]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_const_eval/src/interpret/terminator.rs
Auto merge of #100726 - jswrenn:transmute, r=oli-obk
[rust.git] / compiler / rustc_const_eval / src / interpret / terminator.rs
1 use std::borrow::Cow;
2
3 use rustc_middle::ty::layout::{FnAbiOf, LayoutOf};
4 use rustc_middle::ty::Instance;
5 use rustc_middle::{
6     mir,
7     ty::{self, Ty},
8 };
9 use rustc_target::abi;
10 use rustc_target::abi::call::{ArgAbi, ArgAttribute, ArgAttributes, FnAbi, PassMode};
11 use rustc_target::spec::abi::Abi;
12
13 use super::{
14     FnVal, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine, MemoryKind, OpTy, Operand,
15     PlaceTy, Scalar, StackPopCleanup, StackPopUnwind,
16 };
17
18 impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
19     pub(super) fn eval_terminator(
20         &mut self,
21         terminator: &mir::Terminator<'tcx>,
22     ) -> InterpResult<'tcx> {
23         use rustc_middle::mir::TerminatorKind::*;
24         match terminator.kind {
25             Return => {
26                 self.pop_stack_frame(/* unwinding */ false)?
27             }
28
29             Goto { target } => self.go_to_block(target),
30
31             SwitchInt { ref discr, ref targets, switch_ty } => {
32                 let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
33                 trace!("SwitchInt({:?})", *discr);
34                 assert_eq!(discr.layout.ty, switch_ty);
35
36                 // Branch to the `otherwise` case by default, if no match is found.
37                 assert!(!targets.iter().is_empty());
38                 let mut target_block = targets.otherwise();
39
40                 for (const_int, target) in targets.iter() {
41                     // Compare using MIR BinOp::Eq, to also support pointer values.
42                     // (Avoiding `self.binary_op` as that does some redundant layout computation.)
43                     let res = self
44                         .overflowing_binary_op(
45                             mir::BinOp::Eq,
46                             &discr,
47                             &ImmTy::from_uint(const_int, discr.layout),
48                         )?
49                         .0;
50                     if res.to_bool()? {
51                         target_block = target;
52                         break;
53                     }
54                 }
55
56                 self.go_to_block(target_block);
57             }
58
59             Call {
60                 ref func,
61                 ref args,
62                 destination,
63                 target,
64                 ref cleanup,
65                 from_hir_call: _,
66                 fn_span: _,
67             } => {
68                 let old_stack = self.frame_idx();
69                 let old_loc = self.frame().loc;
70                 let func = self.eval_operand(func, None)?;
71                 let args = self.eval_operands(args)?;
72
73                 let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
74                 let fn_sig =
75                     self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
76                 let extra_args = &args[fn_sig.inputs().len()..];
77                 let extra_args = self.tcx.mk_type_list(extra_args.iter().map(|arg| arg.layout.ty));
78
79                 let (fn_val, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
80                     ty::FnPtr(_sig) => {
81                         let fn_ptr = self.read_pointer(&func)?;
82                         let fn_val = self.get_ptr_fn(fn_ptr)?;
83                         (fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
84                     }
85                     ty::FnDef(def_id, substs) => {
86                         let instance =
87                             self.resolve(ty::WithOptConstParam::unknown(def_id), substs)?;
88                         (
89                             FnVal::Instance(instance),
90                             self.fn_abi_of_instance(instance, extra_args)?,
91                             instance.def.requires_caller_location(*self.tcx),
92                         )
93                     }
94                     _ => span_bug!(
95                         terminator.source_info.span,
96                         "invalid callee of type {:?}",
97                         func.layout.ty
98                     ),
99                 };
100
101                 let destination = self.eval_place(destination)?;
102                 self.eval_fn_call(
103                     fn_val,
104                     (fn_sig.abi, fn_abi),
105                     &args,
106                     with_caller_location,
107                     &destination,
108                     target,
109                     match (cleanup, fn_abi.can_unwind) {
110                         (Some(cleanup), true) => StackPopUnwind::Cleanup(*cleanup),
111                         (None, true) => StackPopUnwind::Skip,
112                         (_, false) => StackPopUnwind::NotAllowed,
113                     },
114                 )?;
115                 // Sanity-check that `eval_fn_call` either pushed a new frame or
116                 // did a jump to another block.
