]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_analysis/src/check/method/probe.rs
rustc_typeck to rustc_hir_analysis
[rust.git] / compiler / rustc_hir_analysis / src / check / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
22 use rustc_middle::ty::GenericParamDefKind;
23 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
24 use rustc_middle::ty::{InternalSubsts, SubstsRef};
25 use rustc_session::lint;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     is_suggestion: IsSuggestion,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, PartialEq, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213 }
214
215 #[derive(Clone, Debug, PartialEq, Eq)]
216 pub enum PickKind<'tcx> {
217     InherentImplPick,
218     ObjectPick,
219     TraitPick,
220     WhereClausePick(
221         // Trait
222         ty::PolyTraitRef<'tcx>,
223     ),
224 }
225
226 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
227
228 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
229 pub enum Mode {
230     // An expression of the form `receiver.method_name(...)`.
231     // Autoderefs are performed on `receiver`, lookup is done based on the
232     // `self` argument  of the method, and static methods aren't considered.
233     MethodCall,
234     // An expression of the form `Type::item` or `<T>::item`.
235     // No autoderefs are performed, lookup is done based on the type each
236     // implementation is for, and static methods are included.
237     Path,
238 }
239
240 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
241 pub enum ProbeScope {
242     // Assemble candidates coming only from traits in scope.
243     TraitsInScope,
244
245     // Assemble candidates coming from all traits.
246     AllTraits,
247 }
248
249 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
250     /// This is used to offer suggestions to users. It returns methods
251     /// that could have been called which have the desired return
252     /// type. Some effort is made to rule out methods that, if called,
253     /// would result in an error (basically, the same criteria we
254     /// would use to decide if a method is a plausible fit for
255     /// ambiguity purposes).
256     #[instrument(level = "debug", skip(self))]
257     pub fn probe_for_return_type(
258         &self,
259         span: Span,
260         mode: Mode,
261         return_type: Ty<'tcx>,
262         self_ty: Ty<'tcx>,
263         scope_expr_id: hir::HirId,
264     ) -> Vec<ty::AssocItem> {
265         let method_names = self
266             .probe_op(
267                 span,
268                 mode,
269                 None,
270                 Some(return_type),
271                 IsSuggestion(true),
272                 self_ty,
273                 scope_expr_id,
274                 ProbeScope::AllTraits,
275                 |probe_cx| Ok(probe_cx.candidate_method_names()),
276             )
277             .unwrap_or_default();
278         method_names
279             .iter()
280             .flat_map(|&method_name| {
281                 self.probe_op(
282                     span,
283                     mode,
284                     Some(method_name),
285                     Some(return_type),
286                     IsSuggestion(true),
287                     self_ty,
288                     scope_expr_id,
289                     ProbeScope::AllTraits,
290                     |probe_cx| probe_cx.pick(),
291                 )
292                 .ok()
293                 .map(|pick| pick.item)
294             })
295             .collect()
296     }
297
298     #[instrument(level = "debug", skip(self))]
299     pub fn probe_for_name(
300         &self,
301         span: Span,
302         mode: Mode,
303         item_name: Ident,
304         is_suggestion: IsSuggestion,
305         self_ty: Ty<'tcx>,
306         scope_expr_id: hir::HirId,
307         scope: ProbeScope,
308     ) -> PickResult<'tcx> {
309         self.probe_op(
310             span,
311             mode,
312             Some(item_name),
313             None,
314             is_suggestion,
315             self_ty,
316             scope_expr_id,
317             scope,
318             |probe_cx| probe_cx.pick(),
319         )
320     }
321
322     fn probe_op<OP, R>(
323         &'a self,
324         span: Span,
325         mode: Mode,
326         method_name: Option<Ident>,
327         return_type: Option<Ty<'tcx>>,
328         is_suggestion: IsSuggestion,
329         self_ty: Ty<'tcx>,
330         scope_expr_id: hir::HirId,
331         scope: ProbeScope,
332         op: OP,
333     ) -> Result<R, MethodError<'tcx>>
334     where
335         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
336     {
337         let mut orig_values = OriginalQueryValues::default();
338         let param_env_and_self_ty = self.canonicalize_query(
339             ParamEnvAnd { param_env: self.param_env, value: self_ty },
340             &mut orig_values,
341         );
342
343         let steps = if mode == Mode::MethodCall {
344             self.tcx.method_autoderef_steps(param_env_and_self_ty)
345         } else {
346             self.probe(|_| {
347                 // Mode::Path - the deref steps is "trivial". This turns
348                 // our CanonicalQuery into a "trivial" QueryResponse. This
349                 // is a bit inefficient, but I don't think that writing
350                 // special handling for this "trivial case" is a good idea.
351
352                 let infcx = &self.infcx;
353                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
354                     infcx.instantiate_canonical_with_fresh_inference_vars(
355                         span,
356                         &param_env_and_self_ty,
357                     );
358                 debug!(
359                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
360                     param_env_and_self_ty, self_ty
361                 );
362                 MethodAutoderefStepsResult {
363                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
364                         self_ty: self.make_query_response_ignoring_pending_obligations(
365                             canonical_inference_vars,
366                             self_ty,
367                         ),
368                         autoderefs: 0,
369                         from_unsafe_deref: false,
370                         unsize: false,
371                     }]),
372                     opt_bad_ty: None,
373                     reached_recursion_limit: false,
374                 }
375             })
376         };
377
378         // If our autoderef loop had reached the recursion limit,
379         // report an overflow error, but continue going on with
380         // the truncated autoderef list.
381         if steps.reached_recursion_limit {
382             self.probe(|_| {
383                 let ty = &steps
384                     .steps
385                     .last()
386                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
387                     .self_ty;
388                 let ty = self
389                     .probe_instantiate_query_response(span, &orig_values, ty)
390                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
391                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
392             });
393         }
394
395         // If we encountered an `_` type or an error type during autoderef, this is
396         // ambiguous.
397         if let Some(bad_ty) = &steps.opt_bad_ty {
398             if is_suggestion.0 {
399                 // Ambiguity was encountered during a suggestion. Just keep going.
400                 debug!("ProbeContext: encountered ambiguity in suggestion");
401             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
402                 // this case used to be allowed by the compiler,
403                 // so we do a future-compat lint here for the 2015 edition
404                 // (see https://github.com/rust-lang/rust/issues/46906)
405                 if self.tcx.sess.rust_2018() {
406                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
407                 } else {
408                     self.tcx.struct_span_lint_hir(
409                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
410                         scope_expr_id,
411                         span,
412                         |lint| {
413                             lint.build("type annotations needed").emit();
414                         },
415                     );
416                 }
417             } else {
418                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
419                 // an `Err`, report the right "type annotations needed" error pointing
420                 // to it.
