                         // suggestion.
1236                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1237                     }
1238                 }
1239                 return Some(pick);
1240             }
1241         }
1242
1243         debug!("searching unstable candidates");
1244         let res = self.consider_candidates(
1245             self_ty,
1246             unstable_candidates.iter().map(|(c, _)| c),
1247             &mut possibly_unsatisfied_predicates,
1248             None,
1249         );
1250         if res.is_none() {
1251             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1252         }
1253         res
1254     }
1255
1256     fn pick_method(
1257         &mut self,
1258         self_ty: Ty<'tcx>,
1259         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1260     ) -> Option<PickResult<'tcx>> {
1261         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1262             return self.pick_method_with_unstable(self_ty);
1263         }
1264
1265         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1266
1267         let mut possibly_unsatisfied_predicates = Vec::new();
1268
1269         for (kind, candidates) in
1270             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1271         {
1272             debug!("searching {} candidates", kind);
1273             let res = self.consider_candidates(
1274                 self_ty,
1275                 candidates.iter(),
1276                 &mut possibly_unsatisfied_predicates,
1277                 unstable_candidates.as_deref_mut(),
1278             );
1279             if let Some(pick) = res {
1280                 return Some(pick);
1281             }
1282         }
1283
1284         // `pick_method` may be called twice for the same self_ty if no stable methods
1285         // match. Only extend once.
1286         if unstable_candidates.is_some() {
1287             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1288         }
1289         None
1290     }
1291
1292     fn consider_candidates<'b, ProbesIter>(
1293         &self,
1294         self_ty: Ty<'tcx>,
1295         probes: ProbesIter,
1296         possibly_unsatisfied_predicates: &mut Vec<(
1297             ty::Predicate<'tcx>,
1298             Option<ty::Predicate<'tcx>>,
1299             Option<ObligationCause<'tcx>>,
1300         )>,
1301         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1302     ) -> Option<PickResult<'tcx>>
1303     where
1304         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1305         'tcx: 'b,
1306     {
1307         let mut applicable_candidates: Vec<_> = probes
1308             .clone()
1309             .map(|probe| {
1310                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1311             })
1312             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1313             .collect();
1314
1315         debug!("applicable_candidates: {:?}", applicable_candidates);
1316
1317         if applicable_candidates.len() > 1 {
1318             if let Some(pick) =
1319                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1320             {
1321                 return Some(Ok(pick));
1322             }
1323         }
1324
1325         if let Some(uc) = unstable_candidates {
1326             applicable_candidates.retain(|&(p, _)| {
1327                 if let stability::EvalResult::Deny { feature, .. } =
1328                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1329                 {
1330                     uc.push((p.clone(), feature));
1331                     return false;
1332                 }
1333                 true
1334             });
1335         }
1336
1337         if applicable_candidates.len() > 1 {
1338             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1339             return Some(Err(MethodError::Ambiguity(sources)));
1340         }
1341
1342         applicable_candidates.pop().map(|(probe, status)| {
1343             if status == ProbeResult::Match {
1344                 Ok(probe.to_unadjusted_pick(self_ty))
1345             } else {
1346                 Err(MethodError::BadReturnType)
1347             }
1348         })
1349     }
1350
1351     fn emit_unstable_name_collision_hint(
1352         &self,
1353         stable_pick: &Pick<'_>,
1354         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1355     ) {
1356         let def_kind = stable_pick.item.kind.as_def_kind();
1357         self.tcx.struct_span_lint_hir(
1358             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1359             self.scope_expr_id,
1360             self.span,
1361             format!(
1362                 "{} {} with this name may be added to the standard library in the future",
1363                 def_kind.article(),
1364                 def_kind.descr(stable_pick.item.def_id),
1365             ),
1366             |lint| {
1367                 match (stable_pick.item.kind, stable_pick.item.container) {
1368                     (ty::AssocKind::Fn, _) => {
1369                         // FIXME: This should be a `span_suggestion` instead of `help`
1370                         // However `self.span` only
1371                         // highlights the method name, so we can't use it. Also consider reusing
1372                         // the code from `report_method_error()`.