117                 if self.frame_idx() == old_stack && self.frame().loc == old_loc {
118                     span_bug!(terminator.source_info.span, "evaluating this call made no progress");
119                 }
120             }
121
122             Drop { place, target, unwind } => {
123                 let place = self.eval_place(place)?;
124                 let ty = place.layout.ty;
125                 trace!("TerminatorKind::drop: {:?}, type {}", place, ty);
126
127                 let instance = Instance::resolve_drop_in_place(*self.tcx, ty);
128                 self.drop_in_place(&place, instance, target, unwind)?;
129             }
130
131             Assert { ref cond, expected, ref msg, target, cleanup } => {
132                 let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
133                 if expected == cond_val {
134                     self.go_to_block(target);
135                 } else {
136                     M::assert_panic(self, msg, cleanup)?;
137                 }
138             }
139
140             Abort => {
141                 M::abort(self, "the program aborted execution".to_owned())?;
142             }
143
144             // When we encounter Resume, we've finished unwinding
145             // cleanup for the current stack frame. We pop it in order
146             // to continue unwinding the next frame
147             Resume => {
148                 trace!("unwinding: resuming from cleanup");
149                 // By definition, a Resume terminator means
150                 // that we're unwinding
151                 self.pop_stack_frame(/* unwinding */ true)?;
152                 return Ok(());
153             }
154
155             // It is UB to ever encounter this.
156             Unreachable => throw_ub!(Unreachable),
157
158             // These should never occur for MIR we actually run.
159             DropAndReplace { .. }
160             | FalseEdge { .. }
161             | FalseUnwind { .. }
162             | Yield { .. }
163             | GeneratorDrop => span_bug!(
164                 terminator.source_info.span,
165                 "{:#?} should have been eliminated by MIR pass",
166                 terminator.kind
167             ),
168
169             // Inline assembly can't be interpreted.
170             InlineAsm { .. } => throw_unsup_format!("inline assembly is not supported"),
171         }
172
173         Ok(())
174     }
175
176     fn check_argument_compat(
177         caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
178         callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
179     ) -> bool {
180         // Heuristic for type comparison.
181         let layout_compat = || {
182             if caller_abi.layout.ty == callee_abi.layout.ty {
183                 // No question
184                 return true;
185             }
186             if caller_abi.layout.is_unsized() || callee_abi.layout.is_unsized() {
187                 // No, no, no. We require the types to *exactly* match for unsized arguments. If
188                 // these are somehow unsized "in a different way" (say, `dyn Trait` vs `[i32]`),
189                 // then who knows what happens.
190                 return false;
191             }
192             if caller_abi.layout.size != callee_abi.layout.size
193                 || caller_abi.layout.align.abi != callee_abi.layout.align.abi
194             {
195                 // This cannot go well...
196                 return false;
197             }
198             // The rest *should* be okay, but we are extra conservative.
199             match (caller_abi.layout.abi, callee_abi.layout.abi) {
200                 // Different valid ranges are okay (once we enforce validity,
201                 // that will take care to make it UB to leave the range, just
202                 // like for transmute).
203                 (abi::Abi::Scalar(caller), abi::Abi::Scalar(callee)) => {
204                     caller.primitive() == callee.primitive()
205                 }
206                 (
207                     abi::Abi::ScalarPair(caller1, caller2),
208                     abi::Abi::ScalarPair(callee1, callee2),
209                 ) => {
210                     caller1.primitive() == callee1.primitive()
211                         && caller2.primitive() == callee2.primitive()
212                 }
213                 // Be conservative
214                 _ => false,
215             }
216         };
217         // When comparing the PassMode, we have to be smart about comparing the attributes.