421                 let ty = &bad_ty.ty;
422                 let ty = self
423                     .probe_instantiate_query_response(span, &orig_values, ty)
424                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
425                 let ty = self.structurally_resolved_type(span, ty.value);
426                 assert!(matches!(ty.kind(), ty::Error(_)));
427                 return Err(MethodError::NoMatch(NoMatchData {
428                     static_candidates: Vec::new(),
429                     unsatisfied_predicates: Vec::new(),
430                     out_of_scope_traits: Vec::new(),
431                     lev_candidate: None,
432                     mode,
433                 }));
434             }
435         }
436
437         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
438
439         // this creates one big transaction so that all type variables etc
440         // that we create during the probe process are removed later
441         self.probe(|_| {
442             let mut probe_cx = ProbeContext::new(
443                 self,
444                 span,
445                 mode,
446                 method_name,
447                 return_type,
448                 orig_values,
449                 steps.steps,
450                 is_suggestion,
451                 scope_expr_id,
452             );
453
454             probe_cx.assemble_inherent_candidates();
455             match scope {
456                 ProbeScope::TraitsInScope => {
457                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
458                 }
459                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
460             };
461             op(probe_cx)
462         })
463     }
464 }
465
466 pub fn provide(providers: &mut ty::query::Providers) {
467     providers.method_autoderef_steps = method_autoderef_steps;
468 }
469
470 fn method_autoderef_steps<'tcx>(
471     tcx: TyCtxt<'tcx>,
472     goal: CanonicalTyGoal<'tcx>,
473 ) -> MethodAutoderefStepsResult<'tcx> {
474     debug!("method_autoderef_steps({:?})", goal);
475
476     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
477         let ParamEnvAnd { param_env, value: self_ty } = goal;
478
479         let mut autoderef =
480             Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
481                 .include_raw_pointers()
482                 .silence_errors();
483         let mut reached_raw_pointer = false;
484         let mut steps: Vec<_> = autoderef
485             .by_ref()
486             .map(|(ty, d)| {
487                 let step = CandidateStep {
488                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
489                         inference_vars.clone(),
490                         ty,
491                     ),
492                     autoderefs: d,
493                     from_unsafe_deref: reached_raw_pointer,
494                     unsize: false,
495                 };
496                 if let ty::RawPtr(_) = ty.kind() {
497                     // all the subsequent steps will be from_unsafe_deref
498                     reached_raw_pointer = true;
499                 }
500                 step
501             })
502             .collect();
503
504         let final_ty = autoderef.final_ty(true);
505         let opt_bad_ty = match final_ty.kind() {
506             ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
507                 reached_raw_pointer,
508                 ty: infcx
509                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
510             }),
511             ty::Array(elem_ty, _) => {
512                 let dereferences = steps.len() - 1;
513
514                 steps.push(CandidateStep {
515                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
516                         inference_vars,
517                         infcx.tcx.mk_slice(*elem_ty),
518                     ),
519                     autoderefs: dereferences,
520                     // this could be from an unsafe deref if we had
521                     // a *mut/const [T; N]
522                     from_unsafe_deref: reached_raw_pointer,
523                     unsize: true,
524                 });
525
526                 None
527             }
528             _ => None,
529         };
530
531         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
532
533         MethodAutoderefStepsResult {
534             steps: tcx.arena.alloc_from_iter(steps),
535             opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
536             reached_recursion_limit: autoderef.reached_recursion_limit(),
537         }
538     })
539 }
540
541 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
542     fn new(
543         fcx: &'a FnCtxt<'a, 'tcx>,
544         span: Span,
545         mode: Mode,
546         method_name: Option<Ident>,
547         return_type: Option<Ty<'tcx>>,
548         orig_steps_var_values: OriginalQueryValues<'tcx>,
549         steps: &'tcx [CandidateStep<'tcx>],
550         is_suggestion: IsSuggestion,
551         scope_expr_id: hir::HirId,
552     ) -> ProbeContext<'a, 'tcx> {
553         ProbeContext {
554             fcx,
555             span,
556             mode,
557             method_name,
558             return_type,
559             inherent_candidates: Vec::new(),
560             extension_candidates: Vec::new(),
561             impl_dups: FxHashSet::default(),
562             orig_steps_var_values,
563             steps,
564             static_candidates: Vec::new(),
565             allow_similar_names: false,
566             private_candidate: None,
567             unsatisfied_predicates: Vec::new(),
568             is_suggestion,
569             scope_expr_id,
570         }
571     }
572
573     fn reset(&mut self) {
574         self.inherent_candidates.clear();
575         self.extension_candidates.clear();
576         self.impl_dups.clear();
577         self.static_candidates.clear();
578         self.private_candidate = None;
579     }
580
581     ///////////////////////////////////////////////////////////////////////////
582     // CANDIDATE ASSEMBLY
583
584     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
585         let is_accessible = if let Some(name) = self.method_name {
586             let item = candidate.item;
587             let def_scope = self
588                 .tcx
589                 .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
590                 .1;
591             item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
592         } else {
593             true
594         };
595         if is_accessible {
596             if is_inherent {
597                 self.inherent_candidates.push(candidate);
598             } else {
599                 self.extension_candidates.push(candidate);
600             }
601         } else if self.private_candidate.is_none() {
602             self.private_candidate =
603                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
604         }
605     }
606
607     fn assemble_inherent_candidates(&mut self) {
608         for step in self.steps.iter() {
609             self.assemble_probe(&step.self_ty);
610         }
611     }
612
613     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
614         debug!("assemble_probe: self_ty={:?}", self_ty);
615         let raw_self_ty = self_ty.value.value;
616         match *raw_self_ty.kind() {
617             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
618                 // Subtle: we can't use `instantiate_query_response` here: using it will
619                 // commit to all of the type equalities assumed by inference going through
620                 // autoderef (see the `method-probe-no-guessing` test).
621                 //
622                 // However, in this code, it is OK if we end up with an object type that is
623                 // "more general" than the object type that we are evaluating. For *every*
624                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
625                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
626                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
627                 // of the iterations in the autoderef loop, so there is no problem with it
628                 // being discoverable in another one of these iterations.
629                 //
630                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
631                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
632                 // `CanonicalVarValues` will exactly give us such a generalization - it
633                 // will still match the original object type, but it won't pollute our
634                 // type variables in any form, so just do that!