1373                         lint.help(&format!(
1374                             "call with fully qualified syntax `{}(...)` to keep using the current \
1375                              method",
1376                             self.tcx.def_path_str(stable_pick.item.def_id),
1377                         ));
1378                     }
1379                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1380                         let def_id = stable_pick.item.container_id(self.tcx);
1381                         lint.span_suggestion(
1382                             self.span,
1383                             "use the fully qualified path to the associated const",
1384                             format!(
1385                                 "<{} as {}>::{}",
1386                                 stable_pick.self_ty,
1387                                 self.tcx.def_path_str(def_id),
1388                                 stable_pick.item.name
1389                             ),
1390                             Applicability::MachineApplicable,
1391                         );
1392                     }
1393                     _ => {}
1394                 }
1395                 if self.tcx.sess.is_nightly_build() {
1396                     for (candidate, feature) in unstable_candidates {
1397                         lint.help(&format!(
1398                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1399                             feature,
1400                             self.tcx.def_path_str(candidate.item.def_id),
1401                         ));
1402                     }
1403                 }
1404
1405                 lint
1406             },
1407         );
1408     }
1409
1410     fn select_trait_candidate(
1411         &self,
1412         trait_ref: ty::TraitRef<'tcx>,
1413     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1414         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1415         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1416         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1417         traits::SelectionContext::new(self).select(&obligation)
1418     }
1419
1420     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1421         match candidate.kind {
1422             InherentImplCandidate(..) => {
1423                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1424             }
1425             ObjectCandidate | WhereClauseCandidate(_) => {
1426                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1427             }
1428             TraitCandidate(trait_ref) => self.probe(|_| {
1429                 let _ = self
1430                     .at(&ObligationCause::dummy(), self.param_env)
1431                     .define_opaque_types(false)
1432                     .sup(candidate.xform_self_ty, self_ty);
1433                 match self.select_trait_candidate(trait_ref) {
1434                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1435                         // If only a single impl matches, make the error message point
1436                         // to that impl.
1437                         CandidateSource::Impl(impl_data.impl_def_id)
1438                     }
1439                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1440                 }
1441             }),
1442         }
1443     }
1444
1445     fn consider_probe(
1446         &self,
1447         self_ty: Ty<'tcx>,
1448         probe: &Candidate<'tcx>,
1449         possibly_unsatisfied_predicates: &mut Vec<(
1450             ty::Predicate<'tcx>,
1451             Option<ty::Predicate<'tcx>>,
1452             Option<ObligationCause<'tcx>>,
1453         )>,
1454     ) -> ProbeResult {
1455         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1456
1457         self.probe(|_| {
1458             // First check that the self type can be related.
1459             let sub_obligations = match self
1460                 .at(&ObligationCause::dummy(), self.param_env)
1461                 .define_opaque_types(false)
1462                 .sup(probe.xform_self_ty, self_ty)
1463             {
1464                 Ok(InferOk { obligations, value: () }) => obligations,
1465                 Err(err) => {
1466                     debug!("--> cannot relate self-types {:?}", err);
1467                     return ProbeResult::NoMatch;
1468                 }
1469             };
1470
1471             let mut result = ProbeResult::Match;
1472             let mut xform_ret_ty = probe.xform_ret_ty;
1473             debug!(?xform_ret_ty);
1474
1475             let selcx = &mut traits::SelectionContext::new(self);
1476             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1477
1478             let mut parent_pred = None;
1479
1480             // If so, impls may carry other conditions (e.g., where
1481             // clauses) that must be considered. Make sure that those
1482             // match as well (or at least may match, sometimes we
1483             // don't have enough information to fully evaluate).
1484             match probe.kind {
1485                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1486                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1487                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1488                     // for why this is necessary
1489                     let traits::Normalized {
1490                         value: normalized_xform_ret_ty,
1491                         obligations: normalization_obligations,
1492                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1493                     xform_ret_ty = normalized_xform_ret_ty;
1494                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1495
1496                     // Check whether the impl imposes obligations we have to worry about.
1497                     let impl_def_id = probe.item.container_id(self.tcx);
1498                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1499                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1500                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1501                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1502
1503                     // Convert the bounds into obligations.
1504                     let impl_obligations = traits::predicates_for_generics(
1505                         move |_, _| cause.clone(),
1506                         self.param_env,
1507                         impl_bounds,
1508                     );
1509
1510                     let candidate_obligations = impl_obligations
1511                         .chain(norm_obligations.into_iter())
1512                         .chain(ref_obligations.iter().cloned())
1513                         .chain(normalization_obligations.into_iter());
1514
1515                     // Evaluate those obligations to see if they might possibly hold.
