]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_analysis/src/check/expr.rs
Rollup merge of #101308 - nerdypepper:feature/is-ascii-octdigit, r=joshtriplett
[rust.git] / compiler / rustc_hir_analysis / src / check / expr.rs
1 //! Type checking expressions.
2 //!
3 //! See `mod.rs` for more context on type checking in general.
4
5 use crate::astconv::AstConv as _;
6 use crate::check::cast::{self, CastCheckResult};
7 use crate::check::coercion::CoerceMany;
8 use crate::check::fatally_break_rust;
9 use crate::check::method::SelfSource;
10 use crate::check::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
11 use crate::check::{
12     report_unexpected_variant_res, BreakableCtxt, Diverges, DynamicCoerceMany, FnCtxt, Needs,
13     TupleArgumentsFlag::DontTupleArguments,
14 };
15 use crate::errors::{
16     FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
17     YieldExprOutsideOfGenerator,
18 };
19 use crate::type_error_struct;
20
21 use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
22 use rustc_ast as ast;
23 use rustc_data_structures::fx::FxHashMap;
24 use rustc_data_structures::stack::ensure_sufficient_stack;
25 use rustc_errors::{
26     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
27     ErrorGuaranteed, StashKey,
28 };
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind, Res};
31 use rustc_hir::def_id::DefId;
32 use rustc_hir::intravisit::Visitor;
33 use rustc_hir::lang_items::LangItem;
34 use rustc_hir::{Closure, ExprKind, HirId, QPath};
35 use rustc_infer::infer;
36 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
37 use rustc_infer::infer::InferOk;
38 use rustc_infer::traits::ObligationCause;
39 use rustc_middle::middle::stability;
40 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
41 use rustc_middle::ty::error::TypeError::FieldMisMatch;
42 use rustc_middle::ty::subst::SubstsRef;
43 use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
44 use rustc_session::errors::ExprParenthesesNeeded;
45 use rustc_session::parse::feature_err;
46 use rustc_span::hygiene::DesugaringKind;
47 use rustc_span::lev_distance::find_best_match_for_name;
48 use rustc_span::source_map::{Span, Spanned};
49 use rustc_span::symbol::{kw, sym, Ident, Symbol};
50 use rustc_target::spec::abi::Abi::RustIntrinsic;
51 use rustc_trait_selection::infer::InferCtxtExt;
52 use rustc_trait_selection::traits::{self, ObligationCauseCode};
53
54 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
55     fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
56         let ty = self.check_expr_with_hint(expr, expected);
57         self.demand_eqtype(expr.span, expected, ty);
58     }
59
60     pub fn check_expr_has_type_or_error(
61         &self,
62         expr: &'tcx hir::Expr<'tcx>,
63         expected: Ty<'tcx>,
64         extend_err: impl FnMut(&mut Diagnostic),
65     ) -> Ty<'tcx> {
66         self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
67     }
68
69     fn check_expr_meets_expectation_or_error(
70         &self,
71         expr: &'tcx hir::Expr<'tcx>,
72         expected: Expectation<'tcx>,
73         mut extend_err: impl FnMut(&mut Diagnostic),
74     ) -> Ty<'tcx> {
75         let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
76         let mut ty = self.check_expr_with_expectation(expr, expected);
77
78         // While we don't allow *arbitrary* coercions here, we *do* allow
79         // coercions from ! to `expected`.
80         if ty.is_never() {
81             if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
82                 self.tcx().sess.delay_span_bug(
83                     expr.span,
84                     "expression with never type wound up being adjusted",
85                 );
86                 return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
87                     target.to_owned()
88                 } else {
89                     self.tcx().ty_error()
90                 };
91             }
92
93             let adj_ty = self.next_ty_var(TypeVariableOrigin {
94                 kind: TypeVariableOriginKind::AdjustmentType,
95                 span: expr.span,
96             });
97             self.apply_adjustments(
98                 expr,
99                 vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
100             );
101             ty = adj_ty;
102         }
103
104         if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
105             let expr = expr.peel_drop_temps();
106             self.suggest_deref_ref_or_into(&mut err, expr, expected_ty, ty, None);
107             extend_err(&mut err);
108             err.emit();
109         }
110         ty
111     }
112
113     pub(super) fn check_expr_coercable_to_type(
114         &self,
115         expr: &'tcx hir::Expr<'tcx>,
116         expected: Ty<'tcx>,
117         expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
118     ) -> Ty<'tcx> {
119         let ty = self.check_expr_with_hint(expr, expected);
120         // checks don't need two phase
121         self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
122     }
123
124     pub(super) fn check_expr_with_hint(
125         &self,
126         expr: &'tcx hir::Expr<'tcx>,
127         expected: Ty<'tcx>,
128     ) -> Ty<'tcx> {
129         self.check_expr_with_expectation(expr, ExpectHasType(expected))
130     }
131
132     fn check_expr_with_expectation_and_needs(
133         &self,
134         expr: &'tcx hir::Expr<'tcx>,
135         expected: Expectation<'tcx>,
136         needs: Needs,
137     ) -> Ty<'tcx> {
138         let ty = self.check_expr_with_expectation(expr, expected);
139
140         // If the expression is used in a place whether mutable place is required
141         // e.g. LHS of assignment, perform the conversion.
142         if let Needs::MutPlace = needs {
143             self.convert_place_derefs_to_mutable(expr);
144         }
145
146         ty
147     }
148
149     pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
150         self.check_expr_with_expectation(expr, NoExpectation)
151     }
152
153     pub(super) fn check_expr_with_needs(
154         &self,
155         expr: &'tcx hir::Expr<'tcx>,
156         needs: Needs,
157     ) -> Ty<'tcx> {
158         self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
159     }
160
161     /// Invariant:
162     /// If an expression has any sub-expressions that result in a type error,
163     /// inspecting that expression's type with `ty.references_error()` will return
164     /// true. Likewise, if an expression is known to diverge, inspecting its
165     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
166     /// strict, _|_ can appear in the type of an expression that does not,
167     /// itself, diverge: for example, fn() -> _|_.)
168     /// Note that inspecting a type's structure *directly* may expose the fact
169     /// that there are actually multiple representations for `Error`, so avoid
170     /// that when err needs to be handled differently.
171     #[instrument(skip(self, expr), level = "debug")]
172     pub(super) fn check_expr_with_expectation(
173         &self,
174         expr: &'tcx hir::Expr<'tcx>,
175         expected: Expectation<'tcx>,
176     ) -> Ty<'tcx> {
177         self.check_expr_with_expectation_and_args(expr, expected, &[])
178     }
179
180     /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
181     /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
182     pub(super) fn check_expr_with_expectation_and_args(
183         &self,
184         expr: &'tcx hir::Expr<'tcx>,
185         expected: Expectation<'tcx>,
186         args: &'tcx [hir::Expr<'tcx>],
187     ) -> Ty<'tcx> {
188         if self.tcx().sess.verbose() {
189             // make this code only run with -Zverbose because it is probably slow
190             if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
191                 if !lint_str.contains('\n') {
192                     debug!("expr text: {lint_str}");
193                 } else {
194                     let mut lines = lint_str.lines();
195                     if let Some(line0) = lines.next() {
196                         let remaining_lines = lines.count();
197                         debug!("expr text: {line0}");
198                         debug!("expr text: ...(and {remaining_lines} more lines)");
199                     }
200                 }
201             }
202         }
203
204         // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
205         // without the final expr (e.g. `try { return; }`). We don't want to generate an
206         // unreachable_code lint for it since warnings for autogenerated code are confusing.
207         let is_try_block_generated_unit_expr = match expr.kind {
208             ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
209                 args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
210             }
211
212             _ => false,
213         };
214
215         // Warn for expressions after diverging siblings.
216         if !is_try_block_generated_unit_expr {
217             self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
218         }
219
220         // Hide the outer diverging and has_errors flags.
221         let old_diverges = self.diverges.replace(Diverges::Maybe);
222         let old_has_errors = self.has_errors.replace(false);
223
224         let ty = ensure_sufficient_stack(|| match &expr.kind {
225             hir::ExprKind::Path(
226                 qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
227             ) => self.check_expr_path(qpath, expr, args),
228             _ => self.check_expr_kind(expr, expected),
229         });
230
231         // Warn for non-block expressions with diverging children.
232         match expr.kind {
233             ExprKind::Block(..)
234             | ExprKind::If(..)
235             | ExprKind::Let(..)
236             | ExprKind::Loop(..)
237             | ExprKind::Match(..) => {}
238             // If `expr` is a result of desugaring the try block and is an ok-wrapped
239             // diverging expression (e.g. it arose from desugaring of `try { return }`),
240             // we skip issuing a warning because it is autogenerated code.
241             ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
242             ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
243             ExprKind::MethodCall(segment, ..) => {
244                 self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
245             }
246             _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
247         }
248
249         // Any expression that produces a value of type `!` must have diverged
250         if ty.is_never() {
251             self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
252         }
253
254         // Record the type, which applies it effects.
255         // We need to do this after the warning above, so that
256         // we don't warn for the diverging expression itself.
257         self.write_ty(expr.hir_id, ty);
258
259         // Combine the diverging and has_error flags.
260         self.diverges.set(self.diverges.get() | old_diverges);
261         self.has_errors.set(self.has_errors.get() | old_has_errors);
262
263         debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
264         debug!("... {:?}, expected is {:?}", ty, expected);
265
266         ty
267     }
268
269     #[instrument(skip(self, expr), level = "debug")]
270     fn check_expr_kind(
271         &self,
272         expr: &'tcx hir::Expr<'tcx>,
273         expected: Expectation<'tcx>,
274     ) -> Ty<'tcx> {
275         trace!("expr={:#?}", expr);
276
277         let tcx = self.tcx;
278         match expr.kind {
279             ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
280             ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
281             ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
282             ExprKind::Assign(lhs, rhs, span) => {
283                 self.check_expr_assign(expr, expected, lhs, rhs, span)
284             }
285             ExprKind::AssignOp(op, lhs, rhs) => {
286                 self.check_binop_assign(expr, op, lhs, rhs, expected)
287             }
288             ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
289             ExprKind::AddrOf(kind, mutbl, oprnd) => {
290                 self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
291             }
292             ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
293                 self.check_lang_item_path(lang_item, expr, hir_id)
294             }
295             ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
296             ExprKind::InlineAsm(asm) => {
297                 // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
298                 self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
299                 self.check_expr_asm(asm)
300             }
301             ExprKind::Break(destination, ref expr_opt) => {
302                 self.check_expr_break(destination, expr_opt.as_deref(), expr)
303             }
304             ExprKind::Continue(destination) => {
305                 if destination.target_id.is_ok() {
306                     tcx.types.never
307                 } else {
308                     // There was an error; make type-check fail.