635                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
636                     self.fcx
637                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
638
639                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
640                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
641                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
642                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
643                 }
644             }
645             ty::Adt(def, _) => {
646                 let def_id = def.did();
647                 self.assemble_inherent_impl_candidates_for_type(def_id);
648                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
649                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
650                 }
651             }
652             ty::Foreign(did) => {
653                 self.assemble_inherent_impl_candidates_for_type(did);
654                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
655                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
656                 }
657             }
658             ty::Param(p) => {
659                 self.assemble_inherent_candidates_from_param(p);
660             }
661             ty::Bool
662             | ty::Char
663             | ty::Int(_)
664             | ty::Uint(_)
665             | ty::Float(_)
666             | ty::Str
667             | ty::Array(..)
668             | ty::Slice(_)
669             | ty::RawPtr(_)
670             | ty::Ref(..)
671             | ty::Never
672             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
673             _ => {}
674         }
675     }
676
677     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
678         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
679             bug!("unexpected incoherent type: {:?}", self_ty)
680         };
681         for &impl_def_id in self.tcx.incoherent_impls(simp) {
682             self.assemble_inherent_impl_probe(impl_def_id);
683         }
684     }
685
686     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
687         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
688         for &impl_def_id in impl_def_ids.iter() {
689             self.assemble_inherent_impl_probe(impl_def_id);
690         }
691     }
692
693     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
694         if !self.impl_dups.insert(impl_def_id) {
695             return; // already visited
696         }
697
698         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
699
700         for item in self.impl_or_trait_item(impl_def_id) {
701             if !self.has_applicable_self(&item) {
702                 // No receiver declared. Not a candidate.
703                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
704                 continue;
705             }
706
707             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
708             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
709
710             debug!("impl_ty: {:?}", impl_ty);
711
712             // Determine the receiver type that the method itself expects.
713             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
714             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
715
716             // We can't use normalize_associated_types_in as it will pollute the
717             // fcx's fulfillment context after this probe is over.
718             // Note: we only normalize `xform_self_ty` here since the normalization
719             // of the return type can lead to inference results that prohibit
720             // valid candidates from being found, see issue #85671
721             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
722             // which might be caused by the `param_env` itself. The clauses of the `param_env`
723             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
724             // see issue #89650
725             let cause = traits::ObligationCause::misc(self.span, self.body_id);
726             let selcx = &mut traits::SelectionContext::new(self.fcx);
727             let traits::Normalized { value: xform_self_ty, obligations } =
728                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
729             debug!(
730                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
731                 xform_self_ty, xform_ret_ty
732             );
733
734             self.push_candidate(
735                 Candidate {
736                     xform_self_ty,
737                     xform_ret_ty,
738                     item,
739                     kind: InherentImplCandidate(impl_substs, obligations),
740                     import_ids: smallvec![],
741                 },
742                 true,
743             );
744         }
745     }
746
747     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
748         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
749
750         let principal = match self_ty.kind() {
751             ty::Dynamic(ref data, ..) => Some(data),
752             _ => None,
753         }
754         .and_then(|data| data.principal())
755         .unwrap_or_else(|| {
756             span_bug!(
757                 self.span,
758                 "non-object {:?} in assemble_inherent_candidates_from_object",
759                 self_ty
760             )
761         });
762
763         // It is illegal to invoke a method on a trait instance that refers to
764         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
765         // will be reported by `object_safety.rs` if the method refers to the
766         // `Self` type anywhere other than the receiver. Here, we use a
767         // substitution that replaces `Self` with the object type itself. Hence,
768         // a `&self` method will wind up with an argument type like `&dyn Trait`.
769         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
770         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
771             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
772
773             let (xform_self_ty, xform_ret_ty) =
774                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
775             this.push_candidate(
776                 Candidate {
777                     xform_self_ty,
778                     xform_ret_ty,
779                     item,
780                     kind: ObjectCandidate,
781                     import_ids: smallvec![],
782                 },
783                 true,
784             );
785         });
786     }
787
788     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
789         // FIXME: do we want to commit to this behavior for param bounds?
790         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
791
792         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
793             let bound_predicate = predicate.kind();
794             match bound_predicate.skip_binder() {
795                 ty::PredicateKind::Trait(trait_predicate) => {
796                     match *trait_predicate.trait_ref.self_ty().kind() {
797                         ty::Param(p) if p == param_ty => {
798                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
799                         }
800                         _ => None,
801                     }
802                 }
803                 ty::PredicateKind::Subtype(..)
804                 | ty::PredicateKind::Coerce(..)
805                 | ty::PredicateKind::Projection(..)
806                 | ty::PredicateKind::RegionOutlives(..)
807                 | ty::PredicateKind::WellFormed(..)
808                 | ty::PredicateKind::ObjectSafe(..)
809                 | ty::PredicateKind::ClosureKind(..)
810                 | ty::PredicateKind::TypeOutlives(..)
811                 | ty::PredicateKind::ConstEvaluatable(..)
812                 | ty::PredicateKind::ConstEquate(..)
813                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
814             }
815         });
816
817         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
818             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
819
820             let (xform_self_ty, xform_ret_ty) =
821                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
822
823             // Because this trait derives from a where-clause, it
824             // should not contain any inference variables or other
825             // artifacts. This means it is safe to put into the
826             // `WhereClauseCandidate` and (eventually) into the
827             // `WhereClausePick`.
828             assert!(!trait_ref.substs.needs_infer());
829
830             this.push_candidate(
831                 Candidate {
832                     xform_self_ty,
833                     xform_ret_ty,
834                     item,
835                     kind: WhereClauseCandidate(poly_trait_ref),
836                     import_ids: smallvec![],
837                 },
838                 true,
839             );
840         });
841     }
842
843     // Do a search through a list of bounds, using a callback to actually
844     // create the candidates.
