]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_hir_analysis/src/check/check.rs
Rollup merge of #106897 - estebank:issue-99430, r=davidtwco
[rust.git] / compiler / rustc_hir_analysis / src / check / check.rs
1 use crate::check::intrinsicck::InlineAsmCtxt;
2 use crate::errors::LinkageType;
3
4 use super::compare_impl_item::check_type_bounds;
5 use super::compare_impl_item::{compare_impl_method, compare_impl_ty};
6 use super::*;
7 use rustc_attr as attr;
8 use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
9 use rustc_hir as hir;
10 use rustc_hir::def::{CtorKind, DefKind, Res};
11 use rustc_hir::def_id::{DefId, LocalDefId};
12 use rustc_hir::intravisit::Visitor;
13 use rustc_hir::{ItemKind, Node, PathSegment};
14 use rustc_infer::infer::opaque_types::ConstrainOpaqueTypeRegionVisitor;
15 use rustc_infer::infer::outlives::env::OutlivesEnvironment;
16 use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
17 use rustc_infer::traits::Obligation;
18 use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
19 use rustc_middle::hir::nested_filter;
20 use rustc_middle::middle::stability::EvalResult;
21 use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
22 use rustc_middle::ty::subst::GenericArgKind;
23 use rustc_middle::ty::util::{Discr, IntTypeExt};
24 use rustc_middle::ty::{self, AdtDef, ParamEnv, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
25 use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
26 use rustc_span::symbol::sym;
27 use rustc_span::{self, Span};
28 use rustc_target::spec::abi::Abi;
29 use rustc_trait_selection::traits::error_reporting::on_unimplemented::OnUnimplementedDirective;
30 use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
31 use rustc_trait_selection::traits::{self, ObligationCtxt};
32
33 use std::ops::ControlFlow;
34
35 pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
36     match tcx.sess.target.is_abi_supported(abi) {
37         Some(true) => (),
38         Some(false) => {
39             struct_span_err!(
40                 tcx.sess,
41                 span,
42                 E0570,
43                 "`{abi}` is not a supported ABI for the current target",
44             )
45             .emit();
46         }
47         None => {
48             tcx.struct_span_lint_hir(
49                 UNSUPPORTED_CALLING_CONVENTIONS,
50                 hir_id,
51                 span,
52                 "use of calling convention not supported on this target",
53                 |lint| lint,
54             );
55         }
56     }
57
58     // This ABI is only allowed on function pointers
59     if abi == Abi::CCmseNonSecureCall {
60         struct_span_err!(
61             tcx.sess,
62             span,
63             E0781,
64             "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
65         )
66         .emit();
67     }
68 }
69
70 fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
71     let def = tcx.adt_def(def_id);
72     let span = tcx.def_span(def_id);
73     def.destructor(tcx); // force the destructor to be evaluated
74
75     if def.repr().simd() {
76         check_simd(tcx, span, def_id);
77     }
78
79     check_transparent(tcx, def);
80     check_packed(tcx, span, def);
81 }
82
83 fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
84     let def = tcx.adt_def(def_id);
85     let span = tcx.def_span(def_id);
86     def.destructor(tcx); // force the destructor to be evaluated
87     check_transparent(tcx, def);
88     check_union_fields(tcx, span, def_id);
89     check_packed(tcx, span, def);
90 }
91
92 /// Check that the fields of the `union` do not need dropping.
93 fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
94     let item_type = tcx.type_of(item_def_id);
95     if let ty::Adt(def, substs) = item_type.kind() {
96         assert!(def.is_union());
97
98         fn allowed_union_field<'tcx>(
99             ty: Ty<'tcx>,
100             tcx: TyCtxt<'tcx>,
101             param_env: ty::ParamEnv<'tcx>,
102         ) -> bool {
103             // We don't just accept all !needs_drop fields, due to semver concerns.
104             match ty.kind() {
105                 ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
106                 ty::Tuple(tys) => {
107                     // allow tuples of allowed types
108                     tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env))
109                 }
110                 ty::Array(elem, _len) => {
111                     // Like `Copy`, we do *not* special-case length 0.
112                     allowed_union_field(*elem, tcx, param_env)
113                 }
114                 _ => {
115                     // Fallback case: allow `ManuallyDrop` and things that are `Copy`.
116                     ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
117                         || ty.is_copy_modulo_regions(tcx, param_env)
118                 }
119             }
120         }
121
122         let param_env = tcx.param_env(item_def_id);
123         for field in &def.non_enum_variant().fields {
124             let field_ty = field.ty(tcx, substs);
125
126             if !allowed_union_field(field_ty, tcx, param_env) {
127                 let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
128                     // We are currently checking the type this field came from, so it must be local.
129                     Some(Node::Field(field)) => (field.span, field.ty.span),
130                     _ => unreachable!("mir field has to correspond to hir field"),
131                 };
132                 struct_span_err!(
133                     tcx.sess,
134                     field_span,
135                     E0740,
136                     "unions cannot contain fields that may need dropping"
137                 )
138                 .note(
139                     "a type is guaranteed not to need dropping \
140                     when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type",
141                 )
142                 .multipart_suggestion_verbose(
143                     "when the type does not implement `Copy`, \
144                     wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped",
145                     vec![
146                         (ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()),
147                         (ty_span.shrink_to_hi(), ">".into()),
148                     ],
149                     Applicability::MaybeIncorrect,
150                 )
151                 .emit();
152                 return false;
153             } else if field_ty.needs_drop(tcx, param_env) {
154                 // This should never happen. But we can get here e.g. in case of name resolution errors.
155                 tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
156             }
157         }
158     } else {
159         span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
160     }
161     true
162 }
163
164 /// Check that a `static` is inhabited.
165 fn check_static_inhabited(tcx: TyCtxt<'_>, def_id: LocalDefId) {
166     // Make sure statics are inhabited.
167     // Other parts of the compiler assume that there are no uninhabited places. In principle it
168     // would be enough to check this for `extern` statics, as statics with an initializer will
169     // have UB during initialization if they are uninhabited, but there also seems to be no good
170     // reason to allow any statics to be uninhabited.