309                     tcx.ty_error()
310                 }
311             }
312             ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
313             ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
314             ExprKind::Loop(body, _, source, _) => {
315                 self.check_expr_loop(body, source, expected, expr)
316             }
317             ExprKind::Match(discrim, arms, match_src) => {
318                 self.check_match(expr, &discrim, arms, expected, match_src)
319             }
320             ExprKind::Closure(&Closure { capture_clause, fn_decl, body, movability, .. }) => {
321                 self.check_expr_closure(expr, capture_clause, &fn_decl, body, movability, expected)
322             }
323             ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
324             ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
325             ExprKind::MethodCall(segment, receiver, args, _) => {
326                 self.check_method_call(expr, segment, receiver, args, expected)
327             }
328             ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
329             ExprKind::Type(e, t) => {
330                 let ty = self.to_ty_saving_user_provided_ty(&t);
331                 self.check_expr_eq_type(&e, ty);
332                 ty
333             }
334             ExprKind::If(cond, then_expr, opt_else_expr) => {
335                 self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
336             }
337             ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
338             ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
339             ExprKind::ConstBlock(ref anon_const) => {
340                 self.check_expr_const_block(anon_const, expected, expr)
341             }
342             ExprKind::Repeat(element, ref count) => {
343                 self.check_expr_repeat(element, count, expected, expr)
344             }
345             ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
346             ExprKind::Struct(qpath, fields, ref base_expr) => {
347                 self.check_expr_struct(expr, expected, qpath, fields, base_expr)
348             }
349             ExprKind::Field(base, field) => self.check_field(expr, &base, field),
350             ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
351             ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
352             hir::ExprKind::Err => tcx.ty_error(),
353         }
354     }
355
356     fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
357         let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
358             ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
359             _ => NoExpectation,
360         });
361         let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
362         self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
363         self.tcx.mk_box(referent_ty)
364     }
365
366     fn check_expr_unary(
367         &self,
368         unop: hir::UnOp,
369         oprnd: &'tcx hir::Expr<'tcx>,
370         expected: Expectation<'tcx>,
371         expr: &'tcx hir::Expr<'tcx>,
372     ) -> Ty<'tcx> {
373         let tcx = self.tcx;
374         let expected_inner = match unop {
375             hir::UnOp::Not | hir::UnOp::Neg => expected,
376             hir::UnOp::Deref => NoExpectation,
377         };
378         let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
379
380         if !oprnd_t.references_error() {
381             oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
382             match unop {
383                 hir::UnOp::Deref => {
384                     if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
385                         oprnd_t = ty;
386                     } else {
387                         let mut err = type_error_struct!(
388                             tcx.sess,
389                             expr.span,
390                             oprnd_t,
391                             E0614,
392                             "type `{oprnd_t}` cannot be dereferenced",
393                         );
394                         let sp = tcx.sess.source_map().start_point(expr.span);
395                         if let Some(sp) =
396                             tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
397                         {
398                             err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
399                         }
400                         err.emit();
401                         oprnd_t = tcx.ty_error();
402                     }
403                 }
404                 hir::UnOp::Not => {
405                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
406                     // If it's builtin, we can reuse the type, this helps inference.
407                     if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
408                         oprnd_t = result;
409                     }
410                 }
411                 hir::UnOp::Neg => {
412                     let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
413                     // If it's builtin, we can reuse the type, this helps inference.
414                     if !oprnd_t.is_numeric() {
415                         oprnd_t = result;
416                     }
417                 }
418             }
419         }
420         oprnd_t
421     }
422
423     fn check_expr_addr_of(
424         &self,
425         kind: hir::BorrowKind,
426         mutbl: hir::Mutability,
427         oprnd: &'tcx hir::Expr<'tcx>,
428         expected: Expectation<'tcx>,
429         expr: &'tcx hir::Expr<'tcx>,
430     ) -> Ty<'tcx> {
431         let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
432             match ty.kind() {
433                 ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
434                     if oprnd.is_syntactic_place_expr() {
435                         // Places may legitimately have unsized types.
436                         // For example, dereferences of a fat pointer and
437                         // the last field of a struct can be unsized.
438                         ExpectHasType(*ty)
439                     } else {
440                         Expectation::rvalue_hint(self, *ty)
441                     }
442                 }
443                 _ => NoExpectation,
444             }
445         });
446         let ty =
447             self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
448
449         let tm = ty::TypeAndMut { ty, mutbl };
450         match kind {
451             _ if tm.ty.references_error() => self.tcx.ty_error(),
452             hir::BorrowKind::Raw => {
453                 self.check_named_place_expr(oprnd);
454                 self.tcx.mk_ptr(tm)
455             }
456             hir::BorrowKind::Ref => {
457                 // Note: at this point, we cannot say what the best lifetime
458                 // is to use for resulting pointer.  We want to use the
459                 // shortest lifetime possible so as to avoid spurious borrowck
460                 // errors.  Moreover, the longest lifetime will depend on the
461                 // precise details of the value whose address is being taken
462                 // (and how long it is valid), which we don't know yet until
463                 // type inference is complete.
464                 //
465                 // Therefore, here we simply generate a region variable. The
466                 // region inferencer will then select a suitable value.
467                 // Finally, borrowck will infer the value of the region again,
468                 // this time with enough precision to check that the value
469                 // whose address was taken can actually be made to live as long
470                 // as it needs to live.
471                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
472                 self.tcx.mk_ref(region, tm)
473             }
474         }
475     }
476
477     /// Does this expression refer to a place that either:
478     /// * Is based on a local or static.
479     /// * Contains a dereference
480     /// Note that the adjustments for the children of `expr` should already
481     /// have been resolved.
482     fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
483         let is_named = oprnd.is_place_expr(|base| {
484             // Allow raw borrows if there are any deref adjustments.
485             //
486             // const VAL: (i32,) = (0,);
487             // const REF: &(i32,) = &(0,);
488             //
489             // &raw const VAL.0;            // ERROR
490             // &raw const REF.0;            // OK, same as &raw const (*REF).0;
491             //
492             // This is maybe too permissive, since it allows
493             // `let u = &raw const Box::new((1,)).0`, which creates an
494             // immediately dangling raw pointer.
495             self.typeck_results
496                 .borrow()
497                 .adjustments()
498                 .get(base.hir_id)
499                 .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
500         });
501         if !is_named {
502             self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
503         }
504     }
505
506     fn check_lang_item_path(
507         &self,
508         lang_item: hir::LangItem,
509         expr: &'tcx hir::Expr<'tcx>,
510         hir_id: Option<hir::HirId>,
511     ) -> Ty<'tcx> {
512         self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
513     }
514
515     pub(crate) fn check_expr_path(
516         &self,
517         qpath: &'tcx hir::QPath<'tcx>,
518         expr: &'tcx hir::Expr<'tcx>,
519         args: &'tcx [hir::Expr<'tcx>],
520     ) -> Ty<'tcx> {
521         let tcx = self.tcx;
522         let (res, opt_ty, segs) =
523             self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
524         let ty = match res {
525             Res::Err => {
526                 self.set_tainted_by_errors();
527                 tcx.ty_error()
528             }
529             Res::Def(DefKind::Ctor(_, CtorKind::Fictive), _) => {
530                 report_unexpected_variant_res(tcx, res, qpath, expr.span);
531                 tcx.ty_error()
532             }
533             _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
534         };
535
536         if let ty::FnDef(did, ..) = *ty.kind() {
537             let fn_sig = ty.fn_sig(tcx);
538             if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
539                 let from = fn_sig.inputs().skip_binder()[0];
540                 let to = fn_sig.output().skip_binder();
541                 // We defer the transmute to the end of typeck, once all inference vars have
542                 // been resolved or we errored. This is important as we can only check transmute
543                 // on concrete types, but the output type may not be known yet (it would only
544                 // be known if explicitly specified via turbofish).
545                 self.deferred_transmute_checks.borrow_mut().push((from, to, expr.span));
546             }
547             if !tcx.features().unsized_fn_params {
548                 // We want to remove some Sized bounds from std functions,
549                 // but don't want to expose the removal to stable Rust.
550                 // i.e., we don't want to allow
551                 //
552                 // ```rust
553                 // drop as fn(str);
554                 // ```
555                 //
556                 // to work in stable even if the Sized bound on `drop` is relaxed.
557                 for i in 0..fn_sig.inputs().skip_binder().len() {
558                     // We just want to check sizedness, so instead of introducing
559                     // placeholder lifetimes with probing, we just replace higher lifetimes
560                     // with fresh vars.
561                     let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
562                     let input = self.replace_bound_vars_with_fresh_vars(
563                         span,
564                         infer::LateBoundRegionConversionTime::FnCall,
565                         fn_sig.input(i),
566                     );
567                     self.require_type_is_sized_deferred(
568                         input,
569                         span,
570                         traits::SizedArgumentType(None),
571                     );
572                 }
573             }
574             // Here we want to prevent struct constructors from returning unsized types.
575             // There were two cases this happened: fn pointer coercion in stable
576             // and usual function call in presence of unsized_locals.
577             // Also, as we just want to check sizedness, instead of introducing
578             // placeholder lifetimes with probing, we just replace higher lifetimes
579             // with fresh vars.
580             let output = self.replace_bound_vars_with_fresh_vars(
581                 expr.span,
582                 infer::LateBoundRegionConversionTime::FnCall,
583                 fn_sig.output(),
584             );
585             self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
586         }
587
588         // We always require that the type provided as the value for
589         // a type parameter outlives the moment of instantiation.
590         let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
591         self.add_wf_bounds(substs, expr);
592
593         ty
594     }
595
596     fn check_expr_break(
597         &self,
598         destination: hir::Destination,
599         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
600         expr: &'tcx hir::Expr<'tcx>,
601     ) -> Ty<'tcx> {
602         let tcx = self.tcx;
603         if let Ok(target_id) = destination.target_id {
604             let (e_ty, cause);
605             if let Some(e) = expr_opt {
606                 // If this is a break with a value, we need to type-check
607                 // the expression. Get an expected type from the loop context.
608                 let opt_coerce_to = {
609                     // We should release `enclosing_breakables` before the `check_expr_with_hint`
610                     // below, so can't move this block of code to the enclosing scope and share
611                     // `ctxt` with the second `enclosing_breakables` borrow below.
612                     let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
613                     match enclosing_breakables.opt_find_breakable(target_id) {
614                         Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
615                         None => {
616                             // Avoid ICE when `break` is inside a closure (#65383).
617                             return tcx.ty_error_with_message(
618                                 expr.span,
619                                 "break was outside loop, but no error was emitted",
620                             );
621                         }
622                     }
623                 };
624
625                 // If the loop context is not a `loop { }`, then break with
626                 // a value is illegal, and `opt_coerce_to` will be `None`.
627                 // Just set expectation to error in that case.
628                 let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
629
630                 // Recurse without `enclosing_breakables` borrowed.
631                 e_ty = self.check_expr_with_hint(e, coerce_to);
632                 cause = self.misc(e.span);
633             } else {
634                 // Otherwise, this is a break *without* a value. That's
635                 // always legal, and is equivalent to `break ()`.
636                 e_ty = tcx.mk_unit();
637                 cause = self.misc(expr.span);
638             }
639
640             // Now that we have type-checked `expr_opt`, borrow
641             // the `enclosing_loops` field and let's coerce the
642             // type of `expr_opt` into what is expected.
643             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
644             let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
645                 // Avoid ICE when `break` is inside a closure (#65383).
646                 return tcx.ty_error_with_message(
647                     expr.span,
648                     "break was outside loop, but no error was emitted",
649                 );
650             };
651
652             if let Some(ref mut coerce) = ctxt.coerce {
653                 if let Some(ref e) = expr_opt {
654                     coerce.coerce(self, &cause, e, e_ty);
655                 } else {
656                     assert!(e_ty.is_unit());
657                     let ty = coerce.expected_ty();
658                     coerce.coerce_forced_unit(
659                         self,
660                         &cause,
661                         &mut |mut err| {
662                             self.suggest_mismatched_types_on_tail(
663                                 &mut err, expr, ty, e_ty, target_id,
664                             );
665                             if let Some(val) = ty_kind_suggestion(ty) {
666                                 let label = destination
667                                     .label
668                                     .map(|l| format!(" {}", l.ident))
669                                     .unwrap_or_else(String::new);
670                                 err.span_suggestion(
671                                     expr.span,
672                                     "give it a value of the expected type",
673                                     format!("break{label} {val}"),
674                                     Applicability::HasPlaceholders,
675                                 );
676                             }
677                         },
678                         false,
679                     );
680                 }
681             } else {
682                 // If `ctxt.coerce` is `None`, we can just ignore
683                 // the type of the expression.  This is because
684                 // either this was a break *without* a value, in
685                 // which case it is always a legal type (`()`), or
686                 // else an error would have been flagged by the
687                 // `loops` pass for using break with an expression
688                 // where you are not supposed to.
