]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_const_eval/src/interpret/operand.rs
Add 'library/portable-simd/' from commit '1ce1c645cf27c4acdefe6ec8a11d1f0491954a99'
[rust.git] / compiler / rustc_const_eval / src / interpret / operand.rs
1 //! Functions concerning immediate values and operands, and reading from operands.
2 //! All high-level functions to read from memory work on operands as sources.
3
4 use std::convert::TryFrom;
5 use std::fmt::Write;
6
7 use rustc_errors::ErrorReported;
8 use rustc_hir::def::Namespace;
9 use rustc_macros::HashStable;
10 use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
11 use rustc_middle::ty::print::{FmtPrinter, PrettyPrinter, Printer};
12 use rustc_middle::ty::{ConstInt, Ty};
13 use rustc_middle::{mir, ty};
14 use rustc_target::abi::{Abi, HasDataLayout, Size, TagEncoding};
15 use rustc_target::abi::{VariantIdx, Variants};
16
17 use super::{
18     alloc_range, from_known_layout, mir_assign_valid_types, AllocId, ConstValue, GlobalId,
19     InterpCx, InterpResult, MPlaceTy, Machine, MemPlace, Place, PlaceTy, Pointer, Provenance,
20     Scalar, ScalarMaybeUninit,
21 };
22
23 /// An `Immediate` represents a single immediate self-contained Rust value.
24 ///
25 /// For optimization of a few very common cases, there is also a representation for a pair of
26 /// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
27 /// operations and wide pointers. This idea was taken from rustc's codegen.
28 /// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
29 /// defined on `Immediate`, and do not have to work with a `Place`.
30 #[derive(Copy, Clone, PartialEq, Eq, HashStable, Hash, Debug)]
31 pub enum Immediate<Tag: Provenance = AllocId> {
32     Scalar(ScalarMaybeUninit<Tag>),
33     ScalarPair(ScalarMaybeUninit<Tag>, ScalarMaybeUninit<Tag>),
34 }
35
36 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
37 rustc_data_structures::static_assert_size!(Immediate, 56);
38
39 impl<Tag: Provenance> From<ScalarMaybeUninit<Tag>> for Immediate<Tag> {
40     #[inline(always)]
41     fn from(val: ScalarMaybeUninit<Tag>) -> Self {
42         Immediate::Scalar(val)
43     }
44 }
45
46 impl<Tag: Provenance> From<Scalar<Tag>> for Immediate<Tag> {
47     #[inline(always)]
48     fn from(val: Scalar<Tag>) -> Self {
49         Immediate::Scalar(val.into())
50     }
51 }
52
53 impl<'tcx, Tag: Provenance> Immediate<Tag> {
54     pub fn from_pointer(p: Pointer<Tag>, cx: &impl HasDataLayout) -> Self {
55         Immediate::Scalar(ScalarMaybeUninit::from_pointer(p, cx))
56     }
57
58     pub fn from_maybe_pointer(p: Pointer<Option<Tag>>, cx: &impl HasDataLayout) -> Self {
59         Immediate::Scalar(ScalarMaybeUninit::from_maybe_pointer(p, cx))
60     }
61
62     pub fn new_slice(val: Scalar<Tag>, len: u64, cx: &impl HasDataLayout) -> Self {
63         Immediate::ScalarPair(val.into(), Scalar::from_machine_usize(len, cx).into())
64     }
65
66     pub fn new_dyn_trait(
67         val: Scalar<Tag>,
68         vtable: Pointer<Option<Tag>>,
69         cx: &impl HasDataLayout,
70     ) -> Self {
71         Immediate::ScalarPair(val.into(), ScalarMaybeUninit::from_maybe_pointer(vtable, cx))
72     }
73
74     #[inline]
75     pub fn to_scalar_or_uninit(self) -> ScalarMaybeUninit<Tag> {
76         match self {
77             Immediate::Scalar(val) => val,
78             Immediate::ScalarPair(..) => bug!("Got a scalar pair where a scalar was expected"),
79         }
80     }
81
82     #[inline]
83     pub fn to_scalar(self) -> InterpResult<'tcx, Scalar<Tag>> {
84         self.to_scalar_or_uninit().check_init()
85     }
86
87     #[inline]
88     pub fn to_scalar_pair(self) -> InterpResult<'tcx, (Scalar<Tag>, Scalar<Tag>)> {
89         match self {
90             Immediate::ScalarPair(val1, val2) => Ok((val1.check_init()?, val2.check_init()?)),
91             Immediate::Scalar(..) => {
92                 bug!("Got a scalar where a scalar pair was expected")
93             }
94         }
95     }
96 }
97
98 // ScalarPair needs a type to interpret, so we often have an immediate and a type together
99 // as input for binary and cast operations.