171     let ty = tcx.type_of(def_id);
172     let span = tcx.def_span(def_id);
173     let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
174         Ok(l) => l,
175         // Foreign statics that overflow their allowed size should emit an error
176         Err(LayoutError::SizeOverflow(_))
177             if {
178                 let node = tcx.hir().get_by_def_id(def_id);
179                 matches!(
180                     node,
181                     hir::Node::ForeignItem(hir::ForeignItem {
182                         kind: hir::ForeignItemKind::Static(..),
183                         ..
184                     })
185                 )
186             } =>
187         {
188             tcx.sess
189                 .struct_span_err(span, "extern static is too large for the current architecture")
190                 .emit();
191             return;
192         }
193         // Generic statics are rejected, but we still reach this case.
194         Err(e) => {
195             tcx.sess.delay_span_bug(span, &e.to_string());
196             return;
197         }
198     };
199     if layout.abi.is_uninhabited() {
200         tcx.struct_span_lint_hir(
201             UNINHABITED_STATIC,
202             tcx.hir().local_def_id_to_hir_id(def_id),
203             span,
204             "static of uninhabited type",
205             |lint| {
206                 lint
207                 .note("uninhabited statics cannot be initialized, and any access would be an immediate error")
208             },
209         );
210     }
211 }
212
213 /// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
214 /// projections that would result in "inheriting lifetimes".
215 fn check_opaque(tcx: TyCtxt<'_>, id: hir::ItemId) {
216     let item = tcx.hir().item(id);
217     let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
218         tcx.sess.delay_span_bug(tcx.hir().span(id.hir_id()), "expected opaque item");
219         return;
220     };
221
222     // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
223     // `async-std` (and `pub async fn` in general).
224     // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
225     // See https://github.com/rust-lang/rust/issues/75100
226     if tcx.sess.opts.actually_rustdoc {
227         return;
228     }
229
230     let substs = InternalSubsts::identity_for_item(tcx, item.owner_id.to_def_id());
231     let span = tcx.def_span(item.owner_id.def_id);
232
233     if !tcx.features().impl_trait_projections {
234         check_opaque_for_inheriting_lifetimes(tcx, item.owner_id.def_id, span);
235     }
236     if tcx.type_of(item.owner_id.def_id).references_error() {
237         return;
238     }
239     if check_opaque_for_cycles(tcx, item.owner_id.def_id, substs, span, &origin).is_err() {
240         return;
241     }
242     check_opaque_meets_bounds(tcx, item.owner_id.def_id, substs, span, &origin);
243 }
244
245 /// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
246 /// in "inheriting lifetimes".
247 #[instrument(level = "debug", skip(tcx, span))]
248 pub(super) fn check_opaque_for_inheriting_lifetimes(
249     tcx: TyCtxt<'_>,
250     def_id: LocalDefId,
251     span: Span,
252 ) {
253     let item = tcx.hir().expect_item(def_id);
254     debug!(?item, ?span);
255
256     struct ProhibitOpaqueVisitor<'tcx> {
257         tcx: TyCtxt<'tcx>,
258         opaque_identity_ty: Ty<'tcx>,
259         parent_count: u32,
260         references_parent_regions: bool,
261         selftys: Vec<(Span, Option<String>)>,
262     }
263
264     impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
265         type BreakTy = Ty<'tcx>;
266
267         fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
268             debug!(?t, "root_visit_ty");
269             if t == self.opaque_identity_ty {
270                 ControlFlow::Continue(())
271             } else {
272                 t.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
273                     tcx: self.tcx,
274                     op: |region| {
275                         if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *region
276                             && index < self.parent_count
277                         {
278                             self.references_parent_regions= true;
279                         }
280                     },
281                 });
282                 if self.references_parent_regions {
283                     ControlFlow::Break(t)
284                 } else {
285                     ControlFlow::Continue(())
286                 }
287             }
288         }
289     }
290
291     impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
292         type NestedFilter = nested_filter::OnlyBodies;
293
294         fn nested_visit_map(&mut self) -> Self::Map {
295             self.tcx.hir()
296         }
297
298         fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
299             match arg.kind {
300                 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
301                     [PathSegment { res: Res::SelfTyParam { .. }, .. }] => {
302                         let impl_ty_name = None;
303                         self.selftys.push((path.span, impl_ty_name));
304                     }
305                     [PathSegment { res: Res::SelfTyAlias { alias_to: def_id, .. }, .. }] => {
306                         let impl_ty_name = Some(self.tcx.def_path_str(*def_id));
307                         self.selftys.push((path.span, impl_ty_name));
308                     }
309                     _ => {}
310                 },
311                 _ => {}
312             }
313             hir::intravisit::walk_ty(self, arg);
314         }
315     }
316
317     if let ItemKind::OpaqueTy(hir::OpaqueTy {
318         origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
319         in_trait,
320         ..
321     }) = item.kind
322     {
323         let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
324         let opaque_identity_ty = if in_trait {
325             tcx.mk_projection(def_id.to_def_id(), substs)
326         } else {
327             tcx.mk_opaque(def_id.to_def_id(), substs)
328         };
329         let mut visitor = ProhibitOpaqueVisitor {
330             opaque_identity_ty,
331             parent_count: tcx.generics_of(def_id).parent_count as u32,
332             references_parent_regions: false,
333             tcx,
334             selftys: vec![],
335         };
336         let prohibit_opaque = tcx
337             .explicit_item_bounds(def_id)
338             .iter()
339             .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
340
341         if let Some(ty) = prohibit_opaque.break_value() {
342             visitor.visit_item(&item);
343             let is_async = match item.kind {
344                 ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
345                     matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
346                 }
347                 _ => unreachable!(),
348             };
349
350             let mut err = feature_err(
351                 &tcx.sess.parse_sess,
352                 sym::impl_trait_projections,
353                 span,
354                 &format!(
355                     "`{}` return type cannot contain a projection or `Self` that references \
356                     lifetimes from a parent scope",
357                     if is_async { "async fn" } else { "impl Trait" },
358                 ),
359             );
360             for (span, name) in visitor.selftys {
361                 err.span_suggestion(
362                     span,
363                     "consider spelling out the type instead",
364                     name.unwrap_or_else(|| format!("{:?}", ty)),
365                     Applicability::MaybeIncorrect,
366                 );
367             }
368             err.emit();
369         }
370     }
371 }
372
373 /// Checks that an opaque type does not contain cycles.