845     fn elaborate_bounds<F>(
846         &mut self,
847         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
848         mut mk_cand: F,
849     ) where
850         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
851     {
852         let tcx = self.tcx;
853         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
854             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
855             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
856                 if !self.has_applicable_self(&item) {
857                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
858                 } else {
859                     mk_cand(self, bound_trait_ref, item);
860                 }
861             }
862         }
863     }
864
865     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
866         let mut duplicates = FxHashSet::default();
867         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
868         if let Some(applicable_traits) = opt_applicable_traits {
869             for trait_candidate in applicable_traits.iter() {
870                 let trait_did = trait_candidate.def_id;
871                 if duplicates.insert(trait_did) {
872                     self.assemble_extension_candidates_for_trait(
873                         &trait_candidate.import_ids,
874                         trait_did,
875                     );
876                 }
877             }
878         }
879     }
880
881     fn assemble_extension_candidates_for_all_traits(&mut self) {
882         let mut duplicates = FxHashSet::default();
883         for trait_info in suggest::all_traits(self.tcx) {
884             if duplicates.insert(trait_info.def_id) {
885                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
886             }
887         }
888     }
889
890     pub fn matches_return_type(
891         &self,
892         method: &ty::AssocItem,
893         self_ty: Option<Ty<'tcx>>,
894         expected: Ty<'tcx>,
895     ) -> bool {
896         match method.kind {
897             ty::AssocKind::Fn => {
898                 let fty = self.tcx.bound_fn_sig(method.def_id);
899                 self.probe(|_| {
900                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
901                     let fty = fty.subst(self.tcx, substs);
902                     let fty =
903                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
904
905                     if let Some(self_ty) = self_ty {
906                         if self
907                             .at(&ObligationCause::dummy(), self.param_env)
908                             .sup(fty.inputs()[0], self_ty)
909                             .is_err()
910                         {
911                             return false;
912                         }
913                     }
914                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
915                 })
916             }
917             _ => false,
918         }
919     }
920
921     fn assemble_extension_candidates_for_trait(
922         &mut self,
923         import_ids: &SmallVec<[LocalDefId; 1]>,
924         trait_def_id: DefId,
925     ) {
926         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
927         let trait_substs = self.fresh_item_substs(trait_def_id);
928         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
929
930         if self.tcx.is_trait_alias(trait_def_id) {
931             // For trait aliases, assume all supertraits are relevant.
932             let bounds = iter::once(ty::Binder::dummy(trait_ref));
933             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
934                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
935
936                 let (xform_self_ty, xform_ret_ty) =
937                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
938                 this.push_candidate(
939                     Candidate {
940                         xform_self_ty,
941                         xform_ret_ty,
942                         item,
943                         import_ids: import_ids.clone(),
944                         kind: TraitCandidate(new_trait_ref),
945                     },
946                     false,
947                 );
948             });
949         } else {
950             debug_assert!(self.tcx.is_trait(trait_def_id));
951             for item in self.impl_or_trait_item(trait_def_id) {
952                 // Check whether `trait_def_id` defines a method with suitable name.
953                 if !self.has_applicable_self(&item) {
954                     debug!("method has inapplicable self");
955                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
956                     continue;
957                 }
958
959                 let (xform_self_ty, xform_ret_ty) =
960                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
961                 self.push_candidate(
962                     Candidate {
963                         xform_self_ty,
964                         xform_ret_ty,
965                         item,
966                         import_ids: import_ids.clone(),
967                         kind: TraitCandidate(trait_ref),
968                     },
969                     false,
970                 );
971             }
972         }
973     }
974
975     fn candidate_method_names(&self) -> Vec<Ident> {
976         let mut set = FxHashSet::default();
977         let mut names: Vec<_> = self
978             .inherent_candidates
979             .iter()
980             .chain(&self.extension_candidates)
981             .filter(|candidate| {
982                 if let Some(return_ty) = self.return_type {
983                     self.matches_return_type(&candidate.item, None, return_ty)
984                 } else {
985                     true
986                 }
987             })
988             .map(|candidate| candidate.item.ident(self.tcx))
989             .filter(|&name| set.insert(name))
990             .collect();
991
992         // Sort them by the name so we have a stable result.
993         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
994         names
995     }
996
997     ///////////////////////////////////////////////////////////////////////////
998     // THE ACTUAL SEARCH
999
1000     fn pick(mut self) -> PickResult<'tcx> {
1001         assert!(self.method_name.is_some());
1002
1003         if let Some(r) = self.pick_core() {
1004             return r;
1005         }
1006
1007         debug!("pick: actual search failed, assemble diagnostics");
1008
1009         let static_candidates = mem::take(&mut self.static_candidates);
1010         let private_candidate = self.private_candidate.take();
1011         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1012
1013         // things failed, so lets look at all traits, for diagnostic purposes now:
1014         self.reset();
1015
1016         let span = self.span;
1017         let tcx = self.tcx;
1018
1019         self.assemble_extension_candidates_for_all_traits();
1020
1021         let out_of_scope_traits = match self.pick_core() {
1022             Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1023             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1024             Some(Err(MethodError::Ambiguity(v))) => v
1025                 .into_iter()
1026                 .map(|source| match source {
1027                     CandidateSource::Trait(id) => id,
1028                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1029                         Some(id) => id,
1030                         None => span_bug!(span, "found inherent method when looking at traits"),
1031                     },
1032                 })
1033                 .collect(),
1034             Some(Err(MethodError::NoMatch(NoMatchData {
1035                 out_of_scope_traits: others, ..
1036             }))) => {
1037                 assert!(others.is_empty());
1038                 vec![]
1039             }
1040             _ => vec![],
1041         };
1042
1043         if let Some((kind, def_id)) = private_candidate {
1044             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1045         }
1046         let lev_candidate = self.probe_for_lev_candidate()?;
1047
1048         Err(MethodError::NoMatch(NoMatchData {
1049             static_candidates,
1050             unsatisfied_predicates,
1051             out_of_scope_traits,
1052             lev_candidate,
1053             mode: self.mode,
1054         }))
1055     }
1056
1057     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1058         let mut unstable_candidates = Vec::new();
1059         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1060
1061         // In this case unstable picking is done by `pick_method`.
1062         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1063             return pick;
1064         }
1065
1066         match pick {
1067             // Emit a lint if there are unstable candidates alongside the stable ones.
1068             //
1069             // We suppress warning if we're picking the method only because it is a
1070             // suggestion.