100 #[derive(Copy, Clone, Debug)]
101 pub struct ImmTy<'tcx, Tag: Provenance = AllocId> {
102     imm: Immediate<Tag>,
103     pub layout: TyAndLayout<'tcx>,
104 }
105
106 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
107 rustc_data_structures::static_assert_size!(ImmTy<'_>, 72);
108
109 impl<Tag: Provenance> std::fmt::Display for ImmTy<'tcx, Tag> {
110     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
111         /// Helper function for printing a scalar to a FmtPrinter
112         fn p<'a, 'tcx, F: std::fmt::Write, Tag: Provenance>(
113             cx: FmtPrinter<'a, 'tcx, F>,
114             s: ScalarMaybeUninit<Tag>,
115             ty: Ty<'tcx>,
116         ) -> Result<FmtPrinter<'a, 'tcx, F>, std::fmt::Error> {
117             match s {
118                 ScalarMaybeUninit::Scalar(Scalar::Int(int)) => {
119                     cx.pretty_print_const_scalar_int(int, ty, true)
120                 }
121                 ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _sz)) => {
122                     // Just print the ptr value. `pretty_print_const_scalar_ptr` would also try to
123                     // print what is points to, which would fail since it has no access to the local
124                     // memory.
125                     cx.pretty_print_const_pointer(ptr, ty, true)
126                 }
127                 ScalarMaybeUninit::Uninit => cx.typed_value(
128                     |mut this| {
129                         this.write_str("uninit ")?;
130                         Ok(this)
131                     },
132                     |this| this.print_type(ty),
133                     " ",
134                 ),
135             }
136         }
137         ty::tls::with(|tcx| {
138             match self.imm {
139                 Immediate::Scalar(s) => {
140                     if let Some(ty) = tcx.lift(self.layout.ty) {
141                         let cx = FmtPrinter::new(tcx, f, Namespace::ValueNS);
142                         p(cx, s, ty)?;
143                         return Ok(());
144                     }
145                     write!(f, "{}: {}", s, self.layout.ty)
146                 }
147                 Immediate::ScalarPair(a, b) => {
148                     // FIXME(oli-obk): at least print tuples and slices nicely
149                     write!(f, "({}, {}): {}", a, b, self.layout.ty,)
150                 }
151             }
152         })
153     }
154 }
155
156 impl<'tcx, Tag: Provenance> std::ops::Deref for ImmTy<'tcx, Tag> {
157     type Target = Immediate<Tag>;
158     #[inline(always)]
159     fn deref(&self) -> &Immediate<Tag> {
160         &self.imm
161     }
162 }
163
164 /// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
165 /// or still in memory. The latter is an optimization, to delay reading that chunk of
166 /// memory and to avoid having to store arbitrary-sized data here.
167 #[derive(Copy, Clone, PartialEq, Eq, HashStable, Hash, Debug)]
168 pub enum Operand<Tag: Provenance = AllocId> {
169     Immediate(Immediate<Tag>),
170     Indirect(MemPlace<Tag>),
171 }
172
173 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
174 pub struct OpTy<'tcx, Tag: Provenance = AllocId> {
175     op: Operand<Tag>, // Keep this private; it helps enforce invariants.