374 pub(super) fn check_opaque_for_cycles<'tcx>(
375     tcx: TyCtxt<'tcx>,
376     def_id: LocalDefId,
377     substs: SubstsRef<'tcx>,
378     span: Span,
379     origin: &hir::OpaqueTyOrigin,
380 ) -> Result<(), ErrorGuaranteed> {
381     if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
382         let reported = match origin {
383             hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
384             _ => opaque_type_cycle_error(tcx, def_id, span),
385         };
386         Err(reported)
387     } else {
388         Ok(())
389     }
390 }
391
392 /// Check that the concrete type behind `impl Trait` actually implements `Trait`.
393 ///
394 /// This is mostly checked at the places that specify the opaque type, but we
395 /// check those cases in the `param_env` of that function, which may have
396 /// bounds not on this opaque type:
397 ///
398 /// ```ignore (illustrative)
399 /// type X<T> = impl Clone;
400 /// fn f<T: Clone>(t: T) -> X<T> {
401 ///     t
402 /// }
403 /// ```
404 ///
405 /// Without this check the above code is incorrectly accepted: we would ICE if
406 /// some tried, for example, to clone an `Option<X<&mut ()>>`.
407 #[instrument(level = "debug", skip(tcx))]
408 fn check_opaque_meets_bounds<'tcx>(
409     tcx: TyCtxt<'tcx>,
410     def_id: LocalDefId,
411     substs: SubstsRef<'tcx>,
412     span: Span,
413     origin: &hir::OpaqueTyOrigin,
414 ) {
415     let defining_use_anchor = match *origin {
416         hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
417         hir::OpaqueTyOrigin::TyAlias => def_id,
418     };
419     let param_env = tcx.param_env(defining_use_anchor);
420
421     let infcx = tcx
422         .infer_ctxt()
423         .with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor))
424         .build();
425     let ocx = ObligationCtxt::new(&infcx);
426     let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
427
428     // `ReErased` regions appear in the "parent_substs" of closures/generators.
429     // We're ignoring them here and replacing them with fresh region variables.
430     // See tests in ui/type-alias-impl-trait/closure_{parent_substs,wf_outlives}.rs.
431     //
432     // FIXME: Consider wrapping the hidden type in an existential `Binder` and instantiating it
433     // here rather than using ReErased.
434     let hidden_ty = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs);
435     let hidden_ty = tcx.fold_regions(hidden_ty, |re, _dbi| match re.kind() {
436         ty::ReErased => infcx.next_region_var(RegionVariableOrigin::MiscVariable(span)),
437         _ => re,
438     });
439
440     let misc_cause = traits::ObligationCause::misc(span, def_id);
441
442     match ocx.eq(&misc_cause, param_env, opaque_ty, hidden_ty) {
443         Ok(()) => {}
444         Err(ty_err) => {
445             tcx.sess.delay_span_bug(
446                 span,
447                 &format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"),
448             );
449         }
450     }
451
452     // Additionally require the hidden type to be well-formed with only the generics of the opaque type.
453     // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
454     // hidden type is well formed even without those bounds.
455     let predicate = ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_ty.into()));
456     ocx.register_obligation(Obligation::new(tcx, misc_cause, param_env, predicate));
457
458     // Check that all obligations are satisfied by the implementation's
459     // version.
460     let errors = ocx.select_all_or_error();
461     if !errors.is_empty() {
462         infcx.err_ctxt().report_fulfillment_errors(&errors, None);
463     }
464     match origin {
465         // Checked when type checking the function containing them.
466         hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
467         // Can have different predicates to their defining use
468         hir::OpaqueTyOrigin::TyAlias => {
469             let outlives_environment = OutlivesEnvironment::new(param_env);
470             let _ = infcx.err_ctxt().check_region_obligations_and_report_errors(
471                 defining_use_anchor,
472                 &outlives_environment,
473             );
474         }
475     }
476     // Clean up after ourselves
477     let _ = infcx.take_opaque_types();
478 }
479
480 fn is_enum_of_nonnullable_ptr<'tcx>(
481     tcx: TyCtxt<'tcx>,
482     adt_def: AdtDef<'tcx>,
483     substs: SubstsRef<'tcx>,
484 ) -> bool {
485     if adt_def.repr().inhibit_enum_layout_opt() {
486         return false;
487     }
488
489     let [var_one, var_two] = &adt_def.variants().raw[..] else {
490         return false;
491     };
492     let (([], [field]) | ([field], [])) = (&var_one.fields[..], &var_two.fields[..]) else {
493         return false;
494     };
495     matches!(field.ty(tcx, substs).kind(), ty::FnPtr(..) | ty::Ref(..))