218         let arg_attr_compat = |a1: &ArgAttributes, a2: &ArgAttributes| {
219             // There's only one regular attribute that matters for the call ABI: InReg.
220             // Everything else is things like noalias, dereferenceable, nonnull, ...
221             // (This also applies to pointee_size, pointee_align.)
222             if a1.regular.contains(ArgAttribute::InReg) != a2.regular.contains(ArgAttribute::InReg)
223             {
224                 return false;
225             }
226             // We also compare the sign extension mode -- this could let the callee make assumptions
227             // about bits that conceptually were not even passed.
228             if a1.arg_ext != a2.arg_ext {
229                 return false;
230             }
231             return true;
232         };
233         let mode_compat = || match (&caller_abi.mode, &callee_abi.mode) {
234             (PassMode::Ignore, PassMode::Ignore) => true,
235             (PassMode::Direct(a1), PassMode::Direct(a2)) => arg_attr_compat(a1, a2),
236             (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => {
237                 arg_attr_compat(a1, a2) && arg_attr_compat(b1, b2)
238             }
239             (PassMode::Cast(c1, pad1), PassMode::Cast(c2, pad2)) => c1 == c2 && pad1 == pad2,
240             (
241                 PassMode::Indirect { attrs: a1, extra_attrs: None, on_stack: s1 },
242                 PassMode::Indirect { attrs: a2, extra_attrs: None, on_stack: s2 },
243             ) => arg_attr_compat(a1, a2) && s1 == s2,
244             (
245                 PassMode::Indirect { attrs: a1, extra_attrs: Some(e1), on_stack: s1 },
246                 PassMode::Indirect { attrs: a2, extra_attrs: Some(e2), on_stack: s2 },
247             ) => arg_attr_compat(a1, a2) && arg_attr_compat(e1, e2) && s1 == s2,
248             _ => false,
249         };
250
251         if layout_compat() && mode_compat() {
252             return true;
253         }
254         trace!(
255             "check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
256             caller_abi,
257             callee_abi
258         );
259         return false;
260     }
261
262     /// Initialize a single callee argument, checking the types for compatibility.
263     fn pass_argument<'x, 'y>(
264         &mut self,
265         caller_args: &mut impl Iterator<
266             Item = (&'x OpTy<'tcx, M::Provenance>, &'y ArgAbi<'tcx, Ty<'tcx>>),
267         >,
268         callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
269         callee_arg: &PlaceTy<'tcx, M::Provenance>,
270     ) -> InterpResult<'tcx>
271     where
272         'tcx: 'x,
273         'tcx: 'y,
274     {
275         if matches!(callee_abi.mode, PassMode::Ignore) {
276             // This one is skipped.
277             return Ok(());
278         }
279         // Find next caller arg.
280         let (caller_arg, caller_abi) = caller_args.next().ok_or_else(|| {
281             err_ub_format!("calling a function with fewer arguments than it requires")
282         })?;
283         // Now, check
284         if !Self::check_argument_compat(caller_abi, callee_abi) {
285             throw_ub_format!(
286                 "calling a function with argument of type {:?} passing data of type {:?}",
287                 callee_arg.layout.ty,
288                 caller_arg.layout.ty
289             )
290         }
291         // Special handling for unsized parameters.
292         if caller_arg.layout.is_unsized() {
293             // `check_argument_compat` ensures that both have the same type, so we know they will use the metadata the same way.
294             assert_eq!(caller_arg.layout.ty, callee_arg.layout.ty);
295             // We have to properly pre-allocate the memory for the callee.
296             // So let's tear down some wrappers.
297             // This all has to be in memory, there are no immediate unsized values.
298             let src = caller_arg.assert_mem_place();
299             // The destination cannot be one of these "spread args".