176     pub layout: TyAndLayout<'tcx>,
177 }
178
179 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
180 rustc_data_structures::static_assert_size!(OpTy<'_>, 80);
181
182 impl<'tcx, Tag: Provenance> std::ops::Deref for OpTy<'tcx, Tag> {
183     type Target = Operand<Tag>;
184     #[inline(always)]
185     fn deref(&self) -> &Operand<Tag> {
186         &self.op
187     }
188 }
189
190 impl<'tcx, Tag: Provenance> From<MPlaceTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
191     #[inline(always)]
192     fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
193         OpTy { op: Operand::Indirect(*mplace), layout: mplace.layout }
194     }
195 }
196
197 impl<'tcx, Tag: Provenance> From<&'_ MPlaceTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
198     #[inline(always)]
199     fn from(mplace: &MPlaceTy<'tcx, Tag>) -> Self {
200         OpTy { op: Operand::Indirect(**mplace), layout: mplace.layout }
201     }
202 }
203
204 impl<'tcx, Tag: Provenance> From<ImmTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
205     #[inline(always)]
206     fn from(val: ImmTy<'tcx, Tag>) -> Self {
207         OpTy { op: Operand::Immediate(val.imm), layout: val.layout }
208     }
209 }
210
211 impl<'tcx, Tag: Provenance> ImmTy<'tcx, Tag> {
212     #[inline]
213     pub fn from_scalar(val: Scalar<Tag>, layout: TyAndLayout<'tcx>) -> Self {
214         ImmTy { imm: val.into(), layout }
215     }
216
217     #[inline]
218     pub fn from_immediate(imm: Immediate<Tag>, layout: TyAndLayout<'tcx>) -> Self {
219         ImmTy { imm, layout }
220     }
221
222     #[inline]
223     pub fn try_from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
224         Some(Self::from_scalar(Scalar::try_from_uint(i, layout.size)?, layout))
225     }
226     #[inline]
227     pub fn from_uint(i: impl Into<u128>, layout: TyAndLayout<'tcx>) -> Self {
228         Self::from_scalar(Scalar::from_uint(i, layout.size), layout)
229     }
230
231     #[inline]
232     pub fn try_from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Option<Self> {
233         Some(Self::from_scalar(Scalar::try_from_int(i, layout.size)?, layout))
234     }
235
236     #[inline]
237     pub fn from_int(i: impl Into<i128>, layout: TyAndLayout<'tcx>) -> Self {
238         Self::from_scalar(Scalar::from_int(i, layout.size), layout)
239     }
240
241     #[inline]
242     pub fn to_const_int(self) -> ConstInt {
243         assert!(self.layout.ty.is_integral());
244         let int = self.to_scalar().expect("to_const_int doesn't work on scalar pairs").assert_int();
245         ConstInt::new(int, self.layout.ty.is_signed(), self.layout.ty.is_ptr_sized_integral())
246     }
247 }
248
249 impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
250     /// Try reading an immediate in memory; this is interesting particularly for `ScalarPair`.
251     /// Returns `None` if the layout does not permit loading this as a value.
252     fn try_read_immediate_from_mplace(
253         &self,
254         mplace: &MPlaceTy<'tcx, M::PointerTag>,
255     ) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>> {
256         if mplace.layout.is_unsized() {
257             // Don't touch unsized
258             return Ok(None);
259         }
260
261         let alloc = match self.get_alloc(mplace)? {
262             Some(ptr) => ptr,
263             None => {
264                 return Ok(Some(ImmTy {
265                     // zero-sized type
266                     imm: Scalar::ZST.into(),
267                     layout: mplace.layout,
268                 }));
269             }
270         };
271
272         match mplace.layout.abi {
273             Abi::Scalar(..) => {
274                 let scalar = alloc.read_scalar(alloc_range(Size::ZERO, mplace.layout.size))?;
275                 Ok(Some(ImmTy { imm: scalar.into(), layout: mplace.layout }))
276             }
277             Abi::ScalarPair(a, b) => {
278                 // We checked `ptr_align` above, so all fields will have the alignment they need.