496 }
497
498 fn check_static_linkage(tcx: TyCtxt<'_>, def_id: LocalDefId) {
499     if tcx.codegen_fn_attrs(def_id).import_linkage.is_some() {
500         if match tcx.type_of(def_id).kind() {
501             ty::RawPtr(_) => false,
502             ty::Adt(adt_def, substs) => !is_enum_of_nonnullable_ptr(tcx, *adt_def, *substs),
503             _ => true,
504         } {
505             tcx.sess.emit_err(LinkageType { span: tcx.def_span(def_id) });
506         }
507     }
508 }
509
510 fn check_item_type(tcx: TyCtxt<'_>, id: hir::ItemId) {
511     debug!(
512         "check_item_type(it.def_id={:?}, it.name={})",
513         id.owner_id,
514         tcx.def_path_str(id.owner_id.to_def_id())
515     );
516     let _indenter = indenter();
517     match tcx.def_kind(id.owner_id) {
518         DefKind::Static(..) => {
519             tcx.ensure().typeck(id.owner_id.def_id);
520             maybe_check_static_with_link_section(tcx, id.owner_id.def_id);
521             check_static_inhabited(tcx, id.owner_id.def_id);
522             check_static_linkage(tcx, id.owner_id.def_id);
523         }
524         DefKind::Const => {
525             tcx.ensure().typeck(id.owner_id.def_id);
526         }
527         DefKind::Enum => {
528             check_enum(tcx, id.owner_id.def_id);
529         }
530         DefKind::Fn => {} // entirely within check_item_body
531         DefKind::Impl => {
532             let it = tcx.hir().item(id);
533             let hir::ItemKind::Impl(impl_) = it.kind else { return };
534             debug!("ItemKind::Impl {} with id {:?}", it.ident, it.owner_id);
535             if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.owner_id) {
536                 check_impl_items_against_trait(
537                     tcx,
538                     it.span,
539                     it.owner_id.def_id,
540                     impl_trait_ref.subst_identity(),
541                     &impl_.items,
542                 );
543                 check_on_unimplemented(tcx, it);
544             }
545         }
546         DefKind::Trait => {
547             let it = tcx.hir().item(id);
548             let hir::ItemKind::Trait(_, _, _, _, items) = it.kind else {
549                 return;
550             };
551             check_on_unimplemented(tcx, it);
552
553             for item in items.iter() {
554                 let item = tcx.hir().trait_item(item.id);
555                 match &item.kind {
556                     hir::TraitItemKind::Fn(sig, _) => {
557                         let abi = sig.header.abi;
558                         fn_maybe_err(tcx, item.ident.span, abi);
559                     }
560                     hir::TraitItemKind::Type(.., Some(default)) => {
561                         let assoc_item = tcx.associated_item(item.owner_id);
562                         let trait_substs =
563                             InternalSubsts::identity_for_item(tcx, it.owner_id.to_def_id());
564                         let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
565                             tcx,
566                             assoc_item,
567                             assoc_item,
568                             default.span,
569                             tcx.mk_trait_ref(it.owner_id.to_def_id(), trait_substs),
570                         );
571                     }
572                     _ => {}
573                 }
574             }
575         }
576         DefKind::Struct => {
577             check_struct(tcx, id.owner_id.def_id);
578         }
579         DefKind::Union => {
580             check_union(tcx, id.owner_id.def_id);
581         }
582         DefKind::OpaqueTy => {
583             check_opaque(tcx, id);
584         }
585         DefKind::ImplTraitPlaceholder => {
586             let parent = tcx.impl_trait_in_trait_parent(id.owner_id.to_def_id());
587             // Only check the validity of this opaque type if the function has a default body
588             if let hir::Node::TraitItem(hir::TraitItem {
589                 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
590                 ..
591             }) = tcx.hir().get_by_def_id(parent.expect_local())
592             {
593                 check_opaque(tcx, id);
594             }
595         }
596         DefKind::TyAlias => {
597             let pty_ty = tcx.type_of(id.owner_id);
598             let generics = tcx.generics_of(id.owner_id);
599             check_type_params_are_used(tcx, &generics, pty_ty);
600         }
601         DefKind::ForeignMod => {
602             let it = tcx.hir().item(id);
603             let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
604                 return;
605             };
606             check_abi(tcx, it.hir_id(), it.span, abi);
607
608             if abi == Abi::RustIntrinsic {
609                 for item in items {
610                     let item = tcx.hir().foreign_item(item.id);
611                     intrinsic::check_intrinsic_type(tcx, item);
612                 }
613             } else if abi == Abi::PlatformIntrinsic {
614                 for item in items {
615                     let item = tcx.hir().foreign_item(item.id);
616                     intrinsic::check_platform_intrinsic_type(tcx, item);
617                 }
618             } else {
619                 for item in items {
620                     let def_id = item.id.owner_id.def_id;
621                     let generics = tcx.generics_of(def_id);
622                     let own_counts = generics.own_counts();
623                     if generics.params.len() - own_counts.lifetimes != 0 {
624                         let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
625                             (_, 0) => ("type", "types", Some("u32")),
626                             // We don't specify an example value, because we can't generate
627                             // a valid value for any type.
628                             (0, _) => ("const", "consts", None),
629                             _ => ("type or const", "types or consts", None),
630                         };
631                         struct_span_err!(
632                             tcx.sess,
633                             item.span,
634                             E0044,
635                             "foreign items may not have {kinds} parameters",
636                         )
637                         .span_label(item.span, &format!("can't have {kinds} parameters"))
638                         .help(
639                             // FIXME: once we start storing spans for type arguments, turn this
640                             // into a suggestion.
641                             &format!(
642                                 "replace the {} parameters with concrete {}{}",
643                                 kinds,
644                                 kinds_pl,
645                                 egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
646                             ),
647                         )
648                         .emit();
649                     }
650
651                     let item = tcx.hir().foreign_item(item.id);
652                     match &item.kind {
653                         hir::ForeignItemKind::Fn(fn_decl, _, _) => {
654                             require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
655                         }
656                         hir::ForeignItemKind::Static(..) => {
657                             check_static_inhabited(tcx, def_id);
658                             check_static_linkage(tcx, def_id);
659                         }
660                         _ => {}
661                     }
662                 }
663             }
664         }
665         DefKind::GlobalAsm => {
666             let it = tcx.hir().item(id);
667             let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
668             InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id());
669         }
670         _ => {}
671     }
672 }
673
674 pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
675     // an error would be reported if this fails.
676     let _ = OnUnimplementedDirective::of_item(tcx, item.owner_id.to_def_id());
677 }
678
679 pub(super) fn check_specialization_validity<'tcx>(
680     tcx: TyCtxt<'tcx>,
681     trait_def: &ty::TraitDef,
682     trait_item: &ty::AssocItem,
683     impl_id: DefId,
684     impl_item: &hir::ImplItemRef,
685 ) {
686     let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
687     let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
688         if parent.is_from_trait() {
689             None
690         } else {
691             Some((parent, parent.item(tcx, trait_item.def_id)))
692         }
693     });
694
695     let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
696         match parent_item {
697             // Parent impl exists, and contains the parent item we're trying to specialize, but
698             // doesn't mark it `default`.
699             Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
700                 Some(Err(parent_impl.def_id()))
701             }
702
703             // Parent impl contains item and makes it specializable.
704             Some(_) => Some(Ok(())),
705
706             // Parent impl doesn't mention the item. This means it's inherited from the
707             // grandparent. In that case, if parent is a `default impl`, inherited items use the
708             // "defaultness" from the grandparent, else they are final.
709             None => {
710                 if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
711                     None
712                 } else {
713                     Some(Err(parent_impl.def_id()))
714                 }
715             }
716         }
717     });
718
719     // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
720     // item. This is allowed, the item isn't actually getting specialized here.