689                 assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
690             }
691
692             // If we encountered a `break`, then (no surprise) it may be possible to break from the
693             // loop... unless the value being returned from the loop diverges itself, e.g.
694             // `break return 5` or `break loop {}`.
695             ctxt.may_break |= !self.diverges.get().is_always();
696
697             // the type of a `break` is always `!`, since it diverges
698             tcx.types.never
699         } else {
700             // Otherwise, we failed to find the enclosing loop;
701             // this can only happen if the `break` was not
702             // inside a loop at all, which is caught by the
703             // loop-checking pass.
704             let err = self.tcx.ty_error_with_message(
705                 expr.span,
706                 "break was outside loop, but no error was emitted",
707             );
708
709             // We still need to assign a type to the inner expression to
710             // prevent the ICE in #43162.
711             if let Some(e) = expr_opt {
712                 self.check_expr_with_hint(e, err);
713
714                 // ... except when we try to 'break rust;'.
715                 // ICE this expression in particular (see #43162).
716                 if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
717                     if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
718                         fatally_break_rust(self.tcx.sess);
719                     }
720                 }
721             }
722
723             // There was an error; make type-check fail.
724             err
725         }
726     }
727
728     fn check_expr_return(
729         &self,
730         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
731         expr: &'tcx hir::Expr<'tcx>,
732     ) -> Ty<'tcx> {
733         if self.ret_coercion.is_none() {
734             let mut err = ReturnStmtOutsideOfFnBody {
735                 span: expr.span,
736                 encl_body_span: None,
737                 encl_fn_span: None,
738             };
739
740             let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
741
742             if let Some(hir::Node::Item(hir::Item {
743                 kind: hir::ItemKind::Fn(..),
744                 span: encl_fn_span,
745                 ..
746             }))
747             | Some(hir::Node::TraitItem(hir::TraitItem {
748                 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
749                 span: encl_fn_span,
750                 ..
751             }))
752             | Some(hir::Node::ImplItem(hir::ImplItem {
753                 kind: hir::ImplItemKind::Fn(..),
754                 span: encl_fn_span,
755                 ..
756             })) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
757             {
758                 // We are inside a function body, so reporting "return statement
759                 // outside of function body" needs an explanation.
760
761                 let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
762
763                 // If this didn't hold, we would not have to report an error in
764                 // the first place.
765                 assert_ne!(encl_item_id.def_id, encl_body_owner_id);
766
767                 let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
768                 let encl_body = self.tcx.hir().body(encl_body_id);
769
770                 err.encl_body_span = Some(encl_body.value.span);
771                 err.encl_fn_span = Some(*encl_fn_span);
772             }
773
774             self.tcx.sess.emit_err(err);
775
776             if let Some(e) = expr_opt {
777                 // We still have to type-check `e` (issue #86188), but calling
778                 // `check_return_expr` only works inside fn bodies.
779                 self.check_expr(e);
780             }
781         } else if let Some(e) = expr_opt {
782             if self.ret_coercion_span.get().is_none() {
783                 self.ret_coercion_span.set(Some(e.span));
784             }
785             self.check_return_expr(e, true);
786         } else {
787             let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
788             if self.ret_coercion_span.get().is_none() {
789                 self.ret_coercion_span.set(Some(expr.span));
790             }
791             let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
792             if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
793                 coercion.coerce_forced_unit(
794                     self,
795                     &cause,
796                     &mut |db| {
797                         let span = fn_decl.output.span();
798                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
799                             db.span_label(
800                                 span,
801                                 format!("expected `{snippet}` because of this return type"),
802                             );
803                         }
804                     },
805                     true,
806                 );
807             } else {
808                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
809             }
810         }
811         self.tcx.types.never
812     }
813
814     /// `explicit_return` is `true` if we're checking an explicit `return expr`,
815     /// and `false` if we're checking a trailing expression.
816     pub(super) fn check_return_expr(
817         &self,
818         return_expr: &'tcx hir::Expr<'tcx>,
819         explicit_return: bool,
820     ) {
821         let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
822             span_bug!(return_expr.span, "check_return_expr called outside fn body")
823         });
824
825         let ret_ty = ret_coercion.borrow().expected_ty();
826         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
827         let mut span = return_expr.span;
828         // Use the span of the trailing expression for our cause,
829         // not the span of the entire function
830         if !explicit_return {
831             if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
832                 span = last_expr.span;
833             }
834         }
835         ret_coercion.borrow_mut().coerce(
836             self,
837             &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
838             return_expr,
839             return_expr_ty,
840         );
841
842         if self.return_type_has_opaque {
843             // Point any obligations that were registered due to opaque type
844             // inference at the return expression.
845             self.select_obligations_where_possible(false, |errors| {
846                 self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
847             });
848         }
849     }
850
851     fn point_at_return_for_opaque_ty_error(
852         &self,
853         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
854         span: Span,
855         return_expr_ty: Ty<'tcx>,
856     ) {
857         // Don't point at the whole block if it's empty
858         if span == self.tcx.hir().span(self.body_id) {
859             return;
860         }
861         for err in errors {
862             let cause = &mut err.obligation.cause;
863             if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
864                 let new_cause = ObligationCause::new(
865                     cause.span,
866                     cause.body_id,
867                     ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
868                 );
869                 *cause = new_cause;
870             }
871         }
872     }
873
874     pub(crate) fn check_lhs_assignable(
875         &self,
876         lhs: &'tcx hir::Expr<'tcx>,
877         err_code: &'static str,
878         op_span: Span,
879         adjust_err: impl FnOnce(&mut Diagnostic),
880     ) {
881         if lhs.is_syntactic_place_expr() {
882             return;
883         }
884
885         // FIXME: Make this use Diagnostic once error codes can be dynamically set.
886         let mut err = self.tcx.sess.struct_span_err_with_code(
887             op_span,
888             "invalid left-hand side of assignment",
889             DiagnosticId::Error(err_code.into()),
890         );
891         err.span_label(lhs.span, "cannot assign to this expression");
892
893         self.comes_from_while_condition(lhs.hir_id, |expr| {
894             err.span_suggestion_verbose(
895                 expr.span.shrink_to_lo(),
896                 "you might have meant to use pattern destructuring",
897                 "let ",
898                 Applicability::MachineApplicable,
899             );
900         });
901
902         adjust_err(&mut err);
903
904         err.emit();
905     }
906
907     // Check if an expression `original_expr_id` comes from the condition of a while loop,
908     // as opposed from the body of a while loop, which we can naively check by iterating
909     // parents until we find a loop...
910     pub(super) fn comes_from_while_condition(
911         &self,
912         original_expr_id: HirId,
913         then: impl FnOnce(&hir::Expr<'_>),
914     ) {
915         let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
916         while let Some(node) = self.tcx.hir().find(parent) {
917             match node {
918                 hir::Node::Expr(hir::Expr {
919                     kind:
920                         hir::ExprKind::Loop(
921                             hir::Block {
922                                 expr:
923                                     Some(hir::Expr {
924                                         kind:
925                                             hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
926                                         ..
927                                     }),
928                                 ..
929                             },
930                             _,
931                             hir::LoopSource::While,
932                             _,
933                         ),
934                     ..
935                 }) => {
936                     // Check if our original expression is a child of the condition of a while loop
937                     let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
938                         self.tcx.hir().find_parent_node(*id)
939                     })
940                     .take_while(|id| *id != parent)
941                     .any(|id| id == expr.hir_id);
942                     // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
943                     // where `while let` was more likely intended.
944                     if expr_is_ancestor {
945                         then(expr);
946                     }
947                     break;
948                 }
949                 hir::Node::Item(_)
950                 | hir::Node::ImplItem(_)
951                 | hir::Node::TraitItem(_)
952                 | hir::Node::Crate(_) => break,
953                 _ => {
954                     parent = self.tcx.hir().get_parent_node(parent);
955                 }
956             }
957         }
958     }
959
960     // A generic function for checking the 'then' and 'else' clauses in an 'if'
961     // or 'if-else' expression.
962     fn check_then_else(
963         &self,
964         cond_expr: &'tcx hir::Expr<'tcx>,
965         then_expr: &'tcx hir::Expr<'tcx>,
966         opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
967         sp: Span,
968         orig_expected: Expectation<'tcx>,
969     ) -> Ty<'tcx> {
970         let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
971
972         self.warn_if_unreachable(
973             cond_expr.hir_id,
974             then_expr.span,
975             "block in `if` or `while` expression",
976         );
977
978         let cond_diverges = self.diverges.get();
979         self.diverges.set(Diverges::Maybe);
980
981         let expected = orig_expected.adjust_for_branches(self);
982         let then_ty = self.check_expr_with_expectation(then_expr, expected);
983         let then_diverges = self.diverges.get();
984         self.diverges.set(Diverges::Maybe);
985
986         // We've already taken the expected type's preferences
987         // into account when typing the `then` branch. To figure
988         // out the initial shot at a LUB, we thus only consider
989         // `expected` if it represents a *hard* constraint
990         // (`only_has_type`); otherwise, we just go with a
991         // fresh type variable.
992         let coerce_to_ty = expected.coercion_target_type(self, sp);
993         let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
994
995         coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
996
997         if let Some(else_expr) = opt_else_expr {
998             let else_ty = self.check_expr_with_expectation(else_expr, expected);
999             let else_diverges = self.diverges.get();
1000
1001             let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
1002             let if_cause = self.if_cause(
1003                 sp,
1004                 cond_expr.span,
1005                 then_expr,
1006                 else_expr,
1007                 then_ty,
1008                 else_ty,
1009                 opt_suggest_box_span,
1010             );
1011
1012             coerce.coerce(self, &if_cause, else_expr, else_ty);
1013
1014             // We won't diverge unless both branches do (or the condition does).
1015             self.diverges.set(cond_diverges | then_diverges & else_diverges);
1016         } else {
1017             self.if_fallback_coercion(sp, then_expr, &mut coerce);
1018
1019             // If the condition is false we can't diverge.
1020             self.diverges.set(cond_diverges);
1021         }
1022
1023         let result_ty = coerce.complete(self);
1024         if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
1025     }
1026
1027     /// Type check assignment expression `expr` of form `lhs = rhs`.
1028     /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
1029     fn check_expr_assign(
1030         &self,
1031         expr: &'tcx hir::Expr<'tcx>,
1032         expected: Expectation<'tcx>,
1033         lhs: &'tcx hir::Expr<'tcx>,
1034         rhs: &'tcx hir::Expr<'tcx>,
1035         span: Span,
1036     ) -> Ty<'tcx> {
1037         let expected_ty = expected.coercion_target_type(self, expr.span);
1038         if expected_ty == self.tcx.types.bool {
1039             // The expected type is `bool` but this will result in `()` so we can reasonably
1040             // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
1041             // The likely cause of this is `if foo = bar { .. }`.