300             let (dest_frame, dest_local) = callee_arg.assert_local();
301             // We are just initializing things, so there can't be anything here yet.
302             assert!(matches!(
303                 *self.local_to_op(&self.stack()[dest_frame], dest_local, None)?,
304                 Operand::Immediate(Immediate::Uninit)
305             ));
306             // Allocate enough memory to hold `src`.
307             let Some((size, align)) = self.size_and_align_of_mplace(&src)? else {
308                 span_bug!(self.cur_span(), "unsized fn arg with `extern` type tail should not be allowed")
309             };
310             let ptr = self.allocate_ptr(size, align, MemoryKind::Stack)?;
311             let dest_place =
312                 MPlaceTy::from_aligned_ptr_with_meta(ptr.into(), callee_arg.layout, src.meta);
313             // Update the local to be that new place.
314             *M::access_local_mut(self, dest_frame, dest_local)? = Operand::Indirect(*dest_place);
315         }
316         // We allow some transmutes here.
317         // FIXME: Depending on the PassMode, this should reset some padding to uninitialized. (This
318         // is true for all `copy_op`, but there are a lot of special cases for argument passing
319         // specifically.)
320         self.copy_op(&caller_arg, callee_arg, /*allow_transmute*/ true)
321     }
322
323     /// Call this function -- pushing the stack frame and initializing the arguments.
324     ///
325     /// `caller_fn_abi` is used to determine if all the arguments are passed the proper way.
326     /// However, we also need `caller_abi` to determine if we need to do untupling of arguments.
327     ///
328     /// `with_caller_location` indicates whether the caller passed a caller location. Miri
329     /// implements caller locations without argument passing, but to match `FnAbi` we need to know
330     /// when those arguments are present.
331     pub(crate) fn eval_fn_call(
332         &mut self,
333         fn_val: FnVal<'tcx, M::ExtraFnVal>,
334         (caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
335         args: &[OpTy<'tcx, M::Provenance>],
336         with_caller_location: bool,
337         destination: &PlaceTy<'tcx, M::Provenance>,
338         target: Option<mir::BasicBlock>,
339         mut unwind: StackPopUnwind,
340     ) -> InterpResult<'tcx> {
341         trace!("eval_fn_call: {:#?}", fn_val);
342
343         let instance = match fn_val {
344             FnVal::Instance(instance) => instance,
345             FnVal::Other(extra) => {
346                 return M::call_extra_fn(
347                     self,
348                     extra,
349                     caller_abi,
350                     args,
351                     destination,
352                     target,
353                     unwind,
354                 );
355             }
356         };
357
358         match instance.def {
359             ty::InstanceDef::Intrinsic(def_id) => {
360                 assert!(self.tcx.is_intrinsic(def_id));
361                 // caller_fn_abi is not relevant here, we interpret the arguments directly for each intrinsic.
362                 M::call_intrinsic(self, instance, args, destination, target, unwind)
363             }
364             ty::InstanceDef::VTableShim(..)
365             | ty::InstanceDef::ReifyShim(..)
366             | ty::InstanceDef::ClosureOnceShim { .. }
367             | ty::InstanceDef::FnPtrShim(..)
368             | ty::InstanceDef::DropGlue(..)
369             | ty::InstanceDef::CloneShim(..)
370             | ty::InstanceDef::Item(_) => {
371                 // We need MIR for this fn
372                 let Some((body, instance)) =
373                     M::find_mir_or_eval_fn(self, instance, caller_abi, args, destination, target, unwind)? else {
374                         return Ok(());
375                     };
376
377                 // Compute callee information using the `instance` returned by
378                 // `find_mir_or_eval_fn`.
379                 // FIXME: for variadic support, do we have to somehow determine callee's extra_args?