721     let result = opt_result.unwrap_or(Ok(()));
722
723     if let Err(parent_impl) = result {
724         report_forbidden_specialization(tcx, impl_item, parent_impl);
725     }
726 }
727
728 fn check_impl_items_against_trait<'tcx>(
729     tcx: TyCtxt<'tcx>,
730     full_impl_span: Span,
731     impl_id: LocalDefId,
732     impl_trait_ref: ty::TraitRef<'tcx>,
733     impl_item_refs: &[hir::ImplItemRef],
734 ) {
735     // If the trait reference itself is erroneous (so the compilation is going
736     // to fail), skip checking the items here -- the `impl_item` table in `tcx`
737     // isn't populated for such impls.
738     if impl_trait_ref.references_error() {
739         return;
740     }
741
742     // Negative impls are not expected to have any items
743     match tcx.impl_polarity(impl_id) {
744         ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
745         ty::ImplPolarity::Negative => {
746             if let [first_item_ref, ..] = impl_item_refs {
747                 let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
748                 struct_span_err!(
749                     tcx.sess,
750                     first_item_span,
751                     E0749,
752                     "negative impls cannot have any items"
753                 )
754                 .emit();
755             }
756             return;
757         }
758     }
759
760     let trait_def = tcx.trait_def(impl_trait_ref.def_id);
761
762     for impl_item in impl_item_refs {
763         let ty_impl_item = tcx.associated_item(impl_item.id.owner_id);
764         let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
765             tcx.associated_item(trait_item_id)
766         } else {
767             // Checked in `associated_item`.
768             tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait");
769             continue;
770         };
771         let impl_item_full = tcx.hir().impl_item(impl_item.id);
772         match impl_item_full.kind {
773             hir::ImplItemKind::Const(..) => {
774                 let _ = tcx.compare_impl_const((
775                     impl_item.id.owner_id.def_id,
776                     ty_impl_item.trait_item_def_id.unwrap(),
777                 ));
778             }
779             hir::ImplItemKind::Fn(..) => {
780                 let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
781                 compare_impl_method(
782                     tcx,
783                     &ty_impl_item,
784                     &ty_trait_item,
785                     impl_trait_ref,
786                     opt_trait_span,
787                 );
788             }
789             hir::ImplItemKind::Type(impl_ty) => {
790                 let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
791                 compare_impl_ty(
792                     tcx,
793                     &ty_impl_item,
794                     impl_ty.span,
795                     &ty_trait_item,
796                     impl_trait_ref,
797                     opt_trait_span,
798                 );
799             }
800         }
801
802         check_specialization_validity(
803             tcx,
804             trait_def,
805             &ty_trait_item,
806             impl_id.to_def_id(),
807             impl_item,
808         );
809     }
810
811     if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
812         // Check for missing items from trait
813         let mut missing_items = Vec::new();
814
815         let mut must_implement_one_of: Option<&[Ident]> =
816             trait_def.must_implement_one_of.as_deref();
817
818         for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
819             let is_implemented = ancestors
820                 .leaf_def(tcx, trait_item_id)
821                 .map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());
822
823             if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
824                 missing_items.push(tcx.associated_item(trait_item_id));
825             }
826
827             // true if this item is specifically implemented in this impl
828             let is_implemented_here = ancestors
829                 .leaf_def(tcx, trait_item_id)
830                 .map_or(false, |node_item| !node_item.defining_node.is_from_trait());
831
832             if !is_implemented_here {
833                 match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
834                     EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
835                         tcx,
836                         full_impl_span,
837                         trait_item_id,
838                         feature,
839                         reason,
840                         issue,
841                     ),
842
843                     // Unmarked default bodies are considered stable (at least for now).
844                     EvalResult::Allow | EvalResult::Unmarked => {}
845                 }
846             }
847
848             if let Some(required_items) = &must_implement_one_of {
849                 if is_implemented_here {
850                     let trait_item = tcx.associated_item(trait_item_id);
851                     if required_items.contains(&trait_item.ident(tcx)) {
852                         must_implement_one_of = None;
853                     }
854                 }
855             }
856         }
857
858         if !missing_items.is_empty() {
859             missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
860         }
861
862         if let Some(missing_items) = must_implement_one_of {
863             let attr_span = tcx
864                 .get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
865                 .map(|attr| attr.span);
866
867             missing_items_must_implement_one_of_err(
868                 tcx,
869                 tcx.def_span(impl_id),
870                 missing_items,
871                 attr_span,
872             );
873         }
874     }
875 }
876
877 pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
878     let t = tcx.type_of(def_id);
879     if let ty::Adt(def, substs) = t.kind()
880         && def.is_struct()
881     {
882         let fields = &def.non_enum_variant().fields;
883         if fields.is_empty() {
884             struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
885             return;
886         }
887         let e = fields[0].ty(tcx, substs);
888         if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
889             struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
890                 .span_label(sp, "SIMD elements must have the same type")
891                 .emit();
892             return;
893         }
894
895         let len = if let ty::Array(_ty, c) = e.kind() {
896             c.try_eval_usize(tcx, tcx.param_env(def.did()))
897         } else {
898             Some(fields.len() as u64)
899         };
900         if let Some(len) = len {
901             if len == 0 {
902                 struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
903                 return;
904             } else if len > MAX_SIMD_LANES {
905                 struct_span_err!(
906                     tcx.sess,
907                     sp,
908                     E0075,
909                     "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
910                 )
911                 .emit();
912                 return;
913             }
914         }
915
916         // Check that we use types valid for use in the lanes of a SIMD "vector register"
917         // These are scalar types which directly match a "machine" type
918         // Yes: Integers, floats, "thin" pointers
919         // No: char, "fat" pointers, compound types
920         match e.kind() {
921             ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
922             ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
923             ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
924             ty::Array(t, _clen)
925                 if matches!(
926                     t.kind(),
927                     ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
928                 ) =>
929             { /* struct([f32; 4]) is ok */ }
930             _ => {
931                 struct_span_err!(
932                     tcx.sess,
933                     sp,
934                     E0077,
935                     "SIMD vector element type should be a \
936                         primitive scalar (integer/float/pointer) type"
937                 )
938                 .emit();
939                 return;
940             }
941         }
942     }
943 }
944
945 pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
946     let repr = def.repr();