1071             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1072                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1073                 pick
1074             }
1075             Some(_) => pick,
1076             None => self.pick_all_method(None),
1077         }
1078     }
1079
1080     fn pick_all_method(
1081         &mut self,
1082         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1083     ) -> Option<PickResult<'tcx>> {
1084         let steps = self.steps.clone();
1085         steps
1086             .iter()
1087             .filter(|step| {
1088                 debug!("pick_all_method: step={:?}", step);
1089                 // skip types that are from a type error or that would require dereferencing
1090                 // a raw pointer
1091                 !step.self_ty.references_error() && !step.from_unsafe_deref
1092             })
1093             .flat_map(|step| {
1094                 let InferOk { value: self_ty, obligations: _ } = self
1095                     .fcx
1096                     .probe_instantiate_query_response(
1097                         self.span,
1098                         &self.orig_steps_var_values,
1099                         &step.self_ty,
1100                     )
1101                     .unwrap_or_else(|_| {
1102                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1103                     });
1104                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1105                     .or_else(|| {
1106                         self.pick_autorefd_method(
1107                             step,
1108                             self_ty,
1109                             hir::Mutability::Not,
1110                             unstable_candidates.as_deref_mut(),
1111                         )
1112                         .or_else(|| {
1113                             self.pick_autorefd_method(
1114                                 step,
1115                                 self_ty,
1116                                 hir::Mutability::Mut,
1117                                 unstable_candidates.as_deref_mut(),
1118                             )
1119                         })
1120                         .or_else(|| {
1121                             self.pick_const_ptr_method(
1122                                 step,
1123                                 self_ty,
1124                                 unstable_candidates.as_deref_mut(),
1125                             )
1126                         })
1127                     })
1128             })
1129             .next()
1130     }
1131
1132     /// For each type `T` in the step list, this attempts to find a method where
1133     /// the (transformed) self type is exactly `T`. We do however do one
1134     /// transformation on the adjustment: if we are passing a region pointer in,
1135     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1136     /// to transparently pass `&mut` pointers, in particular, without consuming
1137     /// them for their entire lifetime.
1138     fn pick_by_value_method(
1139         &mut self,
1140         step: &CandidateStep<'tcx>,
1141         self_ty: Ty<'tcx>,
1142         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1143     ) -> Option<PickResult<'tcx>> {
1144         if step.unsize {
1145             return None;
1146         }
1147
1148         self.pick_method(self_ty, unstable_candidates).map(|r| {
1149             r.map(|mut pick| {
1150                 pick.autoderefs = step.autoderefs;
1151
1152                 // Insert a `&*` or `&mut *` if this is a reference type:
1153                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1154                     pick.autoderefs += 1;
1155                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1156                         mutbl,
1157                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1158                     })
1159                 }
1160
1161                 pick
1162             })
1163         })
1164     }
1165
1166     fn pick_autorefd_method(
1167         &mut self,
1168         step: &CandidateStep<'tcx>,
1169         self_ty: Ty<'tcx>,
1170         mutbl: hir::Mutability,
1171         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1172     ) -> Option<PickResult<'tcx>> {
1173         let tcx = self.tcx;
1174
1175         // In general, during probing we erase regions.
1176         let region = tcx.lifetimes.re_erased;
1177
1178         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1179         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1180             r.map(|mut pick| {
1181                 pick.autoderefs = step.autoderefs;
1182                 pick.autoref_or_ptr_adjustment =
1183                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1184                 pick
1185             })
1186         })
1187     }
1188
1189     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1190     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1191     /// autorefs would require dereferencing the pointer, which is not safe.
1192     fn pick_const_ptr_method(
1193         &mut self,
1194         step: &CandidateStep<'tcx>,
1195         self_ty: Ty<'tcx>,
1196         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1197     ) -> Option<PickResult<'tcx>> {
1198         // Don't convert an unsized reference to ptr
1199         if step.unsize {
1200             return None;
1201         }
1202
1203         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1204             return None;
1205         };
1206
1207         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1208         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1209         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1210             r.map(|mut pick| {
1211                 pick.autoderefs = step.autoderefs;
1212                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1213                 pick
1214             })
1215         })
1216     }
1217
1218     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1219         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1220
1221         let mut possibly_unsatisfied_predicates = Vec::new();
1222         let mut unstable_candidates = Vec::new();
1223
1224         for (kind, candidates) in
1225             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1226         {
1227             debug!("searching {} candidates", kind);
1228             let res = self.consider_candidates(
1229                 self_ty,
1230                 candidates.iter(),
1231                 &mut possibly_unsatisfied_predicates,
1232                 Some(&mut unstable_candidates),
1233             );
1234             if let Some(pick) = res {
1235                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1236                     if let Ok(p) = &pick {
1237                         // Emit a lint if there are unstable candidates alongside the stable ones.
1238                         //
1239                         // We suppress warning if we're picking the method only because it is a
1240                         // suggestion.
1241                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1242                     }
1243                 }
1244                 return Some(pick);
1245             }
1246         }
1247
1248         debug!("searching unstable candidates");
1249         let res = self.consider_candidates(
1250             self_ty,
1251             unstable_candidates.iter().map(|(c, _)| c),
1252             &mut possibly_unsatisfied_predicates,
1253             None,
1254         );
1255         if res.is_none() {
1256             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1257         }
1258         res
1259     }
1260
1261     fn pick_method(
1262         &mut self,
1263         self_ty: Ty<'tcx>,
1264         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1265     ) -> Option<PickResult<'tcx>> {
1266         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1267             return self.pick_method_with_unstable(self_ty);
1268         }
1269
1270         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1271
1272         let mut possibly_unsatisfied_predicates = Vec::new();
1273
1274         for (kind, candidates) in
1275             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1276         {
1277             debug!("searching {} candidates", kind);
1278             let res = self.consider_candidates(
1279                 self_ty,
1280                 candidates.iter(),
1281                 &mut possibly_unsatisfied_predicates,
1282                 unstable_candidates.as_deref_mut(),
1283             );
1284             if let Some(pick) = res {
1285                 return Some(pick);
1286             }
1287         }
1288
1289         // `pick_method` may be called twice for the same self_ty if no stable methods
1290         // match. Only extend once.