380                 let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
381
382                 if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
383                     throw_unsup_format!("calling a c-variadic function is not supported");
384                 }
385
386                 if M::enforce_abi(self) {
387                     if caller_fn_abi.conv != callee_fn_abi.conv {
388                         throw_ub_format!(
389                             "calling a function with calling convention {:?} using calling convention {:?}",
390                             callee_fn_abi.conv,
391                             caller_fn_abi.conv
392                         )
393                     }
394                 }
395
396                 if !matches!(unwind, StackPopUnwind::NotAllowed) && !callee_fn_abi.can_unwind {
397                     // The callee cannot unwind.
398                     unwind = StackPopUnwind::NotAllowed;
399                 }
400
401                 self.push_stack_frame(
402                     instance,
403                     body,
404                     destination,
405                     StackPopCleanup::Goto { ret: target, unwind },
406                 )?;
407
408                 // If an error is raised here, pop the frame again to get an accurate backtrace.
409                 // To this end, we wrap it all in a `try` block.
410                 let res: InterpResult<'tcx> = try {
411                     trace!(
412                         "caller ABI: {:?}, args: {:#?}",
413                         caller_abi,
414                         args.iter()
415                             .map(|arg| (arg.layout.ty, format!("{:?}", **arg)))
416                             .collect::<Vec<_>>()
417                     );
418                     trace!(
419                         "spread_arg: {:?}, locals: {:#?}",
420                         body.spread_arg,
421                         body.args_iter()
422                             .map(|local| (
423                                 local,
424                                 self.layout_of_local(self.frame(), local, None).unwrap().ty
425                             ))
426                             .collect::<Vec<_>>()
427                     );
428
429                     // In principle, we have two iterators: Where the arguments come from, and where
430                     // they go to.
431
432                     // For where they come from: If the ABI is RustCall, we untuple the
433                     // last incoming argument.  These two iterators do not have the same type,
434                     // so to keep the code paths uniform we accept an allocation
435                     // (for RustCall ABI only).
436                     let caller_args: Cow<'_, [OpTy<'tcx, M::Provenance>]> =
437                         if caller_abi == Abi::RustCall && !args.is_empty() {
438                             // Untuple
439                             let (untuple_arg, args) = args.split_last().unwrap();
440                             trace!("eval_fn_call: Will pass last argument by untupling");
441                             Cow::from(
442                                 args.iter()
443                                     .map(|a| Ok(a.clone()))
444                                     .chain(
445                                         (0..untuple_arg.layout.fields.count())
446                                             .map(|i| self.operand_field(untuple_arg, i)),
447                                     )
448                                     .collect::<InterpResult<'_, Vec<OpTy<'tcx, M::Provenance>>>>(
449                                     )?,
450                             )
451                         } else {
452                             // Plain arg passing
453                             Cow::from(args)
454                         };
455                     // If `with_caller_location` is set we pretend there is an extra argument (that
456                     // we will not pass).
457                     assert_eq!(
458                         caller_args.len() + if with_caller_location { 1 } else { 0 },
459                         caller_fn_abi.args.len(),
460                         "mismatch between caller ABI and caller arguments",
461                     );
462                     let mut caller_args = caller_args
463                         .iter()
464                         .zip(caller_fn_abi.args.iter())
465                         .filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));
466
467                     // Now we have to spread them out across the callee's locals,
468                     // taking into account the `spread_arg`.  If we could write
469                     // this is a single iterator (that handles `spread_arg`), then
470                     // `pass_argument` would be the loop body. It takes care to
471                     // not advance `caller_iter` for ZSTs.
472                     let mut callee_args_abis = callee_fn_abi.args.iter();
473                     for local in body.args_iter() {
474                         let dest = self.eval_place(mir::Place::from(local))?;
475                         if Some(local) == body.spread_arg {
476                             // Must be a tuple
477                             for i in 0..dest.layout.fields.count() {
478                                 let dest = self.place_field(&dest, i)?;
479                                 let callee_abi = callee_args_abis.next().unwrap();
480                                 self.pass_argument(&mut caller_args, callee_abi, &dest)?;
481                             }
482                         } else {
483                             // Normal argument
484                             let callee_abi = callee_args_abis.next().unwrap();
485                             self.pass_argument(&mut caller_args, callee_abi, &dest)?;
486                         }
487                     }
488                     // If the callee needs a caller location, pretend we consume one more argument from the ABI.