947     if repr.packed() {
948         for attr in tcx.get_attrs(def.did(), sym::repr) {
949             for r in attr::parse_repr_attr(&tcx.sess, attr) {
950                 if let attr::ReprPacked(pack) = r
951                 && let Some(repr_pack) = repr.pack
952                 && pack as u64 != repr_pack.bytes()
953             {
954                         struct_span_err!(
955                             tcx.sess,
956                             sp,
957                             E0634,
958                             "type has conflicting packed representation hints"
959                         )
960                         .emit();
961             }
962             }
963         }
964         if repr.align.is_some() {
965             struct_span_err!(
966                 tcx.sess,
967                 sp,
968                 E0587,
969                 "type has conflicting packed and align representation hints"
970             )
971             .emit();
972         } else {
973             if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
974                 let mut err = struct_span_err!(
975                     tcx.sess,
976                     sp,
977                     E0588,
978                     "packed type cannot transitively contain a `#[repr(align)]` type"
979                 );
980
981                 err.span_note(
982                     tcx.def_span(def_spans[0].0),
983                     &format!(
984                         "`{}` has a `#[repr(align)]` attribute",
985                         tcx.item_name(def_spans[0].0)
986                     ),
987                 );
988
989                 if def_spans.len() > 2 {
990                     let mut first = true;
991                     for (adt_def, span) in def_spans.iter().skip(1).rev() {
992                         let ident = tcx.item_name(*adt_def);
993                         err.span_note(
994                             *span,
995                             &if first {
996                                 format!(
997                                     "`{}` contains a field of type `{}`",
998                                     tcx.type_of(def.did()),
999                                     ident
1000                                 )
1001                             } else {
1002                                 format!("...which contains a field of type `{ident}`")
1003                             },
1004                         );
1005                         first = false;
1006                     }
1007                 }
1008
1009                 err.emit();
1010             }
1011         }
1012     }
1013 }
1014
1015 pub(super) fn check_packed_inner(
1016     tcx: TyCtxt<'_>,
1017     def_id: DefId,
1018     stack: &mut Vec<DefId>,
1019 ) -> Option<Vec<(DefId, Span)>> {
1020     if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
1021         if def.is_struct() || def.is_union() {
1022             if def.repr().align.is_some() {
1023                 return Some(vec![(def.did(), DUMMY_SP)]);
1024             }
1025
1026             stack.push(def_id);
1027             for field in &def.non_enum_variant().fields {
1028                 if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
1029                     && !stack.contains(&def.did())
1030                     && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
1031                 {
1032                     defs.push((def.did(), field.ident(tcx).span));
1033                     return Some(defs);
1034                 }
1035             }
1036             stack.pop();
1037         }
1038     }
1039
1040     None
1041 }
1042
1043 pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1044     if !adt.repr().transparent() {
1045         return;
1046     }
1047
1048     if adt.is_union() && !tcx.features().transparent_unions {
1049         feature_err(
1050             &tcx.sess.parse_sess,
1051             sym::transparent_unions,
1052             tcx.def_span(adt.did()),
1053             "transparent unions are unstable",
1054         )
1055         .emit();
1056     }
1057
1058     if adt.variants().len() != 1 {
1059         bad_variant_count(tcx, adt, tcx.def_span(adt.did()), adt.did());
1060         // Don't bother checking the fields.
1061         return;
1062     }
1063
1064     // For each field, figure out if it's known to be a ZST and align(1), with "known"
1065     // respecting #[non_exhaustive] attributes.
1066     let field_infos = adt.all_fields().map(|field| {
1067         let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
1068         let param_env = tcx.param_env(field.did);
1069         let layout = tcx.layout_of(param_env.and(ty));
1070         // We are currently checking the type this field came from, so it must be local
1071         let span = tcx.hir().span_if_local(field.did).unwrap();
1072         let zst = layout.map_or(false, |layout| layout.is_zst());
1073         let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
1074         if !zst {
1075             return (span, zst, align1, None);
1076         }
1077
1078         fn check_non_exhaustive<'tcx>(
1079             tcx: TyCtxt<'tcx>,
1080             t: Ty<'tcx>,
1081         ) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
1082             match t.kind() {
1083                 ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
1084                 ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
1085                 ty::Adt(def, subst) => {
1086                     if !def.did().is_local() {
1087                         let non_exhaustive = def.is_variant_list_non_exhaustive()
1088                             || def
1089                                 .variants()
1090                                 .iter()
1091                                 .any(ty::VariantDef::is_field_list_non_exhaustive);
1092                         let has_priv = def.all_fields().any(|f| !f.vis.is_public());
1093                         if non_exhaustive || has_priv {
1094                             return ControlFlow::Break((
1095                                 def.descr(),
1096                                 def.did(),
1097                                 subst,
1098                                 non_exhaustive,
1099                             ));
1100                         }
1101                     }
1102                     def.all_fields()
1103                         .map(|field| field.ty(tcx, subst))
1104                         .try_for_each(|t| check_non_exhaustive(tcx, t))
1105                 }
1106                 _ => ControlFlow::Continue(()),
1107             }
1108         }
1109
1110         (span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
1111     });
1112
1113     let non_zst_fields = field_infos
1114         .clone()
1115         .filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
1116     let non_zst_count = non_zst_fields.clone().count();
1117     if non_zst_count >= 2 {
1118         bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, tcx.def_span(adt.did()));
1119     }
1120     let incompatible_zst_fields =
1121         field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
1122     let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
1123     for (span, zst, align1, non_exhaustive) in field_infos {
1124         if zst && !align1 {
1125             struct_span_err!(
1126                 tcx.sess,
1127                 span,
1128                 E0691,
1129                 "zero-sized field in transparent {} has alignment larger than 1",
1130                 adt.descr(),
1131             )
1132             .span_label(span, "has alignment larger than 1")
1133             .emit();
1134         }
1135         if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
1136             tcx.struct_span_lint_hir(
1137                 REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
1138                 tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
1139                 span,
1140                 "zero-sized fields in `repr(transparent)` cannot contain external non-exhaustive types",
1141                 |lint| {
1142                     let note = if non_exhaustive {
1143                         "is marked with `#[non_exhaustive]`"
1144                     } else {
1145                         "contains private fields"
1146                     };
1147                     let field_ty = tcx.def_path_str_with_substs(def_id, substs);
1148                     lint
1149                         .note(format!("this {descr} contains `{field_ty}`, which {note}, \
1150                             and makes it not a breaking change to become non-zero-sized in the future."))