1042             let actual_ty = self.tcx.mk_unit();
1043             let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
1044             let lhs_ty = self.check_expr(&lhs);
1045             let rhs_ty = self.check_expr(&rhs);
1046             let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
1047                 (Applicability::MachineApplicable, true)
1048             } else {
1049                 (Applicability::MaybeIncorrect, false)
1050             };
1051             if !lhs.is_syntactic_place_expr()
1052                 && lhs.is_approximately_pattern()
1053                 && !matches!(lhs.kind, hir::ExprKind::Lit(_))
1054             {
1055                 // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
1056                 let hir = self.tcx.hir();
1057                 if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1058                     hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
1059                 {
1060                     err.span_suggestion_verbose(
1061                         expr.span.shrink_to_lo(),
1062                         "you might have meant to use pattern matching",
1063                         "let ",
1064                         applicability,
1065                     );
1066                 };
1067             }
1068             if eq {
1069                 err.span_suggestion_verbose(
1070                     span,
1071                     "you might have meant to compare for equality",
1072                     "==",
1073                     applicability,
1074                 );
1075             }
1076
1077             // If the assignment expression itself is ill-formed, don't
1078             // bother emitting another error
1079             if lhs_ty.references_error() || rhs_ty.references_error() {
1080                 err.delay_as_bug()
1081             } else {
1082                 err.emit();
1083             }
1084             return self.tcx.ty_error();
1085         }
1086
1087         let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
1088
1089         let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
1090             if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
1091                 // Can only assign if the type is sized, so if `DerefMut` yields a type that is
1092                 // unsized, do not suggest dereferencing it.
1093                 let lhs_deref_ty_is_sized = self
1094                     .infcx
1095                     .type_implements_trait(
1096                         self.tcx.lang_items().sized_trait().unwrap(),
1097                         lhs_deref_ty,
1098                         ty::List::empty(),
1099                         self.param_env,
1100                     )
1101                     .may_apply();
1102                 if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
1103                     err.span_suggestion_verbose(
1104                         lhs.span.shrink_to_lo(),
1105                         "consider dereferencing here to assign to the mutably borrowed value",
1106                         "*",
1107                         Applicability::MachineApplicable,
1108                     );
1109                 }
1110             }
1111         };
1112
1113         self.check_lhs_assignable(lhs, "E0070", span, |err| {
1114             let rhs_ty = self.check_expr(&rhs);
1115             suggest_deref_binop(err, rhs_ty);
1116         });
1117
1118         // This is (basically) inlined `check_expr_coercable_to_type`, but we want
1119         // to suggest an additional fixup here in `suggest_deref_binop`.
1120         let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
1121         if let (_, Some(mut diag)) =
1122             self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
1123         {
1124             suggest_deref_binop(&mut diag, rhs_ty);
1125             diag.emit();
1126         }
1127
1128         self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
1129
1130         if lhs_ty.references_error() || rhs_ty.references_error() {
1131             self.tcx.ty_error()
1132         } else {
1133             self.tcx.mk_unit()
1134         }
1135     }
1136
1137     pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
1138         // for let statements, this is done in check_stmt
1139         let init = let_expr.init;
1140         self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1141         // otherwise check exactly as a let statement
1142         self.check_decl(let_expr.into());
1143         // but return a bool, for this is a boolean expression
1144         self.tcx.types.bool
1145     }
1146
1147     fn check_expr_loop(
1148         &self,
1149         body: &'tcx hir::Block<'tcx>,
1150         source: hir::LoopSource,
1151         expected: Expectation<'tcx>,
1152         expr: &'tcx hir::Expr<'tcx>,
1153     ) -> Ty<'tcx> {
1154         let coerce = match source {
1155             // you can only use break with a value from a normal `loop { }`
1156             hir::LoopSource::Loop => {
1157                 let coerce_to = expected.coercion_target_type(self, body.span);
1158                 Some(CoerceMany::new(coerce_to))
1159             }
1160
1161             hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1162         };
1163
1164         let ctxt = BreakableCtxt {
1165             coerce,
1166             may_break: false, // Will get updated if/when we find a `break`.
1167         };
1168
1169         let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1170             self.check_block_no_value(&body);
1171         });
1172
1173         if ctxt.may_break {
1174             // No way to know whether it's diverging because
1175             // of a `break` or an outer `break` or `return`.
1176             self.diverges.set(Diverges::Maybe);
1177         }
1178
1179         // If we permit break with a value, then result type is
1180         // the LUB of the breaks (possibly ! if none); else, it
1181         // is nil. This makes sense because infinite loops
1182         // (which would have type !) are only possible iff we
1183         // permit break with a value [1].
1184         if ctxt.coerce.is_none() && !ctxt.may_break {
1185             // [1]
1186             self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
1187         }
1188         ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
1189     }
1190
1191     /// Checks a method call.
1192     fn check_method_call(
1193         &self,
1194         expr: &'tcx hir::Expr<'tcx>,
1195         segment: &hir::PathSegment<'_>,
1196         rcvr: &'tcx hir::Expr<'tcx>,
1197         args: &'tcx [hir::Expr<'tcx>],
1198         expected: Expectation<'tcx>,
1199     ) -> Ty<'tcx> {
1200         let rcvr_t = self.check_expr(&rcvr);
1201         // no need to check for bot/err -- callee does that
1202         let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
1203         let span = segment.ident.span;
1204
1205         let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
1206             Ok(method) => {
1207                 // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
1208                 // trigger this codepath causing `structurally_resolved_type` to emit an error.
1209
1210                 self.write_method_call(expr.hir_id, method);
1211                 Ok(method)
1212             }
1213             Err(error) => {
1214                 if segment.ident.name != kw::Empty {
1215                     if let Some(mut err) = self.report_method_error(
1216                         span,
1217                         rcvr_t,
1218                         segment.ident,
1219                         SelfSource::MethodCall(rcvr),
1220                         error,
1221                         Some((rcvr, args)),
1222                     ) {
1223                         err.emit();
1224                     }
1225                 }
1226                 Err(())
1227             }
1228         };
1229
1230         // Call the generic checker.
1231         self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
1232     }
1233
1234     fn check_expr_cast(
1235         &self,
1236         e: &'tcx hir::Expr<'tcx>,
1237         t: &'tcx hir::Ty<'tcx>,
1238         expr: &'tcx hir::Expr<'tcx>,
1239     ) -> Ty<'tcx> {
1240         // Find the type of `e`. Supply hints based on the type we are casting to,
1241         // if appropriate.
1242         let t_cast = self.to_ty_saving_user_provided_ty(t);
1243         let t_cast = self.resolve_vars_if_possible(t_cast);
1244         let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1245         let t_expr = self.resolve_vars_if_possible(t_expr);
1246
1247         // Eagerly check for some obvious errors.
1248         if t_expr.references_error() || t_cast.references_error() {
1249             self.tcx.ty_error()
1250         } else {
1251             // Defer other checks until we're done type checking.
1252             let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1253             match cast::check_cast(self, e, t_expr, t_cast, t.span, expr.span) {
1254                 CastCheckResult::Ok => t_cast,
1255                 CastCheckResult::Deferred(cast_check) => {
1256                     debug!(
1257                         "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1258                         t_cast, t_expr, cast_check,
1259                     );
1260                     deferred_cast_checks.push(cast_check);
1261                     t_cast
1262                 }
1263                 CastCheckResult::Err(ErrorGuaranteed { .. }) => self.tcx.ty_error(),
1264             }
1265         }
1266     }
1267
1268     fn check_expr_array(
1269         &self,
1270         args: &'tcx [hir::Expr<'tcx>],
1271         expected: Expectation<'tcx>,
1272         expr: &'tcx hir::Expr<'tcx>,
1273     ) -> Ty<'tcx> {
1274         let element_ty = if !args.is_empty() {
1275             let coerce_to = expected
1276                 .to_option(self)
1277                 .and_then(|uty| match *uty.kind() {
1278                     ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1279                     _ => None,
1280                 })
1281                 .unwrap_or_else(|| {
1282                     self.next_ty_var(TypeVariableOrigin {
1283                         kind: TypeVariableOriginKind::TypeInference,
1284                         span: expr.span,
1285                     })
1286                 });
1287             let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1288             assert_eq!(self.diverges.get(), Diverges::Maybe);
1289             for e in args {
1290                 let e_ty = self.check_expr_with_hint(e, coerce_to);
1291                 let cause = self.misc(e.span);
1292                 coerce.coerce(self, &cause, e, e_ty);
1293             }
1294             coerce.complete(self)
1295         } else {
1296             self.next_ty_var(TypeVariableOrigin {
1297                 kind: TypeVariableOriginKind::TypeInference,
1298                 span: expr.span,
1299             })
1300         };
1301         let array_len = args.len() as u64;
1302         self.suggest_array_len(expr, array_len);
1303         self.tcx.mk_array(element_ty, array_len)
1304     }
1305
1306     fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
1307         let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
1308             !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
1309         });
1310         let Some((_,
1311             hir::Node::Local(hir::Local { ty: Some(ty), .. })
1312             | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
1313         ) = parent_node else {
1314             return
1315         };
1316         if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
1317             && let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
1318             && let Some(span) = self.tcx.hir().opt_span(hir_id)
1319         {
1320             match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
1321                 Some(mut err) => {
1322                     err.span_suggestion(
1323                         span,
1324                         "consider specifying the array length",
1325                         array_len,
1326                         Applicability::MaybeIncorrect,
1327                     );
1328                     err.emit();
1329                 }
1330                 None => ()
1331             }
1332         }
1333     }
1334
1335     fn check_expr_const_block(
1336         &self,
1337         anon_const: &'tcx hir::AnonConst,
1338         expected: Expectation<'tcx>,
1339         _expr: &'tcx hir::Expr<'tcx>,
1340     ) -> Ty<'tcx> {
1341         let body = self.tcx.hir().body(anon_const.body);
1342
1343         // Create a new function context.
1344         let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
1345         crate::check::GatherLocalsVisitor::new(&fcx).visit_body(body);
1346
1347         let ty = fcx.check_expr_with_expectation(&body.value, expected);
1348         fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
1349         fcx.write_ty(anon_const.hir_id, ty);
1350         ty
1351     }
1352
1353     fn check_expr_repeat(
1354         &self,
1355         element: &'tcx hir::Expr<'tcx>,
1356         count: &'tcx hir::ArrayLen,
1357         expected: Expectation<'tcx>,
1358         expr: &'tcx hir::Expr<'tcx>,
1359     ) -> Ty<'tcx> {
1360         let tcx = self.tcx;
1361         let count = self.array_length_to_const(count);
1362         if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
1363             self.suggest_array_len(expr, count);
1364         }
1365
1366         let uty = match expected {
1367             ExpectHasType(uty) => match *uty.kind() {
1368                 ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1369                 _ => None,
1370             },
1371             _ => None,
1372         };
1373
1374         let (element_ty, t) = match uty {
1375             Some(uty) => {
1376                 self.check_expr_coercable_to_type(&element, uty, None);
1377                 (uty, uty)
1378             }
1379             None => {
1380                 let ty = self.next_ty_var(TypeVariableOrigin {
1381                     kind: TypeVariableOriginKind::MiscVariable,
1382                     span: element.span,
1383                 });
1384                 let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
1385                 (element_ty, ty)
1386             }
1387         };
1388
1389         if element_ty.references_error() {
1390             return tcx.ty_error();
1391         }
1392
1393         self.check_repeat_element_needs_copy_bound(element, count, element_ty);
1394
1395         tcx.mk_ty(ty::Array(t, count))
1396     }
1397
1398     fn check_repeat_element_needs_copy_bound(
1399         &self,
1400         element: &hir::Expr<'_>,
1401         count: ty::Const<'tcx>,
1402         element_ty: Ty<'tcx>,
1403     ) {
1404         let tcx = self.tcx;
1405         // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
1406         match &element.kind {
1407             hir::ExprKind::ConstBlock(..) => return,
1408             hir::ExprKind::Path(qpath) => {
1409                 let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
1410                 if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
1411                 {
1412                     return;
1413                 }
1414             }
1415             _ => {}
1416         }
1417         // If someone calls a const fn, they can extract that call out into a separate constant (or a const
1418         // block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
1419         let is_const_fn = match element.kind {
1420             hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
1421                 ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
1422                 _ => false,
1423             },
1424             _ => false,
1425         };
1426
1427         // If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
1428         // don't copy that one element, we move it. Only check for Copy if the length is larger.