1516                     for o in candidate_obligations {
1517                         let o = self.resolve_vars_if_possible(o);
1518                         if !self.predicate_may_hold(&o) {
1519                             result = ProbeResult::NoMatch;
1520                             possibly_unsatisfied_predicates.push((
1521                                 o.predicate,
1522                                 None,
1523                                 Some(o.cause),
1524                             ));
1525                         }
1526                     }
1527                 }
1528
1529                 ObjectCandidate | WhereClauseCandidate(..) => {
1530                     // These have no additional conditions to check.
1531                 }
1532
1533                 TraitCandidate(trait_ref) => {
1534                     if let Some(method_name) = self.method_name {
1535                         // Some trait methods are excluded for arrays before 2021.
1536                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1537                         if self_ty.is_array() && !method_name.span.rust_2021() {
1538                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1539                             if trait_def.skip_array_during_method_dispatch {
1540                                 return ProbeResult::NoMatch;
1541                             }
1542                         }
1543                     }
1544                     let predicate =
1545                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1546                     parent_pred = Some(predicate);
1547                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1548                     if !self.predicate_may_hold(&obligation) {
1549                         result = ProbeResult::NoMatch;
1550                         if self.probe(|_| {
1551                             match self.select_trait_candidate(trait_ref) {
1552                                 Err(_) => return true,
1553                                 Ok(Some(impl_source))
1554                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1555                                 {
1556                                     for obligation in impl_source.borrow_nested_obligations() {
1557                                         // Determine exactly which obligation wasn't met, so
1558                                         // that we can give more context in the error.
1559                                         if !self.predicate_may_hold(obligation) {
1560                                             let nested_predicate =
1561                                                 self.resolve_vars_if_possible(obligation.predicate);
1562                                             let predicate =
1563                                                 self.resolve_vars_if_possible(predicate);
1564                                             let p = if predicate == nested_predicate {
1565                                                 // Avoid "`MyStruct: Foo` which is required by
1566                                                 // `MyStruct: Foo`" in E0599.
1567                                                 None
1568                                             } else {
1569                                                 Some(predicate)
1570                                             };
1571                                             possibly_unsatisfied_predicates.push((
1572                                                 nested_predicate,
1573                                                 p,
1574                                                 Some(obligation.cause.clone()),
1575                                             ));
1576                                         }
1577                                     }
1578                                 }
1579                                 _ => {
1580                                     // Some nested subobligation of this predicate
1581                                     // failed.
1582                                     let predicate = self.resolve_vars_if_possible(predicate);
1583                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1584                                 }
1585                             }
1586                             false
1587                         }) {
1588                             // This candidate's primary obligation doesn't even
1589                             // select - don't bother registering anything in
1590                             // `potentially_unsatisfied_predicates`.
1591                             return ProbeResult::NoMatch;
1592                         }
1593                     }
1594                 }
1595             }
1596
1597             // Evaluate those obligations to see if they might possibly hold.
1598             for o in sub_obligations {
1599                 let o = self.resolve_vars_if_possible(o);
1600                 if !self.predicate_may_hold(&o) {
1601                     result = ProbeResult::NoMatch;
1602                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1603                 }
1604             }
1605
1606             if let ProbeResult::Match = result {
1607                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1608                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1609                     debug!(
1610                         "comparing return_ty {:?} with xform ret ty {:?}",
1611                         return_ty, probe.xform_ret_ty
1612                     );
1613                     if self
1614                         .at(&ObligationCause::dummy(), self.param_env)
1615                         .define_opaque_types(false)
1616                         .sup(return_ty, xform_ret_ty)
1617                         .is_err()
1618                     {
1619                         return ProbeResult::BadReturnType;
1620                     }
1621                 }
1622             }
1623
1624             result
1625         })
1626     }
1627
1628     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1629     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1630     /// external interface of the method can be determined from the trait, it's ok not to decide.
1631     /// We can basically just collapse all of the probes for various impls into one where-clause
1632     /// probe. This will result in a pending obligation so when more type-info is available we can
1633     /// make the final decision.
1634     ///
1635     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1636     ///
1637     /// ```ignore (illustrative)
1638     /// trait Foo { ... }
1639     /// impl Foo for Vec<i32> { ... }
1640     /// impl Foo for Vec<usize> { ... }
1641     /// ```
1642     ///
1643     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1644     /// use, so it's ok to just commit to "using the method from the trait Foo".