1151                 },
1152             )
1153         }
1154     }
1155 }
1156
1157 #[allow(trivial_numeric_casts)]
1158 fn check_enum(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1159     let def = tcx.adt_def(def_id);
1160     def.destructor(tcx); // force the destructor to be evaluated
1161
1162     if def.variants().is_empty() {
1163         if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() {
1164             struct_span_err!(
1165                 tcx.sess,
1166                 attr.span,
1167                 E0084,
1168                 "unsupported representation for zero-variant enum"
1169             )
1170             .span_label(tcx.def_span(def_id), "zero-variant enum")
1171             .emit();
1172         }
1173     }
1174
1175     let repr_type_ty = def.repr().discr_type().to_ty(tcx);
1176     if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1177         if !tcx.features().repr128 {
1178             feature_err(
1179                 &tcx.sess.parse_sess,
1180                 sym::repr128,
1181                 tcx.def_span(def_id),
1182                 "repr with 128-bit type is unstable",
1183             )
1184             .emit();
1185         }
1186     }
1187
1188     for v in def.variants() {
1189         if let ty::VariantDiscr::Explicit(discr_def_id) = v.discr {
1190             tcx.ensure().typeck(discr_def_id.expect_local());
1191         }
1192     }
1193
1194     if def.repr().int.is_none() {
1195         let is_unit = |var: &ty::VariantDef| matches!(var.ctor_kind(), Some(CtorKind::Const));
1196         let has_disr = |var: &ty::VariantDef| matches!(var.discr, ty::VariantDiscr::Explicit(_));
1197
1198         let has_non_units = def.variants().iter().any(|var| !is_unit(var));
1199         let disr_units = def.variants().iter().any(|var| is_unit(&var) && has_disr(&var));
1200         let disr_non_unit = def.variants().iter().any(|var| !is_unit(&var) && has_disr(&var));
1201
1202         if disr_non_unit || (disr_units && has_non_units) {
1203             let mut err = struct_span_err!(
1204                 tcx.sess,
1205                 tcx.def_span(def_id),
1206                 E0732,
1207                 "`#[repr(inttype)]` must be specified"
1208             );
1209             err.emit();
1210         }
1211     }
1212
1213     detect_discriminant_duplicate(tcx, def);
1214     check_transparent(tcx, def);
1215 }
1216
1217 /// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
1218 fn detect_discriminant_duplicate<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>) {
1219     // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
1220     // Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
1221     let report = |dis: Discr<'tcx>, idx, err: &mut Diagnostic| {
1222         let var = adt.variant(idx); // HIR for the duplicate discriminant
1223         let (span, display_discr) = match var.discr {
1224             ty::VariantDiscr::Explicit(discr_def_id) => {
1225                 // In the case the discriminant is both a duplicate and overflowed, let the user know
1226                 if let hir::Node::AnonConst(expr) = tcx.hir().get_by_def_id(discr_def_id.expect_local())
1227                     && let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
1228                     && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
1229                     && *lit_value != dis.val
1230                 {
1231                     (tcx.def_span(discr_def_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
1232                 } else {
1233                     // Otherwise, format the value as-is
1234                     (tcx.def_span(discr_def_id), format!("`{dis}`"))
1235                 }
1236             }
1237             // This should not happen.
1238             ty::VariantDiscr::Relative(0) => (tcx.def_span(var.def_id), format!("`{dis}`")),
1239             ty::VariantDiscr::Relative(distance_to_explicit) => {
1240                 // At this point we know this discriminant is a duplicate, and was not explicitly
1241                 // assigned by the user. Here we iterate backwards to fetch the HIR for the last
1242                 // explicitly assigned discriminant, and letting the user know that this was the
1243                 // increment startpoint, and how many steps from there leading to the duplicate
1244                 if let Some(explicit_idx) =
1245                     idx.as_u32().checked_sub(distance_to_explicit).map(VariantIdx::from_u32)
1246                 {
1247                     let explicit_variant = adt.variant(explicit_idx);
1248                     let ve_ident = var.name;
1249                     let ex_ident = explicit_variant.name;
1250                     let sp = if distance_to_explicit > 1 { "variants" } else { "variant" };
1251
1252                     err.span_label(
1253                         tcx.def_span(explicit_variant.def_id),
1254                         format!(
1255                             "discriminant for `{ve_ident}` incremented from this startpoint \
1256                             (`{ex_ident}` + {distance_to_explicit} {sp} later \
1257                              => `{ve_ident}` = {dis})"
1258                         ),
1259                     );
1260                 }
1261
1262                 (tcx.def_span(var.def_id), format!("`{dis}`"))
1263             }
1264         };
1265
1266         err.span_label(span, format!("{display_discr} assigned here"));
1267     };
1268
1269     let mut discrs = adt.discriminants(tcx).collect::<Vec<_>>();
1270
1271     // Here we loop through the discriminants, comparing each discriminant to another.
1272     // When a duplicate is detected, we instantiate an error and point to both
1273     // initial and duplicate value. The duplicate discriminant is then discarded by swapping
1274     // it with the last element and decrementing the `vec.len` (which is why we have to evaluate
1275     // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
1276     // style as we are mutating `discrs` on the fly).
1277     let mut i = 0;
1278     while i < discrs.len() {
1279         let var_i_idx = discrs[i].0;
1280         let mut error: Option<DiagnosticBuilder<'_, _>> = None;
1281
1282         let mut o = i + 1;
1283         while o < discrs.len() {
1284             let var_o_idx = discrs[o].0;
1285
1286             if discrs[i].1.val == discrs[o].1.val {
1287                 let err = error.get_or_insert_with(|| {
1288                     let mut ret = struct_span_err!(
1289                         tcx.sess,
1290                         tcx.def_span(adt.did()),
1291                         E0081,
1292                         "discriminant value `{}` assigned more than once",
1293                         discrs[i].1,
1294                     );
1295
1296                     report(discrs[i].1, var_i_idx, &mut ret);
1297
1298                     ret
1299                 });
1300
1301                 report(discrs[o].1, var_o_idx, err);
1302
1303                 // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
1304                 discrs[o] = *discrs.last().unwrap();
1305                 discrs.pop();
1306             } else {
1307                 o += 1;
1308             }
1309         }
1310
1311         if let Some(mut e) = error {
1312             e.emit();
1313         }
1314
1315         i += 1;
1316     }
1317 }
1318
1319 pub(super) fn check_type_params_are_used<'tcx>(
1320     tcx: TyCtxt<'tcx>,
1321     generics: &ty::Generics,
1322     ty: Ty<'tcx>,
1323 ) {
1324     debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
1325
1326     assert_eq!(generics.parent, None);
1327
1328     if generics.own_counts().types == 0 {
1329         return;
1330     }
1331
1332     let mut params_used = BitSet::new_empty(generics.params.len());
1333
1334     if ty.references_error() {
1335         // If there is already another error, do not emit
1336         // an error for not using a type parameter.