1291         if unstable_candidates.is_some() {
1292             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1293         }
1294         None
1295     }
1296
1297     fn consider_candidates<'b, ProbesIter>(
1298         &self,
1299         self_ty: Ty<'tcx>,
1300         probes: ProbesIter,
1301         possibly_unsatisfied_predicates: &mut Vec<(
1302             ty::Predicate<'tcx>,
1303             Option<ty::Predicate<'tcx>>,
1304             Option<ObligationCause<'tcx>>,
1305         )>,
1306         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1307     ) -> Option<PickResult<'tcx>>
1308     where
1309         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1310         'tcx: 'b,
1311     {
1312         let mut applicable_candidates: Vec<_> = probes
1313             .clone()
1314             .map(|probe| {
1315                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1316             })
1317             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1318             .collect();
1319
1320         debug!("applicable_candidates: {:?}", applicable_candidates);
1321
1322         if applicable_candidates.len() > 1 {
1323             if let Some(pick) =
1324                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1325             {
1326                 return Some(Ok(pick));
1327             }
1328         }
1329
1330         if let Some(uc) = unstable_candidates {
1331             applicable_candidates.retain(|&(p, _)| {
1332                 if let stability::EvalResult::Deny { feature, .. } =
1333                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1334                 {
1335                     uc.push((p.clone(), feature));
1336                     return false;
1337                 }
1338                 true
1339             });
1340         }
1341
1342         if applicable_candidates.len() > 1 {
1343             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1344             return Some(Err(MethodError::Ambiguity(sources)));
1345         }
1346
1347         applicable_candidates.pop().map(|(probe, status)| {
1348             if status == ProbeResult::Match {
1349                 Ok(probe.to_unadjusted_pick(self_ty))
1350             } else {
1351                 Err(MethodError::BadReturnType)
1352             }
1353         })
1354     }
1355
1356     fn emit_unstable_name_collision_hint(
1357         &self,
1358         stable_pick: &Pick<'_>,
1359         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1360     ) {
1361         self.tcx.struct_span_lint_hir(
1362             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1363             self.scope_expr_id,
1364             self.span,
1365             |lint| {
1366                 let def_kind = stable_pick.item.kind.as_def_kind();
1367                 let mut diag = lint.build(&format!(
1368                     "{} {} with this name may be added to the standard library in the future",
1369                     def_kind.article(),
1370                     def_kind.descr(stable_pick.item.def_id),
1371                 ));
1372                 match (stable_pick.item.kind, stable_pick.item.container) {
1373                     (ty::AssocKind::Fn, _) => {
1374                         // FIXME: This should be a `span_suggestion` instead of `help`
1375                         // However `self.span` only
1376                         // highlights the method name, so we can't use it. Also consider reusing
1377                         // the code from `report_method_error()`.
1378                         diag.help(&format!(
1379                             "call with fully qualified syntax `{}(...)` to keep using the current \
1380                              method",
1381                             self.tcx.def_path_str(stable_pick.item.def_id),
1382                         ));
1383                     }
1384                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
1385                         let def_id = stable_pick.item.container_id(self.tcx);
1386                         diag.span_suggestion(
1387                             self.span,
1388                             "use the fully qualified path to the associated const",
1389                             format!(
1390                                 "<{} as {}>::{}",
1391                                 stable_pick.self_ty,
1392                                 self.tcx.def_path_str(def_id),
1393                                 stable_pick.item.name
1394                             ),
1395                             Applicability::MachineApplicable,
1396                         );
1397                     }
1398                     _ => {}
1399                 }
1400                 if self.tcx.sess.is_nightly_build() {
1401                     for (candidate, feature) in unstable_candidates {
1402                         diag.help(&format!(
1403                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1404                             feature,
1405                             self.tcx.def_path_str(candidate.item.def_id),
1406                         ));
1407                     }
1408                 }
1409
1410                 diag.emit();
1411             },
1412         );
1413     }
1414
1415     fn select_trait_candidate(
1416         &self,
1417         trait_ref: ty::TraitRef<'tcx>,
1418     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1419         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1420         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1421         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1422         traits::SelectionContext::new(self).select(&obligation)
1423     }
1424
1425     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1426         match candidate.kind {
1427             InherentImplCandidate(..) => {
1428                 CandidateSource::Impl(candidate.item.container_id(self.tcx))
1429             }
1430             ObjectCandidate | WhereClauseCandidate(_) => {
1431                 CandidateSource::Trait(candidate.item.container_id(self.tcx))
1432             }
1433             TraitCandidate(trait_ref) => self.probe(|_| {
1434                 let _ = self
1435                     .at(&ObligationCause::dummy(), self.param_env)
1436                     .define_opaque_types(false)
1437                     .sup(candidate.xform_self_ty, self_ty);
1438                 match self.select_trait_candidate(trait_ref) {
1439                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1440                         // If only a single impl matches, make the error message point
1441                         // to that impl.
1442                         CandidateSource::Impl(impl_data.impl_def_id)
1443                     }
1444                     _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1445                 }
1446             }),
1447         }
1448     }
1449
1450     fn consider_probe(
1451         &self,
1452         self_ty: Ty<'tcx>,
1453         probe: &Candidate<'tcx>,
1454         possibly_unsatisfied_predicates: &mut Vec<(
1455             ty::Predicate<'tcx>,
1456             Option<ty::Predicate<'tcx>>,
1457             Option<ObligationCause<'tcx>>,
1458         )>,
1459     ) -> ProbeResult {
1460         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1461
1462         self.probe(|_| {
1463             // First check that the self type can be related.
1464             let sub_obligations = match self
1465                 .at(&ObligationCause::dummy(), self.param_env)
1466                 .define_opaque_types(false)
1467                 .sup(probe.xform_self_ty, self_ty)
1468             {
1469                 Ok(InferOk { obligations, value: () }) => obligations,
1470                 Err(err) => {
1471                     debug!("--> cannot relate self-types {:?}", err);
1472                     return ProbeResult::NoMatch;
1473                 }
1474             };
1475
1476             let mut result = ProbeResult::Match;
1477             let mut xform_ret_ty = probe.xform_ret_ty;
1478             debug!(?xform_ret_ty);
1479
1480             let selcx = &mut traits::SelectionContext::new(self);
1481             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1482
1483             let mut parent_pred = None;
1484
1485             // If so, impls may carry other conditions (e.g., where
1486             // clauses) that must be considered. Make sure that those
1487             // match as well (or at least may match, sometimes we
1488             // don't have enough information to fully evaluate).
1489             match probe.kind {
1490                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1491                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1492                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1493                     // for why this is necessary
1494                     let traits::Normalized {
1495                         value: normalized_xform_ret_ty,
1496                         obligations: normalization_obligations,
1497                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1498                     xform_ret_ty = normalized_xform_ret_ty;
1499                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1500
1501                     // Check whether the impl imposes obligations we have to worry about.
1502                     let impl_def_id = probe.item.container_id(self.tcx);
1503                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1504                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1505                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1506                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1507
1508                     // Convert the bounds into obligations.
1509                     let impl_obligations = traits::predicates_for_generics(
1510                         move |_, _| cause.clone(),
1511                         self.param_env,
1512                         impl_bounds,
1513                     );
1514
1515                     let candidate_obligations = impl_obligations
1516                         .chain(norm_obligations.into_iter())
1517                         .chain(ref_obligations.iter().cloned())
1518                         .chain(normalization_obligations.into_iter());
1519
1520                     // Evaluate those obligations to see if they might possibly hold.