1429         if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
1430             let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
1431             let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
1432             self.require_type_meets(element_ty, element.span, code, lang_item);
1433         }
1434     }
1435
1436     fn check_expr_tuple(
1437         &self,
1438         elts: &'tcx [hir::Expr<'tcx>],
1439         expected: Expectation<'tcx>,
1440         expr: &'tcx hir::Expr<'tcx>,
1441     ) -> Ty<'tcx> {
1442         let flds = expected.only_has_type(self).and_then(|ty| {
1443             let ty = self.resolve_vars_with_obligations(ty);
1444             match ty.kind() {
1445                 ty::Tuple(flds) => Some(&flds[..]),
1446                 _ => None,
1447             }
1448         });
1449
1450         let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1451             Some(fs) if i < fs.len() => {
1452                 let ety = fs[i];
1453                 self.check_expr_coercable_to_type(&e, ety, None);
1454                 ety
1455             }
1456             _ => self.check_expr_with_expectation(&e, NoExpectation),
1457         });
1458         let tuple = self.tcx.mk_tup(elt_ts_iter);
1459         if tuple.references_error() {
1460             self.tcx.ty_error()
1461         } else {
1462             self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
1463             tuple
1464         }
1465     }
1466
1467     fn check_expr_struct(
1468         &self,
1469         expr: &hir::Expr<'_>,
1470         expected: Expectation<'tcx>,
1471         qpath: &QPath<'_>,
1472         fields: &'tcx [hir::ExprField<'tcx>],
1473         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1474     ) -> Ty<'tcx> {
1475         // Find the relevant variant
1476         let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
1477             self.check_struct_fields_on_error(fields, base_expr);
1478             return self.tcx.ty_error();
1479         };
1480
1481         // Prohibit struct expressions when non-exhaustive flag is set.
1482         let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1483         if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
1484             self.tcx
1485                 .sess
1486                 .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1487         }
1488
1489         self.check_expr_struct_fields(
1490             adt_ty,
1491             expected,
1492             expr.hir_id,
1493             qpath.span(),
1494             variant,
1495             fields,
1496             base_expr,
1497             expr.span,
1498         );
1499
1500         self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
1501         adt_ty
1502     }
1503
1504     fn check_expr_struct_fields(
1505         &self,
1506         adt_ty: Ty<'tcx>,
1507         expected: Expectation<'tcx>,
1508         expr_id: hir::HirId,
1509         span: Span,
1510         variant: &'tcx ty::VariantDef,
1511         ast_fields: &'tcx [hir::ExprField<'tcx>],
1512         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1513         expr_span: Span,
1514     ) {
1515         let tcx = self.tcx;
1516
1517         let expected_inputs =
1518             self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
1519         let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
1520             expected_inputs.get(0).cloned().unwrap_or(adt_ty)
1521         } else {
1522             adt_ty
1523         };
1524         // re-link the regions that EIfEO can erase.
1525         self.demand_eqtype(span, adt_ty_hint, adt_ty);
1526
1527         let ty::Adt(adt, substs) = adt_ty.kind() else {
1528             span_bug!(span, "non-ADT passed to check_expr_struct_fields");
1529         };
1530         let adt_kind = adt.adt_kind();
1531
1532         let mut remaining_fields = variant
1533             .fields
1534             .iter()
1535             .enumerate()
1536             .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
1537             .collect::<FxHashMap<_, _>>();
1538
1539         let mut seen_fields = FxHashMap::default();
1540
1541         let mut error_happened = false;
1542
1543         // Type-check each field.
1544         for (idx, field) in ast_fields.iter().enumerate() {
1545             let ident = tcx.adjust_ident(field.ident, variant.def_id);
1546             let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
1547                 seen_fields.insert(ident, field.span);
1548                 self.write_field_index(field.hir_id, i);
1549
1550                 // We don't look at stability attributes on
1551                 // struct-like enums (yet...), but it's definitely not
1552                 // a bug to have constructed one.
1553                 if adt_kind != AdtKind::Enum {
1554                     tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
1555                 }
1556
1557                 self.field_ty(field.span, v_field, substs)
1558             } else {
1559                 error_happened = true;
1560                 if let Some(prev_span) = seen_fields.get(&ident) {
1561                     tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
1562                         span: field.ident.span,
1563                         prev_span: *prev_span,
1564                         ident,
1565                     });
1566                 } else {
1567                     self.report_unknown_field(
1568                         adt_ty,
1569                         variant,
1570                         field,
1571                         ast_fields,
1572                         adt.variant_descr(),
1573                         expr_span,
1574                     );
1575                 }
1576
1577                 tcx.ty_error()
1578             };
1579
1580             // Make sure to give a type to the field even if there's
1581             // an error, so we can continue type-checking.
1582             let ty = self.check_expr_with_hint(&field.expr, field_type);
1583             let (_, diag) =
1584                 self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
1585
1586             if let Some(mut diag) = diag {
1587                 if idx == ast_fields.len() - 1 && remaining_fields.is_empty() {
1588                     self.suggest_fru_from_range(field, variant, substs, &mut diag);
1589                 }
1590                 diag.emit();
1591             }
1592         }
1593
1594         // Make sure the programmer specified correct number of fields.
1595         if adt_kind == AdtKind::Union {
1596             if ast_fields.len() != 1 {
1597                 struct_span_err!(
1598                     tcx.sess,
1599                     span,
1600                     E0784,
1601                     "union expressions should have exactly one field",
1602                 )
1603                 .emit();
1604             }
1605         }
1606
1607         // If check_expr_struct_fields hit an error, do not attempt to populate
1608         // the fields with the base_expr. This could cause us to hit errors later
1609         // when certain fields are assumed to exist that in fact do not.
1610         if error_happened {
1611             return;
1612         }
1613
1614         if let Some(base_expr) = base_expr {
1615             // FIXME: We are currently creating two branches here in order to maintain
1616             // consistency. But they should be merged as much as possible.
1617             let fru_tys = if self.tcx.features().type_changing_struct_update {
1618                 if adt.is_struct() {
1619                     // Make some fresh substitutions for our ADT type.
1620                     let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
1621                     // We do subtyping on the FRU fields first, so we can
1622                     // learn exactly what types we expect the base expr
1623                     // needs constrained to be compatible with the struct
1624                     // type we expect from the expectation value.
1625                     let fru_tys = variant
1626                         .fields
1627                         .iter()
1628                         .map(|f| {
1629                             let fru_ty = self.normalize_associated_types_in(
1630                                 expr_span,
1631                                 self.field_ty(base_expr.span, f, fresh_substs),
1632                             );
1633                             let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
1634                             if let Some(_) = remaining_fields.remove(&ident) {
1635                                 let target_ty = self.field_ty(base_expr.span, f, substs);
1636                                 let cause = self.misc(base_expr.span);
1637                                 match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
1638                                     Ok(InferOk { obligations, value: () }) => {
1639                                         self.register_predicates(obligations)
1640                                     }
1641                                     Err(_) => {
1642                                         // This should never happen, since we're just subtyping the
1643                                         // remaining_fields, but it's fine to emit this, I guess.
1644                                         self.report_mismatched_types(
1645                                             &cause,
1646                                             target_ty,
1647                                             fru_ty,
1648                                             FieldMisMatch(variant.name, ident.name),
1649                                         )
1650                                         .emit();
1651                                     }
1652                                 }
1653                             }
1654                             self.resolve_vars_if_possible(fru_ty)
1655                         })
1656                         .collect();
1657                     // The use of fresh substs that we have subtyped against
1658                     // our base ADT type's fields allows us to guide inference
1659                     // along so that, e.g.
1660                     // ```
1661                     // MyStruct<'a, F1, F2, const C: usize> {
1662                     //     f: F1,
1663                     //     // Other fields that reference `'a`, `F2`, and `C`
1664                     // }
1665                     //
1666                     // let x = MyStruct {
1667                     //    f: 1usize,
1668                     //    ..other_struct
1669                     // };
1670                     // ```
1671                     // will have the `other_struct` expression constrained to
1672                     // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
1673                     // This is important to allow coercions to happen in
1674                     // `other_struct` itself. See `coerce-in-base-expr.rs`.
1675                     let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
1676                     self.check_expr_has_type_or_error(
1677                         base_expr,
1678                         self.resolve_vars_if_possible(fresh_base_ty),
1679                         |_| {},
1680                     );
1681                     fru_tys
1682                 } else {
1683                     // Check the base_expr, regardless of a bad expected adt_ty, so we can get
1684                     // type errors on that expression, too.
1685                     self.check_expr(base_expr);
1686                     self.tcx
1687                         .sess
1688                         .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1689                     return;
1690                 }
1691             } else {
1692                 self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
1693                     let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
1694                     let same_adt = match (adt_ty.kind(), base_ty.kind()) {
1695                         (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
1696                         _ => false,
1697                     };
1698                     if self.tcx.sess.is_nightly_build() && same_adt {
1699                         feature_err(
1700                             &self.tcx.sess.parse_sess,
1701                             sym::type_changing_struct_update,
1702                             base_expr.span,
1703                             "type changing struct updating is experimental",
1704                         )
1705                         .emit();
1706                     }
1707                 });
1708                 match adt_ty.kind() {
1709                     ty::Adt(adt, substs) if adt.is_struct() => variant
1710                         .fields
1711                         .iter()
1712                         .map(|f| {
1713                             self.normalize_associated_types_in(expr_span, f.ty(self.tcx, substs))
1714                         })
1715                         .collect(),
1716                     _ => {
1717                         self.tcx
1718                             .sess
1719                             .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1720                         return;
1721                     }
1722                 }
1723             };
1724             self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
1725         } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
1726             debug!(?remaining_fields);
1727             let private_fields: Vec<&ty::FieldDef> = variant
1728                 .fields
1729                 .iter()
1730                 .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
1731                 .collect();
1732
1733             if !private_fields.is_empty() {
1734                 self.report_private_fields(adt_ty, span, private_fields, ast_fields);
1735             } else {
1736                 self.report_missing_fields(
1737                     adt_ty,
1738                     span,
1739                     remaining_fields,
1740                     variant,
1741                     ast_fields,
1742                     substs,
1743                 );
1744             }
1745         }
1746     }
1747
1748     fn check_struct_fields_on_error(
1749         &self,
1750         fields: &'tcx [hir::ExprField<'tcx>],
1751         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1752     ) {
1753         for field in fields {
1754             self.check_expr(&field.expr);
1755         }
1756         if let Some(base) = *base_expr {
1757             self.check_expr(&base);
1758         }
1759     }
1760
1761     /// Report an error for a struct field expression when there are fields which aren't provided.