1645     fn collapse_candidates_to_trait_pick(
1646         &self,
1647         self_ty: Ty<'tcx>,
1648         probes: &[(&Candidate<'tcx>, ProbeResult)],
1649     ) -> Option<Pick<'tcx>> {
1650         // Do all probes correspond to the same trait?
1651         let container = probes[0].0.item.trait_container(self.tcx)?;
1652         for (p, _) in &probes[1..] {
1653             let p_container = p.item.trait_container(self.tcx)?;
1654             if p_container != container {
1655                 return None;
1656             }
1657         }
1658
1659         // FIXME: check the return type here somehow.
1660         // If so, just use this trait and call it a day.
1661         Some(Pick {
1662             item: probes[0].0.item,
1663             kind: TraitPick,
1664             import_ids: probes[0].0.import_ids.clone(),
1665             autoderefs: 0,
1666             autoref_or_ptr_adjustment: None,
1667             self_ty,
1668         })
1669     }
1670
1671     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1672     /// candidate method where the method name may have been misspelled. Similarly to other
1673     /// Levenshtein based suggestions, we provide at most one such suggestion.
1674     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1675         debug!("probing for method names similar to {:?}", self.method_name);
1676
1677         let steps = self.steps.clone();
1678         self.probe(|_| {
1679             let mut pcx = ProbeContext::new(
1680                 self.fcx,
1681                 self.span,
1682                 self.mode,
1683                 self.method_name,
1684                 self.return_type,
1685                 self.orig_steps_var_values.clone(),
1686                 steps,
1687                 IsSuggestion(true),
1688                 self.scope_expr_id,
1689             );
1690             pcx.allow_similar_names = true;
1691             pcx.assemble_inherent_candidates();
1692
1693             let method_names = pcx.candidate_method_names();
1694             pcx.allow_similar_names = false;
1695             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1696                 .iter()
1697                 .filter_map(|&method_name| {
1698                     pcx.reset();
1699                     pcx.method_name = Some(method_name);
1700                     pcx.assemble_inherent_candidates();
1701                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1702                 })
1703                 .collect();
1704
1705             if applicable_close_candidates.is_empty() {
1706                 Ok(None)
1707             } else {
1708                 let best_name = {
1709                     let names = applicable_close_candidates
1710                         .iter()
1711                         .map(|cand| cand.name)
1712                         .collect::<Vec<Symbol>>();
1713                     find_best_match_for_name_with_substrings(
1714                         &names,
1715                         self.method_name.unwrap().name,
1716                         None,
1717                     )
1718                 }
1719                 .unwrap();
1720                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1721             }
1722         })
1723     }
1724
1725     ///////////////////////////////////////////////////////////////////////////
1726     // MISCELLANY
1727     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1728         // "Fast track" -- check for usage of sugar when in method call
1729         // mode.
1730         //
1731         // In Path mode (i.e., resolving a value like `T::next`), consider any
1732         // associated value (i.e., methods, constants) but not types.
1733         match self.mode {
1734             Mode::MethodCall => item.fn_has_self_parameter,
1735             Mode::Path => match item.kind {
1736                 ty::AssocKind::Type => false,
1737                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1738             },
1739         }
1740         // FIXME -- check for types that deref to `Self`,
1741         // like `Rc<Self>` and so on.
1742         //
1743         // Note also that the current code will break if this type
1744         // includes any of the type parameters defined on the method
1745         // -- but this could be overcome.
1746     }
1747
1748     fn record_static_candidate(&mut self, source: CandidateSource) {
1749         self.static_candidates.push(source);
1750     }
1751
1752     #[instrument(level = "debug", skip(self))]
1753     fn xform_self_ty(
1754         &self,
1755         item: &ty::AssocItem,
1756         impl_ty: Ty<'tcx>,
1757         substs: SubstsRef<'tcx>,
1758     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1759         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1760             let sig = self.xform_method_sig(item.def_id, substs);
1761             (sig.inputs()[0], Some(sig.output()))
1762         } else {
1763             (impl_ty, None)
1764         }
1765     }
1766
1767     #[instrument(level = "debug", skip(self))]
1768     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1769         let fn_sig = self.tcx.bound_fn_sig(method);
1770         debug!(?fn_sig);
1771
1772         assert!(!substs.has_escaping_bound_vars());
1773
1774         // It is possible for type parameters or early-bound lifetimes
1775         // to appear in the signature of `self`. The substitutions we
1776         // are given do not include type/lifetime parameters for the
1777         // method yet. So create fresh variables here for those too,
1778         // if there are any.