1521                     for o in candidate_obligations {
1522                         let o = self.resolve_vars_if_possible(o);
1523                         if !self.predicate_may_hold(&o) {
1524                             result = ProbeResult::NoMatch;
1525                             possibly_unsatisfied_predicates.push((
1526                                 o.predicate,
1527                                 None,
1528                                 Some(o.cause),
1529                             ));
1530                         }
1531                     }
1532                 }
1533
1534                 ObjectCandidate | WhereClauseCandidate(..) => {
1535                     // These have no additional conditions to check.
1536                 }
1537
1538                 TraitCandidate(trait_ref) => {
1539                     if let Some(method_name) = self.method_name {
1540                         // Some trait methods are excluded for arrays before 2021.
1541                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1542                         if self_ty.is_array() && !method_name.span.rust_2021() {
1543                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1544                             if trait_def.skip_array_during_method_dispatch {
1545                                 return ProbeResult::NoMatch;
1546                             }
1547                         }
1548                     }
1549                     let predicate =
1550                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1551                     parent_pred = Some(predicate);
1552                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1553                     if !self.predicate_may_hold(&obligation) {
1554                         result = ProbeResult::NoMatch;
1555                         if self.probe(|_| {
1556                             match self.select_trait_candidate(trait_ref) {
1557                                 Err(_) => return true,
1558                                 Ok(Some(impl_source))
1559                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1560                                 {
1561                                     for obligation in impl_source.borrow_nested_obligations() {
1562                                         // Determine exactly which obligation wasn't met, so
1563                                         // that we can give more context in the error.
1564                                         if !self.predicate_may_hold(obligation) {
1565                                             let nested_predicate =
1566                                                 self.resolve_vars_if_possible(obligation.predicate);
1567                                             let predicate =
1568                                                 self.resolve_vars_if_possible(predicate);
1569                                             let p = if predicate == nested_predicate {
1570                                                 // Avoid "`MyStruct: Foo` which is required by
1571                                                 // `MyStruct: Foo`" in E0599.
1572                                                 None
1573                                             } else {
1574                                                 Some(predicate)
1575                                             };
1576                                             possibly_unsatisfied_predicates.push((
1577                                                 nested_predicate,
1578                                                 p,
1579                                                 Some(obligation.cause.clone()),
1580                                             ));
1581                                         }
1582                                     }
1583                                 }
1584                                 _ => {
1585                                     // Some nested subobligation of this predicate
1586                                     // failed.
1587                                     let predicate = self.resolve_vars_if_possible(predicate);
1588                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1589                                 }
1590                             }
1591                             false
1592                         }) {
1593                             // This candidate's primary obligation doesn't even
1594                             // select - don't bother registering anything in
1595                             // `potentially_unsatisfied_predicates`.
1596                             return ProbeResult::NoMatch;
1597                         }
1598                     }
1599                 }
1600             }
1601
1602             // Evaluate those obligations to see if they might possibly hold.
1603             for o in sub_obligations {
1604                 let o = self.resolve_vars_if_possible(o);
1605                 if !self.predicate_may_hold(&o) {
1606                     result = ProbeResult::NoMatch;
1607                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1608                 }
1609             }
1610
1611             if let ProbeResult::Match = result {
1612                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1613                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1614                     debug!(
1615                         "comparing return_ty {:?} with xform ret ty {:?}",
1616                         return_ty, probe.xform_ret_ty
1617                     );
1618                     if self
1619                         .at(&ObligationCause::dummy(), self.param_env)
1620                         .define_opaque_types(false)
1621                         .sup(return_ty, xform_ret_ty)
1622                         .is_err()
1623                     {
1624                         return ProbeResult::BadReturnType;
1625                     }
1626                 }
1627             }
1628
1629             result
1630         })
1631     }
1632
1633     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1634     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1635     /// external interface of the method can be determined from the trait, it's ok not to decide.
1636     /// We can basically just collapse all of the probes for various impls into one where-clause
1637     /// probe. This will result in a pending obligation so when more type-info is available we can
1638     /// make the final decision.
1639     ///
1640     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1641     ///
1642     /// ```ignore (illustrative)
1643     /// trait Foo { ... }
1644     /// impl Foo for Vec<i32> { ... }
1645     /// impl Foo for Vec<usize> { ... }
1646     /// ```
1647     ///
1648     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1649     /// use, so it's ok to just commit to "using the method from the trait Foo".
1650     fn collapse_candidates_to_trait_pick(
1651         &self,
1652         self_ty: Ty<'tcx>,
1653         probes: &[(&Candidate<'tcx>, ProbeResult)],
1654     ) -> Option<Pick<'tcx>> {
1655         // Do all probes correspond to the same trait?
1656         let container = probes[0].0.item.trait_container(self.tcx)?;
1657         for (p, _) in &probes[1..] {
1658             let p_container = p.item.trait_container(self.tcx)?;
1659             if p_container != container {
1660                 return None;
1661             }
1662         }
1663
1664         // FIXME: check the return type here somehow.
1665         // If so, just use this trait and call it a day.
1666         Some(Pick {
1667             item: probes[0].0.item,
1668             kind: TraitPick,
1669             import_ids: probes[0].0.import_ids.clone(),
1670             autoderefs: 0,
1671             autoref_or_ptr_adjustment: None,
1672             self_ty,
1673         })
1674     }
1675
1676     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1677     /// candidate method where the method name may have been misspelled. Similarly to other
1678     /// Levenshtein based suggestions, we provide at most one such suggestion.
1679     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1680         debug!("probing for method names similar to {:?}", self.method_name);
1681
1682         let steps = self.steps.clone();
1683         self.probe(|_| {
1684             let mut pcx = ProbeContext::new(
1685                 self.fcx,
1686                 self.span,
1687                 self.mode,
1688                 self.method_name,
1689                 self.return_type,
1690                 self.orig_steps_var_values.clone(),
1691                 steps,
1692                 IsSuggestion(true),
1693                 self.scope_expr_id,
1694             );
1695             pcx.allow_similar_names = true;
1696             pcx.assemble_inherent_candidates();
1697
1698             let method_names = pcx.candidate_method_names();
1699             pcx.allow_similar_names = false;
1700             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1701                 .iter()
1702                 .filter_map(|&method_name| {
1703                     pcx.reset();
1704                     pcx.method_name = Some(method_name);
1705                     pcx.assemble_inherent_candidates();
1706                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1707                 })
1708                 .collect();
1709
1710             if applicable_close_candidates.is_empty() {
1711                 Ok(None)
1712             } else {
1713                 let best_name = {
1714                     let names = applicable_close_candidates
1715                         .iter()
1716                         .map(|cand| cand.name)
1717                         .collect::<Vec<Symbol>>();
1718                     find_best_match_for_name_with_substrings(
1719                         &names,
1720                         self.method_name.unwrap().name,
1721                         None,
1722                     )
1723                 }
1724                 .unwrap();
1725                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1726             }
1727         })
1728     }
1729
1730     ///////////////////////////////////////////////////////////////////////////
1731     // MISCELLANY
1732     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1733         // "Fast track" -- check for usage of sugar when in method call
1734         // mode.