489                     if instance.def.requires_caller_location(*self.tcx) {
490                         callee_args_abis.next().unwrap();
491                     }
492                     // Now we should have no more caller args or callee arg ABIs
493                     assert!(
494                         callee_args_abis.next().is_none(),
495                         "mismatch between callee ABI and callee body arguments"
496                     );
497                     if caller_args.next().is_some() {
498                         throw_ub_format!("calling a function with more arguments than it expected")
499                     }
500                     // Don't forget to check the return type!
501                     if !Self::check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
502                         throw_ub_format!(
503                             "calling a function with return type {:?} passing \
504                                     return place of type {:?}",
505                             callee_fn_abi.ret.layout.ty,
506                             caller_fn_abi.ret.layout.ty,
507                         )
508                     }
509                 };
510                 match res {
511                     Err(err) => {
512                         self.stack_mut().pop();
513                         Err(err)
514                     }
515                     Ok(()) => Ok(()),
516                 }
517             }
518             // cannot use the shim here, because that will only result in infinite recursion
519             ty::InstanceDef::Virtual(def_id, idx) => {
520                 let mut args = args.to_vec();
521                 // We have to implement all "object safe receivers". So we have to go search for a
522                 // pointer or `dyn Trait` type, but it could be wrapped in newtypes. So recursively
523                 // unwrap those newtypes until we are there.
524                 let mut receiver = args[0].clone();
525                 let receiver_place = loop {
526                     match receiver.layout.ty.kind() {
527                         ty::Ref(..) | ty::RawPtr(..) => break self.deref_operand(&receiver)?,
528                         ty::Dynamic(..) => break receiver.assert_mem_place(), // no immediate unsized values
529                         _ => {
530                             // Not there yet, search for the only non-ZST field.
531                             let mut non_zst_field = None;
532                             for i in 0..receiver.layout.fields.count() {
533                                 let field = self.operand_field(&receiver, i)?;
534                                 let zst =
535                                     field.layout.is_zst() && field.layout.align.abi.bytes() == 1;
536                                 if !zst {
537                                     assert!(
538                                         non_zst_field.is_none(),
539                                         "multiple non-ZST fields in dyn receiver type {}",
540                                         receiver.layout.ty
541                                     );
542                                     non_zst_field = Some(field);
543                                 }
544                             }
545                             receiver = non_zst_field.unwrap_or_else(|| {
546                                 panic!(
547                                     "no non-ZST fields in dyn receiver type {}",
548                                     receiver.layout.ty
549                                 )
550                             });
551                         }
552                     }
553                 };
554                 // Obtain the underlying trait we are working on.
555                 let receiver_tail = self
556                     .tcx
557                     .struct_tail_erasing_lifetimes(receiver_place.layout.ty, self.param_env);
558                 let ty::Dynamic(data, ..) = receiver_tail.kind() else {
559                     span_bug!(self.cur_span(), "dynamic call on non-`dyn` type {}", receiver_tail)
560                 };
561
562                 // Get the required information from the vtable.
563                 let vptr = receiver_place.meta.unwrap_meta().to_pointer(self)?;
564                 let (dyn_ty, dyn_trait) = self.get_ptr_vtable(vptr)?;
565                 if dyn_trait != data.principal() {
566                     throw_ub_format!(
567                         "`dyn` call on a pointer whose vtable does not match its type"
568                     );
569                 }
570
571                 // Now determine the actual method to call. We can do that in two different ways and
572                 // compare them to ensure everything fits.