279                 // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
280                 // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
281                 let (a, b) = (a.value, b.value);
282                 let (a_size, b_size) = (a.size(self), b.size(self));
283                 let b_offset = a_size.align_to(b.align(self).abi);
284                 assert!(b_offset.bytes() > 0); // we later use the offset to tell apart the fields
285                 let a_val = alloc.read_scalar(alloc_range(Size::ZERO, a_size))?;
286                 let b_val = alloc.read_scalar(alloc_range(b_offset, b_size))?;
287                 Ok(Some(ImmTy { imm: Immediate::ScalarPair(a_val, b_val), layout: mplace.layout }))
288             }
289             _ => Ok(None),
290         }
291     }
292
293     /// Try returning an immediate for the operand.
294     /// If the layout does not permit loading this as an immediate, return where in memory
295     /// we can find the data.
296     /// Note that for a given layout, this operation will either always fail or always
297     /// succeed!  Whether it succeeds depends on whether the layout can be represented
298     /// in an `Immediate`, not on which data is stored there currently.
299     pub fn try_read_immediate(
300         &self,
301         src: &OpTy<'tcx, M::PointerTag>,
302     ) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>> {
303         Ok(match src.try_as_mplace() {
304             Ok(ref mplace) => {
305                 if let Some(val) = self.try_read_immediate_from_mplace(mplace)? {
306                     Ok(val)
307                 } else {
308                     Err(*mplace)
309                 }
310             }
311             Err(val) => Ok(val),
312         })
313     }
314
315     /// Read an immediate from a place, asserting that that is possible with the given layout.
316     #[inline(always)]
317     pub fn read_immediate(
318         &self,
319         op: &OpTy<'tcx, M::PointerTag>,
320     ) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
321         if let Ok(imm) = self.try_read_immediate(op)? {
322             Ok(imm)
323         } else {
324             span_bug!(self.cur_span(), "primitive read failed for type: {:?}", op.layout.ty);
325         }
326     }
327
328     /// Read a scalar from a place
329     pub fn read_scalar(
330         &self,
331         op: &OpTy<'tcx, M::PointerTag>,
332     ) -> InterpResult<'tcx, ScalarMaybeUninit<M::PointerTag>> {
333         Ok(self.read_immediate(op)?.to_scalar_or_uninit())
334     }
335
336     /// Read a pointer from a place.
337     pub fn read_pointer(
338         &self,
339         op: &OpTy<'tcx, M::PointerTag>,
340     ) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>> {
341         Ok(self.scalar_to_ptr(self.read_scalar(op)?.check_init()?))
342     }
343
344     // Turn the wide MPlace into a string (must already be dereferenced!)
345     pub fn read_str(&self, mplace: &MPlaceTy<'tcx, M::PointerTag>) -> InterpResult<'tcx, &str> {
346         let len = mplace.len(self)?;
347         let bytes = self.memory.read_bytes(mplace.ptr, Size::from_bytes(len))?;
348         let str = std::str::from_utf8(bytes).map_err(|err| err_ub!(InvalidStr(err)))?;
349         Ok(str)
350     }
351
352     /// Projection functions
353     pub fn operand_field(
354         &self,
355         op: &OpTy<'tcx, M::PointerTag>,
356         field: usize,
357     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
358         let base = match op.try_as_mplace() {
359             Ok(ref mplace) => {
360                 // We can reuse the mplace field computation logic for indirect operands.