1762     ///
1763     /// ```text
1764     /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
1765     ///  --> src/main.rs:8:5
1766     ///   |
1767     /// 8 |     foo::Foo {};
1768     ///   |     ^^^^^^^^ missing `you_can_use_this_field`
1769     ///
1770     /// error: aborting due to previous error
1771     /// ```
1772     fn report_missing_fields(
1773         &self,
1774         adt_ty: Ty<'tcx>,
1775         span: Span,
1776         remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
1777         variant: &'tcx ty::VariantDef,
1778         ast_fields: &'tcx [hir::ExprField<'tcx>],
1779         substs: SubstsRef<'tcx>,
1780     ) {
1781         let len = remaining_fields.len();
1782
1783         let mut displayable_field_names: Vec<&str> =
1784             remaining_fields.keys().map(|ident| ident.as_str()).collect();
1785         // sorting &str primitives here, sort_unstable is ok
1786         displayable_field_names.sort_unstable();
1787
1788         let mut truncated_fields_error = String::new();
1789         let remaining_fields_names = match &displayable_field_names[..] {
1790             [field1] => format!("`{}`", field1),
1791             [field1, field2] => format!("`{field1}` and `{field2}`"),
1792             [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
1793             _ => {
1794                 truncated_fields_error =
1795                     format!(" and {} other field{}", len - 3, pluralize!(len - 3));
1796                 displayable_field_names
1797                     .iter()
1798                     .take(3)
1799                     .map(|n| format!("`{n}`"))
1800                     .collect::<Vec<_>>()
1801                     .join(", ")
1802             }
1803         };
1804
1805         let mut err = struct_span_err!(
1806             self.tcx.sess,
1807             span,
1808             E0063,
1809             "missing field{} {}{} in initializer of `{}`",
1810             pluralize!(len),
1811             remaining_fields_names,
1812             truncated_fields_error,
1813             adt_ty
1814         );
1815         err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
1816
1817         if let Some(last) = ast_fields.last() {
1818             self.suggest_fru_from_range(last, variant, substs, &mut err);
1819         }
1820
1821         err.emit();
1822     }
1823
1824     /// If the last field is a range literal, but it isn't supposed to be, then they probably
1825     /// meant to use functional update syntax.
1826     fn suggest_fru_from_range(
1827         &self,
1828         last_expr_field: &hir::ExprField<'tcx>,
1829         variant: &ty::VariantDef,
1830         substs: SubstsRef<'tcx>,
1831         err: &mut Diagnostic,
1832     ) {
1833         // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
1834         if let ExprKind::Struct(
1835                 QPath::LangItem(LangItem::Range, ..),
1836                 &[ref range_start, ref range_end],
1837                 _,
1838             ) = last_expr_field.expr.kind
1839             && let variant_field =
1840                 variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
1841             && let range_def_id = self.tcx.lang_items().range_struct()
1842             && variant_field
1843                 .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
1844                 .map(|adt| adt.did())
1845                 != range_def_id
1846         {
1847             let instead = self
1848                 .tcx
1849                 .sess
1850                 .source_map()
1851                 .span_to_snippet(range_end.expr.span)
1852                 .map(|s| format!(" from `{s}`"))
1853                 .unwrap_or_default();
1854             err.span_suggestion(
1855                 range_start.span.shrink_to_hi(),
1856                 &format!("to set the remaining fields{instead}, separate the last named field with a comma"),
1857                 ",",
1858                 Applicability::MaybeIncorrect,
1859             );
1860         }
1861     }
1862
1863     /// Report an error for a struct field expression when there are invisible fields.
1864     ///
1865     /// ```text
1866     /// error: cannot construct `Foo` with struct literal syntax due to private fields
1867     ///  --> src/main.rs:8:5
1868     ///   |
1869     /// 8 |     foo::Foo {};
1870     ///   |     ^^^^^^^^
1871     ///
1872     /// error: aborting due to previous error
1873     /// ```
1874     fn report_private_fields(
1875         &self,
1876         adt_ty: Ty<'tcx>,
1877         span: Span,
1878         private_fields: Vec<&ty::FieldDef>,
1879         used_fields: &'tcx [hir::ExprField<'tcx>],
1880     ) {
1881         let mut err = self.tcx.sess.struct_span_err(
1882             span,
1883             &format!(
1884                 "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
1885             ),
1886         );
1887         let (used_private_fields, remaining_private_fields): (
1888             Vec<(Symbol, Span, bool)>,
1889             Vec<(Symbol, Span, bool)>,
1890         ) = private_fields
1891             .iter()
1892             .map(|field| {
1893                 match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
1894                     Some(used_field) => (field.name, used_field.span, true),
1895                     None => (field.name, self.tcx.def_span(field.did), false),
1896                 }
1897             })
1898             .partition(|field| field.2);
1899         err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
1900         if !remaining_private_fields.is_empty() {
1901             let remaining_private_fields_len = remaining_private_fields.len();
1902             let names = match &remaining_private_fields
1903                 .iter()
1904                 .map(|(name, _, _)| name)
1905                 .collect::<Vec<_>>()[..]
1906             {
1907                 _ if remaining_private_fields_len > 6 => String::new(),
1908                 [name] => format!("`{name}` "),
1909                 [names @ .., last] => {
1910                     let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
1911                     format!("{} and `{last}` ", names.join(", "))
1912                 }
1913                 [] => unreachable!(),
1914             };
1915             err.note(format!(
1916                 "... and other private field{s} {names}that {were} not provided",
1917                 s = pluralize!(remaining_private_fields_len),
1918                 were = pluralize!("was", remaining_private_fields_len),
1919             ));
1920         }
1921         err.emit();
1922     }
1923
1924     fn report_unknown_field(
1925         &self,
1926         ty: Ty<'tcx>,
1927         variant: &'tcx ty::VariantDef,
1928         field: &hir::ExprField<'_>,
1929         skip_fields: &[hir::ExprField<'_>],
1930         kind_name: &str,
1931         expr_span: Span,
1932     ) {
1933         if variant.is_recovered() {
1934             self.set_tainted_by_errors();
1935             return;
1936         }
1937         let mut err = self.type_error_struct_with_diag(
1938             field.ident.span,
1939             |actual| match ty.kind() {
1940                 ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
1941                     self.tcx.sess,
1942                     field.ident.span,
1943                     E0559,
1944                     "{} `{}::{}` has no field named `{}`",
1945                     kind_name,
1946                     actual,
1947                     variant.name,
1948                     field.ident
1949                 ),
1950                 _ => struct_span_err!(
1951                     self.tcx.sess,
1952                     field.ident.span,
1953                     E0560,
1954                     "{} `{}` has no field named `{}`",
1955                     kind_name,
1956                     actual,
1957                     field.ident
1958                 ),
1959             },
1960             ty,
1961         );
1962
1963         let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
1964         match variant.ctor_kind {
1965             CtorKind::Fn => match ty.kind() {
1966                 ty::Adt(adt, ..) if adt.is_enum() => {
1967                     err.span_label(
1968                         variant_ident_span,
1969                         format!(
1970                             "`{adt}::{variant}` defined here",
1971                             adt = ty,
1972                             variant = variant.name,
1973                         ),
1974                     );
1975                     err.span_label(field.ident.span, "field does not exist");
1976                     err.span_suggestion_verbose(
1977                         expr_span,
1978                         &format!(
1979                             "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
1980                             adt = ty,
1981                             variant = variant.name,
1982                         ),
1983                         format!(
1984                             "{adt}::{variant}(/* fields */)",
1985                             adt = ty,
1986                             variant = variant.name,
1987                         ),
1988                         Applicability::HasPlaceholders,
1989                     );
1990                 }
1991                 _ => {
1992                     err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
1993                     err.span_label(field.ident.span, "field does not exist");
1994                     err.span_suggestion_verbose(
1995                         expr_span,
1996                         &format!(
1997                             "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
1998                             adt = ty,
1999                             kind_name = kind_name,
2000                         ),
2001                         format!("{adt}(/* fields */)", adt = ty),
2002                         Applicability::HasPlaceholders,
2003                     );
2004                 }
2005             },
2006             _ => {
2007                 // prevent all specified fields from being suggested
2008                 let skip_fields = skip_fields.iter().map(|x| x.ident.name);
2009                 if let Some(field_name) = self.suggest_field_name(
2010                     variant,
2011                     field.ident.name,
2012                     skip_fields.collect(),
2013                     expr_span,
2014                 ) {
2015                     err.span_suggestion(
2016                         field.ident.span,
2017                         "a field with a similar name exists",
2018                         field_name,
2019                         Applicability::MaybeIncorrect,
2020                     );
2021                 } else {
2022                     match ty.kind() {
2023                         ty::Adt(adt, ..) => {
2024                             if adt.is_enum() {
2025                                 err.span_label(
2026                                     field.ident.span,
2027                                     format!("`{}::{}` does not have this field", ty, variant.name),
2028                                 );
2029                             } else {
2030                                 err.span_label(
2031                                     field.ident.span,
2032                                     format!("`{ty}` does not have this field"),
2033                                 );
2034                             }
2035                             let available_field_names =
2036                                 self.available_field_names(variant, expr_span);
2037                             if !available_field_names.is_empty() {
2038                                 err.note(&format!(
2039                                     "available fields are: {}",
2040                                     self.name_series_display(available_field_names)
2041                                 ));
2042                             }
2043                         }
2044                         _ => bug!("non-ADT passed to report_unknown_field"),
2045                     }
2046                 };
2047             }
2048         }
2049         err.emit();
2050     }
2051
2052     // Return a hint about the closest match in field names
2053     fn suggest_field_name(
2054         &self,
2055         variant: &'tcx ty::VariantDef,
2056         field: Symbol,
2057         skip: Vec<Symbol>,
2058         // The span where stability will be checked
2059         span: Span,
2060     ) -> Option<Symbol> {
2061         let names = variant
2062             .fields
2063             .iter()
2064             .filter_map(|field| {
2065                 // ignore already set fields and private fields from non-local crates
2066                 // and unstable fields.
2067                 if skip.iter().any(|&x| x == field.name)
2068                     || (!variant.def_id.is_local() && !field.vis.is_public())
2069                     || matches!(
2070                         self.tcx.eval_stability(field.did, None, span, None),
2071                         stability::EvalResult::Deny { .. }
2072                     )
2073                 {
2074                     None
2075                 } else {
2076                     Some(field.name)
2077                 }
2078             })
2079             .collect::<Vec<Symbol>>();
2080
2081         find_best_match_for_name(&names, field, None)
2082     }
2083
2084     fn available_field_names(
2085         &self,
2086         variant: &'tcx ty::VariantDef,
2087         access_span: Span,
2088     ) -> Vec<Symbol> {
2089         variant
2090             .fields
2091             .iter()
2092             .filter(|field| {
2093                 let def_scope = self
2094                     .tcx
2095                     .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
2096                     .1;
2097                 field.vis.is_accessible_from(def_scope, self.tcx)
2098                     && !matches!(
2099                         self.tcx.eval_stability(field.did, None, access_span, None),
2100                         stability::EvalResult::Deny { .. }
2101                     )
2102             })
2103             .filter(|field| !self.tcx.is_doc_hidden(field.did))
2104             .map(|field| field.name)
2105             .collect()
2106     }
2107
2108     fn name_series_display(&self, names: Vec<Symbol>) -> String {
2109         // dynamic limit, to never omit just one field
2110         let limit = if names.len() == 6 { 6 } else { 5 };
2111         let mut display =
2112             names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
2113         if names.len() > limit {
2114             display = format!("{} ... and {} others", display, names.len() - limit);
2115         }
2116         display
2117     }
2118
2119     // Check field access expressions
2120     fn check_field(
2121         &self,
2122         expr: &'tcx hir::Expr<'tcx>,
2123         base: &'tcx hir::Expr<'tcx>,
2124         field: Ident,
2125     ) -> Ty<'tcx> {
2126         debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
2127         let base_ty = self.check_expr(base);
2128         let base_ty = self.structurally_resolved_type(base.span, base_ty);
2129         let mut private_candidate = None;
2130         let mut autoderef = self.autoderef(expr.span, base_ty);
2131         while let Some((deref_base_ty, _)) = autoderef.next() {
2132             debug!("deref_base_ty: {:?}", deref_base_ty);
2133             match deref_base_ty.kind() {
2134                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2135                     debug!("struct named {:?}", deref_base_ty);
2136                     let (ident, def_scope) =
2137                         self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
2138                     let fields = &base_def.non_enum_variant().fields;
2139                     if let Some(index) = fields
2140                         .iter()
2141                         .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
2142                     {
2143                         let field = &fields[index];
2144                         let field_ty = self.field_ty(expr.span, field, substs);
2145                         // Save the index of all fields regardless of their visibility in case
2146                         // of error recovery.