573                 let Some(ty::VtblEntry::Method(fn_inst)) = self.get_vtable_entries(vptr)?.get(idx).copied() else {
574                     throw_ub_format!("`dyn` call trying to call something that is not a method")
575                 };
576                 if cfg!(debug_assertions) {
577                     let tcx = *self.tcx;
578
579                     let trait_def_id = tcx.trait_of_item(def_id).unwrap();
580                     let virtual_trait_ref =
581                         ty::TraitRef::from_method(tcx, trait_def_id, instance.substs);
582                     assert_eq!(
583                         receiver_tail,
584                         virtual_trait_ref.self_ty(),
585                         "mismatch in underlying dyn trait computation within Miri and MIR building",
586                     );
587                     let existential_trait_ref =
588                         ty::ExistentialTraitRef::erase_self_ty(tcx, virtual_trait_ref);
589                     let concrete_trait_ref = existential_trait_ref.with_self_ty(tcx, dyn_ty);
590
591                     let concrete_method = Instance::resolve_for_vtable(
592                         tcx,
593                         self.param_env,
594                         def_id,
595                         instance.substs.rebase_onto(tcx, trait_def_id, concrete_trait_ref.substs),
596                     )
597                     .unwrap();
598                     assert_eq!(fn_inst, concrete_method);
599                 }
600
601                 // `*mut receiver_place.layout.ty` is almost the layout that we
602                 // want for args[0]: We have to project to field 0 because we want
603                 // a thin pointer.
604                 assert!(receiver_place.layout.is_unsized());
605                 let receiver_ptr_ty = self.tcx.mk_mut_ptr(receiver_place.layout.ty);
606                 let this_receiver_ptr = self.layout_of(receiver_ptr_ty)?.field(self, 0);
607                 // Adjust receiver argument.
608                 args[0] = OpTy::from(ImmTy::from_immediate(
609                     Scalar::from_maybe_pointer(receiver_place.ptr, self).into(),
610                     this_receiver_ptr,
611                 ));
612                 trace!("Patched receiver operand to {:#?}", args[0]);
613                 // recurse with concrete function
614                 self.eval_fn_call(
615                     FnVal::Instance(fn_inst),
616                     (caller_abi, caller_fn_abi),
617                     &args,
618                     with_caller_location,
619                     destination,
620                     target,
621                     unwind,
622                 )
623             }
624         }
625     }
626
627     fn drop_in_place(
628         &mut self,
629         place: &PlaceTy<'tcx, M::Provenance>,
630         instance: ty::Instance<'tcx>,
631         target: mir::BasicBlock,
632         unwind: Option<mir::BasicBlock>,
633     ) -> InterpResult<'tcx> {
634         trace!("drop_in_place: {:?},\n  {:?}, {:?}", *place, place.layout.ty, instance);
635         // We take the address of the object.  This may well be unaligned, which is fine
636         // for us here.  However, unaligned accesses will probably make the actual drop
637         // implementation fail -- a problem shared by rustc.
638         let place = self.force_allocation(place)?;
639
640         let (instance, place) = match place.layout.ty.kind() {
641             ty::Dynamic(..) => {
642                 // Dropping a trait object. Need to find actual drop fn.
643                 let place = self.unpack_dyn_trait(&place)?;
644                 let instance = ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
645                 (instance, place)
646             }
647             _ => (instance, place),
648         };
649         let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
650
651         let arg = ImmTy::from_immediate(
652             place.to_ref(self),
653             self.layout_of(self.tcx.mk_mut_ptr(place.layout.ty))?,
654         );
655         let ret = MPlaceTy::fake_alloc_zst(self.layout_of(self.tcx.types.unit)?);
656
657         self.eval_fn_call(
658             FnVal::Instance(instance),
659             (Abi::Rust, fn_abi),
660             &[arg.into()],
661             false,
662             &ret.into(),
663             Some(target),
664             match unwind {
665                 Some(cleanup) => StackPopUnwind::Cleanup(cleanup),
666                 None => StackPopUnwind::Skip,
667             },
668         )
669     }
670 }