1779         let generics = self.tcx.generics_of(method);
1780         assert_eq!(substs.len(), generics.parent_count as usize);
1781
1782         let xform_fn_sig = if generics.params.is_empty() {
1783             fn_sig.subst(self.tcx, substs)
1784         } else {
1785             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1786                 let i = param.index as usize;
1787                 if i < substs.len() {
1788                     substs[i]
1789                 } else {
1790                     match param.kind {
1791                         GenericParamDefKind::Lifetime => {
1792                             // In general, during probe we erase regions.
1793                             self.tcx.lifetimes.re_erased.into()
1794                         }
1795                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1796                             self.var_for_def(self.span, param)
1797                         }
1798                     }
1799                 }
1800             });
1801             fn_sig.subst(self.tcx, substs)
1802         };
1803
1804         self.erase_late_bound_regions(xform_fn_sig)
1805     }
1806
1807     /// Gets the type of an impl and generate substitutions with inference vars.
1808     fn impl_ty_and_substs(
1809         &self,
1810         impl_def_id: DefId,
1811     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1812         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1813     }
1814
1815     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1816         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1817             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1818             GenericParamDefKind::Type { .. } => self
1819                 .next_ty_var(TypeVariableOrigin {
1820                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1821                     span: self.tcx.def_span(def_id),
1822                 })
1823                 .into(),
1824             GenericParamDefKind::Const { .. } => {
1825                 let span = self.tcx.def_span(def_id);
1826                 let origin = ConstVariableOrigin {
1827                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1828                     span,
1829                 };
1830                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1831             }
1832         })
1833     }
1834
1835     /// Replaces late-bound-regions bound by `value` with `'static` using
1836     /// `ty::erase_late_bound_regions`.
1837     ///
1838     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1839     /// method matching. It is reasonable during the probe phase because we don't consider region
1840     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1841     /// rather than creating fresh region variables. This is nice for two reasons:
1842     ///
1843     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1844     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1845     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1846     ///
1847     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1848     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1849     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1850     ///    region got replaced with the same variable, which requires a bit more coordination
1851     ///    and/or tracking the substitution and
1852     ///    so forth.
1853     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1854     where
1855         T: TypeFoldable<'tcx>,
1856     {
1857         self.tcx.erase_late_bound_regions(value)
1858     }
1859
1860     /// Finds the method with the appropriate name (or return type, as the case may be). If
1861     /// `allow_similar_names` is set, find methods with close-matching names.
1862     // The length of the returned iterator is nearly always 0 or 1 and this
1863     // method is fairly hot.
1864     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1865         if let Some(name) = self.method_name {
1866             if self.allow_similar_names {
1867                 let max_dist = max(name.as_str().len(), 3) / 3;
1868                 self.tcx
1869                     .associated_items(def_id)
1870                     .in_definition_order()
1871                     .filter(|x| {
1872                         if x.kind.namespace() != Namespace::ValueNS {
1873                             return false;
1874                         }
1875                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1876                         {
1877                             Some(d) => d > 0,
1878                             None => false,
1879                         }
1880                     })
1881                     .copied()
1882                     .collect()
1883             } else {
1884                 self.fcx
1885                     .associated_value(def_id, name)
1886                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1887             }
1888         } else {
1889             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1890         }
1891     }
1892 }
1893
1894 impl<'tcx> Candidate<'tcx> {
1895     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1896         Pick {
1897             item: self.item,
1898             kind: match self.kind {
1899                 InherentImplCandidate(..) => InherentImplPick,
1900                 ObjectCandidate => ObjectPick,
1901                 TraitCandidate(_) => TraitPick,
1902                 WhereClauseCandidate(ref trait_ref) => {
1903                     // Only trait derived from where-clauses should
1904                     // appear here, so they should not contain any
1905                     // inference variables or other artifacts. This
1906                     // means they are safe to put into the
1907                     // `WhereClausePick`.
1908                     assert!(
1909                         !trait_ref.skip_binder().substs.needs_infer()
1910                             && !trait_ref.skip_binder().substs.has_placeholders()
1911                     );
1912
1913                     WhereClausePick(*trait_ref)
1914                 }
1915             },
1916             import_ids: self.import_ids.clone(),
1917             autoderefs: 0,
1918             autoref_or_ptr_adjustment: None,
1919             self_ty,
1920         }
1921     }
1922 }