2147                         self.write_field_index(expr.hir_id, index);
2148                         let adjustments = self.adjust_steps(&autoderef);
2149                         if field.vis.is_accessible_from(def_scope, self.tcx) {
2150                             self.apply_adjustments(base, adjustments);
2151                             self.register_predicates(autoderef.into_obligations());
2152
2153                             self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
2154                             return field_ty;
2155                         }
2156                         private_candidate = Some((adjustments, base_def.did(), field_ty));
2157                     }
2158                 }
2159                 ty::Tuple(tys) => {
2160                     let fstr = field.as_str();
2161                     if let Ok(index) = fstr.parse::<usize>() {
2162                         if fstr == index.to_string() {
2163                             if let Some(&field_ty) = tys.get(index) {
2164                                 let adjustments = self.adjust_steps(&autoderef);
2165                                 self.apply_adjustments(base, adjustments);
2166                                 self.register_predicates(autoderef.into_obligations());
2167
2168                                 self.write_field_index(expr.hir_id, index);
2169                                 return field_ty;
2170                             }
2171                         }
2172                     }
2173                 }
2174                 _ => {}
2175             }
2176         }
2177         self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
2178
2179         if let Some((adjustments, did, field_ty)) = private_candidate {
2180             // (#90483) apply adjustments to avoid ExprUseVisitor from
2181             // creating erroneous projection.
2182             self.apply_adjustments(base, adjustments);
2183             self.ban_private_field_access(expr, base_ty, field, did);
2184             return field_ty;
2185         }
2186
2187         if field.name == kw::Empty {
2188         } else if self.method_exists(field, base_ty, expr.hir_id, true) {
2189             self.ban_take_value_of_method(expr, base_ty, field);
2190         } else if !base_ty.is_primitive_ty() {
2191             self.ban_nonexisting_field(field, base, expr, base_ty);
2192         } else {
2193             let field_name = field.to_string();
2194             let mut err = type_error_struct!(
2195                 self.tcx().sess,
2196                 field.span,
2197                 base_ty,
2198                 E0610,
2199                 "`{base_ty}` is a primitive type and therefore doesn't have fields",
2200             );
2201             let is_valid_suffix = |field: &str| {
2202                 if field == "f32" || field == "f64" {
2203                     return true;
2204                 }
2205                 let mut chars = field.chars().peekable();
2206                 match chars.peek() {
2207                     Some('e') | Some('E') => {
2208                         chars.next();
2209                         if let Some(c) = chars.peek()
2210                             && !c.is_numeric() && *c != '-' && *c != '+'
2211                         {
2212                             return false;
2213                         }
2214                         while let Some(c) = chars.peek() {
2215                             if !c.is_numeric() {
2216                                 break;
2217                             }
2218                             chars.next();
2219                         }
2220                     }
2221                     _ => (),
2222                 }
2223                 let suffix = chars.collect::<String>();
2224                 suffix.is_empty() || suffix == "f32" || suffix == "f64"
2225             };
2226             let maybe_partial_suffix = |field: &str| -> Option<&str> {
2227                 let first_chars = ['f', 'l'];
2228                 if field.len() >= 1
2229                     && field.to_lowercase().starts_with(first_chars)
2230                     && field[1..].chars().all(|c| c.is_ascii_digit())
2231                 {
2232                     if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
2233                 } else {
2234                     None
2235                 }
2236             };
2237             if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
2238                 && let ExprKind::Lit(Spanned {
2239                     node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
2240                     ..
2241                 }) = base.kind
2242                 && !base.span.from_expansion()
2243             {
2244                 if is_valid_suffix(&field_name) {
2245                     err.span_suggestion_verbose(
2246                         field.span.shrink_to_lo(),
2247                         "if intended to be a floating point literal, consider adding a `0` after the period",
2248                         '0',
2249                         Applicability::MaybeIncorrect,
2250                     );
2251                 } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
2252                     err.span_suggestion_verbose(
2253                         field.span,
2254                         format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
2255                         format!("0{correct_suffix}"),
2256                         Applicability::MaybeIncorrect,
2257                     );
2258                 }
2259             }
2260             err.emit();
2261         }
2262
2263         self.tcx().ty_error()
2264     }
2265
2266     fn suggest_await_on_field_access(
2267         &self,
2268         err: &mut Diagnostic,
2269         field_ident: Ident,
2270         base: &'tcx hir::Expr<'tcx>,
2271         ty: Ty<'tcx>,
2272     ) {
2273         let output_ty = match self.get_impl_future_output_ty(ty) {
2274             Some(output_ty) => self.resolve_vars_if_possible(output_ty),
2275             _ => return,
2276         };
2277         let mut add_label = true;
2278         if let ty::Adt(def, _) = output_ty.skip_binder().kind() {
2279             // no field access on enum type
2280             if !def.is_enum() {
2281                 if def
2282                     .non_enum_variant()
2283                     .fields
2284                     .iter()
2285                     .any(|field| field.ident(self.tcx) == field_ident)
2286                 {
2287                     add_label = false;
2288                     err.span_label(
2289                         field_ident.span,
2290                         "field not available in `impl Future`, but it is available in its `Output`",
2291                     );
2292                     err.span_suggestion_verbose(
2293                         base.span.shrink_to_hi(),
2294                         "consider `await`ing on the `Future` and access the field of its `Output`",
2295                         ".await",
2296                         Applicability::MaybeIncorrect,
2297                     );
2298                 }
2299             }
2300         }
2301         if add_label {
2302             err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
2303         }
2304     }
2305
2306     fn ban_nonexisting_field(
2307         &self,
2308         ident: Ident,
2309         base: &'tcx hir::Expr<'tcx>,
2310         expr: &'tcx hir::Expr<'tcx>,
2311         base_ty: Ty<'tcx>,
2312     ) {
2313         debug!(
2314             "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
2315             ident, base, expr, base_ty
2316         );
2317         let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
2318
2319         match *base_ty.peel_refs().kind() {
2320             ty::Array(_, len) => {
2321                 self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
2322             }
2323             ty::RawPtr(..) => {
2324                 self.suggest_first_deref_field(&mut err, expr, base, ident);
2325             }
2326             ty::Adt(def, _) if !def.is_enum() => {
2327                 self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
2328             }
2329             ty::Param(param_ty) => {
2330                 self.point_at_param_definition(&mut err, param_ty);
2331             }
2332             ty::Opaque(_, _) => {
2333                 self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
2334             }
2335             _ => {}
2336         }
2337
2338         self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
2339             if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
2340                 def.non_enum_variant().fields.iter().any(|field| {
2341                     field.ident(self.tcx) == ident
2342                         && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
2343                 })
2344             } else if let ty::Tuple(tys) = output_ty.kind()
2345                 && let Ok(idx) = ident.as_str().parse::<usize>()
2346             {
2347                 idx < tys.len()
2348             } else {
2349                 false
2350             }
2351         });
2352
2353         if ident.name == kw::Await {
2354             // We know by construction that `<expr>.await` is either on Rust 2015
2355             // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
2356             err.note("to `.await` a `Future`, switch to Rust 2018 or later");
2357             err.help_use_latest_edition();
2358         }
2359
2360         err.emit();
2361     }
2362
2363     fn ban_private_field_access(
2364         &self,
2365         expr: &hir::Expr<'_>,
2366         expr_t: Ty<'tcx>,
2367         field: Ident,
2368         base_did: DefId,
2369     ) {
2370         let struct_path = self.tcx().def_path_str(base_did);
2371         let kind_name = self.tcx().def_kind(base_did).descr(base_did);
2372         let mut err = struct_span_err!(
2373             self.tcx().sess,
2374             field.span,
2375             E0616,
2376             "field `{field}` of {kind_name} `{struct_path}` is private",
2377         );
2378         err.span_label(field.span, "private field");
2379         // Also check if an accessible method exists, which is often what is meant.
2380         if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
2381         {
2382             self.suggest_method_call(
2383                 &mut err,
2384                 &format!("a method `{field}` also exists, call it with parentheses"),
2385                 field,
2386                 expr_t,
2387                 expr,
2388                 None,
2389             );
2390         }
2391         err.emit();
2392     }
2393
2394     fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
2395         let mut err = type_error_struct!(
2396             self.tcx().sess,
2397             field.span,
2398             expr_t,
2399             E0615,
2400             "attempted to take value of method `{field}` on type `{expr_t}`",
2401         );
2402         err.span_label(field.span, "method, not a field");
2403         let expr_is_call =
2404             if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
2405                 self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
2406             {
2407                 expr.hir_id == callee.hir_id
2408             } else {
2409                 false
2410             };
2411         let expr_snippet =
2412             self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
2413         let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
2414         let after_open = expr.span.lo() + rustc_span::BytePos(1);
2415         let before_close = expr.span.hi() - rustc_span::BytePos(1);
2416
2417         if expr_is_call && is_wrapped {
2418             err.multipart_suggestion(
2419                 "remove wrapping parentheses to call the method",
2420                 vec![
2421                     (expr.span.with_hi(after_open), String::new()),
2422                     (expr.span.with_lo(before_close), String::new()),
2423                 ],
2424                 Applicability::MachineApplicable,
2425             );
2426         } else if !self.expr_in_place(expr.hir_id) {
2427             // Suggest call parentheses inside the wrapping parentheses
2428             let span = if is_wrapped {
2429                 expr.span.with_lo(after_open).with_hi(before_close)
2430             } else {
2431                 expr.span
2432             };
2433             self.suggest_method_call(
2434                 &mut err,
2435                 "use parentheses to call the method",
2436                 field,
2437                 expr_t,
2438                 expr,
2439                 Some(span),
2440             );
2441         } else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
2442             && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
2443             && let ExprKind::Field(base_expr, _) = expr.kind
2444             && adt_def.variants().len() == 1
2445             && adt_def
2446                 .variants()
2447                 .iter()
2448                 .next()
2449                 .unwrap()
2450                 .fields
2451                 .iter()
2452                 .any(|f| f.ident(self.tcx) == field)
2453         {
2454             err.multipart_suggestion(
2455                 "to access the field, dereference first",
2456                 vec![
2457                     (base_expr.span.shrink_to_lo(), "(*".to_string()),
2458                     (base_expr.span.shrink_to_hi(), ")".to_string()),
2459                 ],
2460                 Applicability::MaybeIncorrect,
2461             );
2462         } else {
2463             err.help("methods are immutable and cannot be assigned to");
2464         }
2465
2466         err.emit();
2467     }
2468
2469     fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
2470         let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
2471         let generic_param = generics.type_param(&param, self.tcx);
2472         if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
2473             return;
2474         }
2475         let param_def_id = generic_param.def_id;
2476         let param_hir_id = match param_def_id.as_local() {
2477             Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
2478             None => return,
2479         };
2480         let param_span = self.tcx.hir().span(param_hir_id);
2481         let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
2482
2483         err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
2484     }
2485
2486     fn suggest_fields_on_recordish(
2487         &self,
2488         err: &mut Diagnostic,
2489         def: ty::AdtDef<'tcx>,
2490         field: Ident,
2491         access_span: Span,
2492     ) {
2493         if let Some(suggested_field_name) =
2494             self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
2495         {
2496             err.span_suggestion(
2497                 field.span,
2498                 "a field with a similar name exists",
2499                 suggested_field_name,
2500                 Applicability::MaybeIncorrect,
2501             );
2502         } else {
2503             err.span_label(field.span, "unknown field");
2504             let struct_variant_def = def.non_enum_variant();
2505             let field_names = self.available_field_names(struct_variant_def, access_span);
2506             if !field_names.is_empty() {
2507                 err.note(&format!(
2508                     "available fields are: {}",
2509                     self.name_series_display(field_names),
2510                 ));
2511             }
2512         }
2513     }
2514
2515     fn maybe_suggest_array_indexing(
2516         &self,
2517         err: &mut Diagnostic,
2518         expr: &hir::Expr<'_>,
2519         base: &hir::Expr<'_>,
2520         field: Ident,
2521         len: ty::Const<'tcx>,
2522     ) {
2523         if let (Some(len), Ok(user_index)) =
2524             (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
2525             && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
2526         {
2527             let help = "instead of using tuple indexing, use array indexing";
2528             let suggestion = format!("{base}[{field}]");
2529             let applicability = if len < user_index {
2530                 Applicability::MachineApplicable
2531             } else {
2532                 Applicability::MaybeIncorrect
2533             };
2534             err.span_suggestion(expr.span, help, suggestion, applicability);
2535         }
2536     }
2537
2538     fn suggest_first_deref_field(
2539         &self,
2540         err: &mut Diagnostic,
2541         expr: &hir::Expr<'_>,
2542         base: &hir::Expr<'_>,
2543         field: Ident,
2544     ) {
2545         if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
2546             let msg = format!("`{base}` is a raw pointer; try dereferencing it");
2547             let suggestion = format!("(*{base}).{field}");
2548             err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
2549         }
2550     }
2551
2552     fn no_such_field_err(
2553         &self,
2554         field: Ident,
2555         expr_t: Ty<'tcx>,
2556         id: HirId,
2557     ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
2558         let span = field.span;
2559         debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
2560
2561         let mut err = type_error_struct!(
2562             self.tcx().sess,
2563             field.span,
2564             expr_t,
2565             E0609,
2566             "no field `{field}` on type `{expr_t}`",
2567         );
2568
2569         // try to add a suggestion in case the field is a nested field of a field of the Adt
2570         let mod_id = self.tcx.parent_module(id).to_def_id();
2571         if let Some((fields, substs)) =
2572             self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
2573         {
2574             let candidate_fields: Vec<_> = fields
2575                 .filter_map(|candidate_field| {
2576                     self.check_for_nested_field_satisfying(
2577                         span,
2578                         &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
2579                         candidate_field,
2580                         substs,
2581                         vec![],
2582                         mod_id,
2583                     )
2584                 })
2585                 .map(|mut field_path| {
2586                     field_path.pop();
2587                     field_path
2588                         .iter()
2589                         .map(|id| id.name.to_ident_string())
2590                         .collect::<Vec<String>>()
2591                         .join(".")