1735         //
1736         // In Path mode (i.e., resolving a value like `T::next`), consider any
1737         // associated value (i.e., methods, constants) but not types.
1738         match self.mode {
1739             Mode::MethodCall => item.fn_has_self_parameter,
1740             Mode::Path => match item.kind {
1741                 ty::AssocKind::Type => false,
1742                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1743             },
1744         }
1745         // FIXME -- check for types that deref to `Self`,
1746         // like `Rc<Self>` and so on.
1747         //
1748         // Note also that the current code will break if this type
1749         // includes any of the type parameters defined on the method
1750         // -- but this could be overcome.
1751     }
1752
1753     fn record_static_candidate(&mut self, source: CandidateSource) {
1754         self.static_candidates.push(source);
1755     }
1756
1757     #[instrument(level = "debug", skip(self))]
1758     fn xform_self_ty(
1759         &self,
1760         item: &ty::AssocItem,
1761         impl_ty: Ty<'tcx>,
1762         substs: SubstsRef<'tcx>,
1763     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1764         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1765             let sig = self.xform_method_sig(item.def_id, substs);
1766             (sig.inputs()[0], Some(sig.output()))
1767         } else {
1768             (impl_ty, None)
1769         }
1770     }
1771
1772     #[instrument(level = "debug", skip(self))]
1773     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1774         let fn_sig = self.tcx.bound_fn_sig(method);
1775         debug!(?fn_sig);
1776
1777         assert!(!substs.has_escaping_bound_vars());
1778
1779         // It is possible for type parameters or early-bound lifetimes
1780         // to appear in the signature of `self`. The substitutions we
1781         // are given do not include type/lifetime parameters for the
1782         // method yet. So create fresh variables here for those too,
1783         // if there are any.
1784         let generics = self.tcx.generics_of(method);
1785         assert_eq!(substs.len(), generics.parent_count as usize);
1786
1787         let xform_fn_sig = if generics.params.is_empty() {
1788             fn_sig.subst(self.tcx, substs)
1789         } else {
1790             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1791                 let i = param.index as usize;
1792                 if i < substs.len() {
1793                     substs[i]
1794                 } else {
1795                     match param.kind {
1796                         GenericParamDefKind::Lifetime => {
1797                             // In general, during probe we erase regions.
1798                             self.tcx.lifetimes.re_erased.into()
1799                         }
1800                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1801                             self.var_for_def(self.span, param)
1802                         }
1803                     }
1804                 }
1805             });
1806             fn_sig.subst(self.tcx, substs)
1807         };
1808
1809         self.erase_late_bound_regions(xform_fn_sig)
1810     }
1811
1812     /// Gets the type of an impl and generate substitutions with inference vars.
1813     fn impl_ty_and_substs(
1814         &self,
1815         impl_def_id: DefId,
1816     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1817         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1818     }
1819
1820     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1821         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1822             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1823             GenericParamDefKind::Type { .. } => self
1824                 .next_ty_var(TypeVariableOrigin {
1825                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1826                     span: self.tcx.def_span(def_id),
1827                 })
1828                 .into(),
1829             GenericParamDefKind::Const { .. } => {
1830                 let span = self.tcx.def_span(def_id);
1831                 let origin = ConstVariableOrigin {
1832                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1833                     span,
1834                 };
1835                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1836             }
1837         })
1838     }
1839
1840     /// Replaces late-bound-regions bound by `value` with `'static` using
1841     /// `ty::erase_late_bound_regions`.
1842     ///
1843     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1844     /// method matching. It is reasonable during the probe phase because we don't consider region
1845     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1846     /// rather than creating fresh region variables. This is nice for two reasons:
1847     ///
1848     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1849     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1850     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1851     ///
1852     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1853     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1854     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1855     ///    region got replaced with the same variable, which requires a bit more coordination
1856     ///    and/or tracking the substitution and
1857     ///    so forth.
1858     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1859     where
1860         T: TypeFoldable<'tcx>,
1861     {
1862         self.tcx.erase_late_bound_regions(value)
1863     }
1864
1865     /// Finds the method with the appropriate name (or return type, as the case may be). If
1866     /// `allow_similar_names` is set, find methods with close-matching names.
1867     // The length of the returned iterator is nearly always 0 or 1 and this
1868     // method is fairly hot.
1869     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1870         if let Some(name) = self.method_name {
1871             if self.allow_similar_names {
1872                 let max_dist = max(name.as_str().len(), 3) / 3;
1873                 self.tcx
1874                     .associated_items(def_id)
1875                     .in_definition_order()
1876                     .filter(|x| {
1877                         if x.kind.namespace() != Namespace::ValueNS {
1878                             return false;
1879                         }
1880                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1881                         {
1882                             Some(d) => d > 0,
1883                             None => false,
1884                         }
1885                     })
1886                     .copied()
1887                     .collect()
1888             } else {
1889                 self.fcx
1890                     .associated_value(def_id, name)
1891                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1892             }
1893         } else {
1894             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1895         }
1896     }
1897 }
1898
1899 impl<'tcx> Candidate<'tcx> {
1900     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1901         Pick {
1902             item: self.item,
1903             kind: match self.kind {
1904                 InherentImplCandidate(..) => InherentImplPick,
1905                 ObjectCandidate => ObjectPick,
1906                 TraitCandidate(_) => TraitPick,
1907                 WhereClauseCandidate(ref trait_ref) => {
1908                     // Only trait derived from where-clauses should
1909                     // appear here, so they should not contain any
1910                     // inference variables or other artifacts. This
1911                     // means they are safe to put into the
1912                     // `WhereClausePick`.
1913                     assert!(
1914                         !trait_ref.skip_binder().substs.needs_infer()
1915                             && !trait_ref.skip_binder().substs.has_placeholders()
1916                     );
1917
1918                     WhereClausePick(*trait_ref)
1919                 }
1920             },
1921             import_ids: self.import_ids.clone(),
1922             autoderefs: 0,
1923             autoref_or_ptr_adjustment: None,
1924             self_ty,
1925         }
1926     }
1927 }