1337         assert!(tcx.sess.has_errors().is_some());
1338         return;
1339     }
1340
1341     for leaf in ty.walk() {
1342         if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
1343             && let ty::Param(param) = leaf_ty.kind()
1344         {
1345             debug!("found use of ty param {:?}", param);
1346             params_used.insert(param.index);
1347         }
1348     }
1349
1350     for param in &generics.params {
1351         if !params_used.contains(param.index)
1352             && let ty::GenericParamDefKind::Type { .. } = param.kind
1353         {
1354             let span = tcx.def_span(param.def_id);
1355             struct_span_err!(
1356                 tcx.sess,
1357                 span,
1358                 E0091,
1359                 "type parameter `{}` is unused",
1360                 param.name,
1361             )
1362             .span_label(span, "unused type parameter")
1363             .emit();
1364         }
1365     }
1366 }
1367
1368 pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
1369     let module = tcx.hir_module_items(module_def_id);
1370     for id in module.items() {
1371         check_item_type(tcx, id);
1372     }
1373 }
1374
1375 fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
1376     struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
1377         .span_label(span, "recursive `async fn`")
1378         .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
1379         .note(
1380             "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
1381         )
1382         .emit()
1383 }
1384
1385 /// Emit an error for recursive opaque types.
1386 ///
1387 /// If this is a return `impl Trait`, find the item's return expressions and point at them. For
1388 /// direct recursion this is enough, but for indirect recursion also point at the last intermediary
1389 /// `impl Trait`.
1390 ///
1391 /// If all the return expressions evaluate to `!`, then we explain that the error will go away
1392 /// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
1393 fn opaque_type_cycle_error(
1394     tcx: TyCtxt<'_>,
1395     opaque_def_id: LocalDefId,
1396     span: Span,
1397 ) -> ErrorGuaranteed {
1398     let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
1399
1400     let mut label = false;
1401     if let Some((def_id, visitor)) = get_owner_return_paths(tcx, opaque_def_id) {
1402         let typeck_results = tcx.typeck(def_id);
1403         if visitor
1404             .returns
1405             .iter()
1406             .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
1407             .all(|ty| matches!(ty.kind(), ty::Never))
1408         {
1409             let spans = visitor
1410                 .returns
1411                 .iter()
1412                 .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
1413                 .map(|expr| expr.span)
1414                 .collect::<Vec<Span>>();
1415             let span_len = spans.len();
1416             if span_len == 1 {
1417                 err.span_label(spans[0], "this returned value is of `!` type");
1418             } else {
1419                 let mut multispan: MultiSpan = spans.clone().into();
1420                 for span in spans {
1421                     multispan.push_span_label(span, "this returned value is of `!` type");
1422                 }
1423                 err.span_note(multispan, "these returned values have a concrete \"never\" type");
1424             }
1425             err.help("this error will resolve once the item's body returns a concrete type");
1426         } else {
1427             let mut seen = FxHashSet::default();
1428             seen.insert(span);
1429             err.span_label(span, "recursive opaque type");
1430             label = true;
1431             for (sp, ty) in visitor
1432                 .returns
1433                 .iter()
1434                 .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
1435                 .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
1436             {
1437                 #[derive(Default)]
1438                 struct OpaqueTypeCollector {
1439                     opaques: Vec<DefId>,
1440                     closures: Vec<DefId>,
1441                 }
1442                 impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector {
1443                     fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1444                         match *t.kind() {
1445                             ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
1446                                 self.opaques.push(def);
1447                                 ControlFlow::Continue(())
1448                             }
1449                             ty::Closure(def_id, ..) | ty::Generator(def_id, ..) => {
1450                                 self.closures.push(def_id);
1451                                 t.super_visit_with(self)
1452                             }
1453                             _ => t.super_visit_with(self),
1454                         }
1455                     }
1456                 }
1457
1458                 let mut visitor = OpaqueTypeCollector::default();
1459                 ty.visit_with(&mut visitor);
1460                 for def_id in visitor.opaques {
1461                     let ty_span = tcx.def_span(def_id);
1462                     if !seen.contains(&ty_span) {
1463                         err.span_label(ty_span, &format!("returning this opaque type `{ty}`"));
1464                         seen.insert(ty_span);
1465                     }
1466                     err.span_label(sp, &format!("returning here with type `{ty}`"));
1467                 }
1468
1469                 for closure_def_id in visitor.closures {
1470                     let Some(closure_local_did) = closure_def_id.as_local() else { continue; };
1471                     let typeck_results = tcx.typeck(closure_local_did);
1472
1473                     let mut label_match = |ty: Ty<'_>, span| {
1474                         for arg in ty.walk() {
1475                             if let ty::GenericArgKind::Type(ty) = arg.unpack()
1476                                 && let ty::Alias(ty::Opaque, ty::AliasTy { def_id: captured_def_id, .. }) = *ty.kind()
1477                                 && captured_def_id == opaque_def_id.to_def_id()
1478                             {
1479                                 err.span_label(
1480                                     span,
1481                                     format!(
1482                                         "{} captures itself here",
1483                                         tcx.def_kind(closure_def_id).descr(closure_def_id)
1484                                     ),
1485                                 );
1486                             }
1487                         }
1488                     };
1489
1490                     // Label any closure upvars that capture the opaque
1491                     for capture in typeck_results.closure_min_captures_flattened(closure_local_did)
1492                     {
1493                         label_match(capture.place.ty(), capture.get_path_span(tcx));
1494                     }
1495                     // Label any generator locals that capture the opaque
1496                     for interior_ty in
1497                         typeck_results.generator_interior_types.as_ref().skip_binder()
1498                     {
1499                         label_match(interior_ty.ty, interior_ty.span);
1500                     }
1501                 }
1502             }
1503         }
1504     }
1505     if !label {
1506         err.span_label(span, "cannot resolve opaque type");
1507     }
1508     err.emit()
1509 }