2592                 })
2593                 .collect::<Vec<_>>();
2594
2595             let len = candidate_fields.len();
2596             if len > 0 {
2597                 err.span_suggestions(
2598                     field.span.shrink_to_lo(),
2599                     format!(
2600                         "{} of the expressions' fields {} a field of the same name",
2601                         if len > 1 { "some" } else { "one" },
2602                         if len > 1 { "have" } else { "has" },
2603                     ),
2604                     candidate_fields.iter().map(|path| format!("{path}.")),
2605                     Applicability::MaybeIncorrect,
2606                 );
2607             }
2608         }
2609         err
2610     }
2611
2612     pub(crate) fn get_field_candidates_considering_privacy(
2613         &self,
2614         span: Span,
2615         base_ty: Ty<'tcx>,
2616         mod_id: DefId,
2617     ) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
2618         debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
2619
2620         for (base_t, _) in self.autoderef(span, base_ty) {
2621             match base_t.kind() {
2622                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2623                     let tcx = self.tcx;
2624                     let fields = &base_def.non_enum_variant().fields;
2625                     // Some struct, e.g. some that impl `Deref`, have all private fields
2626                     // because you're expected to deref them to access the _real_ fields.
2627                     // This, for example, will help us suggest accessing a field through a `Box<T>`.
2628                     if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
2629                         continue;
2630                     }
2631                     return Some((
2632                         fields
2633                             .iter()
2634                             .filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
2635                             // For compile-time reasons put a limit on number of fields we search
2636                             .take(100),
2637                         substs,
2638                     ));
2639                 }
2640                 _ => {}
2641             }
2642         }
2643         None
2644     }
2645
2646     /// This method is called after we have encountered a missing field error to recursively
2647     /// search for the field
2648     pub(crate) fn check_for_nested_field_satisfying(
2649         &self,
2650         span: Span,
2651         matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
2652         candidate_field: &ty::FieldDef,
2653         subst: SubstsRef<'tcx>,
2654         mut field_path: Vec<Ident>,
2655         mod_id: DefId,
2656     ) -> Option<Vec<Ident>> {
2657         debug!(
2658             "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
2659             span, candidate_field, field_path
2660         );
2661
2662         if field_path.len() > 3 {
2663             // For compile-time reasons and to avoid infinite recursion we only check for fields
2664             // up to a depth of three
2665             None
2666         } else {
2667             field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
2668             let field_ty = candidate_field.ty(self.tcx, subst);
2669             if matches(candidate_field, field_ty) {
2670                 return Some(field_path);
2671             } else if let Some((nested_fields, subst)) =
2672                 self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
2673             {
2674                 // recursively search fields of `candidate_field` if it's a ty::Adt
2675                 for field in nested_fields {
2676                     if let Some(field_path) = self.check_for_nested_field_satisfying(
2677                         span,
2678                         matches,
2679                         field,
2680                         subst,
2681                         field_path.clone(),
2682                         mod_id,
2683                     ) {
2684                         return Some(field_path);
2685                     }
2686                 }
2687             }
2688             None
2689         }
2690     }
2691
2692     fn check_expr_index(
2693         &self,
2694         base: &'tcx hir::Expr<'tcx>,
2695         idx: &'tcx hir::Expr<'tcx>,
2696         expr: &'tcx hir::Expr<'tcx>,
2697     ) -> Ty<'tcx> {
2698         let base_t = self.check_expr(&base);
2699         let idx_t = self.check_expr(&idx);
2700
2701         if base_t.references_error() {
2702             base_t
2703         } else if idx_t.references_error() {
2704             idx_t
2705         } else {
2706             let base_t = self.structurally_resolved_type(base.span, base_t);
2707             match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
2708                 Some((index_ty, element_ty)) => {
2709                     // two-phase not needed because index_ty is never mutable
2710                     self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
2711                     self.select_obligations_where_possible(false, |errors| {
2712                         self.point_at_index_if_possible(errors, idx.span)
2713                     });
2714                     element_ty
2715                 }
2716                 None => {
2717                     let mut err = type_error_struct!(
2718                         self.tcx.sess,
2719                         expr.span,
2720                         base_t,
2721                         E0608,
2722                         "cannot index into a value of type `{base_t}`",
2723                     );
2724                     // Try to give some advice about indexing tuples.
2725                     if let ty::Tuple(..) = base_t.kind() {
2726                         let mut needs_note = true;
2727                         // If the index is an integer, we can show the actual
2728                         // fixed expression:
2729                         if let ExprKind::Lit(ref lit) = idx.kind {
2730                             if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
2731                                 let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
2732                                 if let Ok(snip) = snip {
2733                                     err.span_suggestion(
2734                                         expr.span,
2735                                         "to access tuple elements, use",
2736                                         format!("{snip}.{i}"),
2737                                         Applicability::MachineApplicable,
2738                                     );
2739                                     needs_note = false;
2740                                 }
2741                             }
2742                         }
2743                         if needs_note {
2744                             err.help(
2745                                 "to access tuple elements, use tuple indexing \
2746                                         syntax (e.g., `tuple.0`)",
2747                             );
2748                         }
2749                     }
2750                     err.emit();
2751                     self.tcx.ty_error()
2752                 }
2753             }
2754         }
2755     }
2756
2757     fn point_at_index_if_possible(
2758         &self,
2759         errors: &mut Vec<traits::FulfillmentError<'tcx>>,
2760         span: Span,
2761     ) {
2762         for error in errors {
2763             match error.obligation.predicate.kind().skip_binder() {
2764                 ty::PredicateKind::Trait(predicate)
2765                     if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
2766                 }
2767                 _ => continue,
2768             }
2769             error.obligation.cause.span = span;
2770         }
2771     }
2772
2773     fn check_expr_yield(
2774         &self,
2775         value: &'tcx hir::Expr<'tcx>,
2776         expr: &'tcx hir::Expr<'tcx>,
2777         src: &'tcx hir::YieldSource,
2778     ) -> Ty<'tcx> {
2779         match self.resume_yield_tys {
2780             Some((resume_ty, yield_ty)) => {
2781                 self.check_expr_coercable_to_type(&value, yield_ty, None);
2782
2783                 resume_ty
2784             }
2785             // Given that this `yield` expression was generated as a result of lowering a `.await`,
2786             // we know that the yield type must be `()`; however, the context won't contain this
2787             // information. Hence, we check the source of the yield expression here and check its
2788             // value's type against `()` (this check should always hold).
2789             None if src.is_await() => {
2790                 self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
2791                 self.tcx.mk_unit()
2792             }
2793             _ => {
2794                 self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
2795                 // Avoid expressions without types during writeback (#78653).
2796                 self.check_expr(value);
2797                 self.tcx.mk_unit()
2798             }
2799         }
2800     }
2801
2802     fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
2803         let needs = if is_input { Needs::None } else { Needs::MutPlace };
2804         let ty = self.check_expr_with_needs(expr, needs);
2805         self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
2806
2807         if !is_input && !expr.is_syntactic_place_expr() {
2808             let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
2809             err.span_label(expr.span, "cannot assign to this expression");
2810             err.emit();
2811         }
2812
2813         // If this is an input value, we require its type to be fully resolved
2814         // at this point. This allows us to provide helpful coercions which help
2815         // pass the type candidate list in a later pass.
2816         //
2817         // We don't require output types to be resolved at this point, which
2818         // allows them to be inferred based on how they are used later in the
2819         // function.
2820         if is_input {
2821             let ty = self.structurally_resolved_type(expr.span, ty);
2822             match *ty.kind() {
2823                 ty::FnDef(..) => {
2824                     let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
2825                     self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
2826                 }
2827                 ty::Ref(_, base_ty, mutbl) => {
2828                     let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
2829                     self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
2830                 }
2831                 _ => {}
2832             }
2833         }
2834     }
2835
2836     fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
2837         for (op, _op_sp) in asm.operands {
2838             match op {
2839                 hir::InlineAsmOperand::In { expr, .. } => {
2840                     self.check_expr_asm_operand(expr, true);
2841                 }
2842                 hir::InlineAsmOperand::Out { expr: Some(expr), .. }
2843                 | hir::InlineAsmOperand::InOut { expr, .. } => {
2844                     self.check_expr_asm_operand(expr, false);
2845                 }
2846                 hir::InlineAsmOperand::Out { expr: None, .. } => {}
2847                 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
2848                     self.check_expr_asm_operand(in_expr, true);
2849                     if let Some(out_expr) = out_expr {
2850                         self.check_expr_asm_operand(out_expr, false);
2851                     }
2852                 }
2853                 // `AnonConst`s have their own body and is type-checked separately.
2854                 // As they don't flow into the type system we don't need them to
2855                 // be well-formed.
2856                 hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
2857                 hir::InlineAsmOperand::SymStatic { .. } => {}
2858             }
2859         }
2860         if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
2861             self.tcx.types.never
2862         } else {
2863             self.tcx.mk_unit()
2864         }
2865     }
2866 }
2867
2868 pub(super) fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
2869     Some(match ty.kind() {
2870         ty::Bool => "true",
2871         ty::Char => "'a'",
2872         ty::Int(_) | ty::Uint(_) => "42",
2873         ty::Float(_) => "3.14159",
2874         ty::Error(_) | ty::Never => return None,
2875         _ => "value",
2876     })
2877 }