361                 let field = self.mplace_field(mplace, field)?;
362                 return Ok(field.into());
363             }
364             Err(value) => value,
365         };
366
367         let field_layout = op.layout.field(self, field);
368         if field_layout.is_zst() {
369             let immediate = Scalar::ZST.into();
370             return Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout });
371         }
372         let offset = op.layout.fields.offset(field);
373         let immediate = match *base {
374             // the field covers the entire type
375             _ if offset.bytes() == 0 && field_layout.size == op.layout.size => *base,
376             // extract fields from types with `ScalarPair` ABI
377             Immediate::ScalarPair(a, b) => {
378                 let val = if offset.bytes() == 0 { a } else { b };
379                 Immediate::from(val)
380             }
381             Immediate::Scalar(val) => span_bug!(
382                 self.cur_span(),
383                 "field access on non aggregate {:#?}, {:#?}",
384                 val,
385                 op.layout
386             ),
387         };
388         Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout })
389     }
390
391     pub fn operand_index(
392         &self,
393         op: &OpTy<'tcx, M::PointerTag>,
394         index: u64,
395     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
396         if let Ok(index) = usize::try_from(index) {
397             // We can just treat this as a field.
398             self.operand_field(op, index)
399         } else {
400             // Indexing into a big array. This must be an mplace.
401             let mplace = op.assert_mem_place();
402             Ok(self.mplace_index(&mplace, index)?.into())
403         }
404     }
405
406     pub fn operand_downcast(
407         &self,
408         op: &OpTy<'tcx, M::PointerTag>,
409         variant: VariantIdx,
410     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
411         // Downcasts only change the layout
412         Ok(match op.try_as_mplace() {
413             Ok(ref mplace) => self.mplace_downcast(mplace, variant)?.into(),
414             Err(..) => {
415                 let layout = op.layout.for_variant(self, variant);
416                 OpTy { layout, ..*op }
417             }
418         })
419     }
420
421     pub fn operand_projection(
422         &self,
423         base: &OpTy<'tcx, M::PointerTag>,
424         proj_elem: mir::PlaceElem<'tcx>,
425     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
426         use rustc_middle::mir::ProjectionElem::*;
427         Ok(match proj_elem {
428             Field(field, _) => self.operand_field(base, field.index())?,
429             Downcast(_, variant) => self.operand_downcast(base, variant)?,
430             Deref => self.deref_operand(base)?.into(),
431             Subslice { .. } | ConstantIndex { .. } | Index(_) => {
432                 // The rest should only occur as mplace, we do not use Immediates for types
433                 // allowing such operations.  This matches place_projection forcing an allocation.
434                 let mplace = base.assert_mem_place();
435                 self.mplace_projection(&mplace, proj_elem)?.into()
436             }
437         })
438     }
439
440     /// Read from a local. Will not actually access the local if reading from a ZST.
441     /// Will not access memory, instead an indirect `Operand` is returned.
442     ///
443     /// This is public because it is used by [priroda](https://github.com/oli-obk/priroda) to get an
444     /// OpTy from a local
445     pub fn access_local(
446         &self,
447         frame: &super::Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
448         local: mir::Local,
449         layout: Option<TyAndLayout<'tcx>>,
450     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
451         let layout = self.layout_of_local(frame, local, layout)?;
452         let op = if layout.is_zst() {
453             // Do not read from ZST, they might not be initialized
454             Operand::Immediate(Scalar::ZST.into())
455         } else {
456             M::access_local(&self, frame, local)?
457         };
458         Ok(OpTy { op, layout })
459     }
460
461     /// Every place can be read from, so we can turn them into an operand.
462     /// This will definitely return `Indirect` if the place is a `Ptr`, i.e., this
463     /// will never actually read from memory.
464     #[inline(always)]
465     pub fn place_to_op(
466         &self,
467         place: &PlaceTy<'tcx, M::PointerTag>,
468     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
469         let op = match **place {
470             Place::Ptr(mplace) => Operand::Indirect(mplace),
471             Place::Local { frame, local } => {
472                 *self.access_local(&self.stack()[frame], local, None)?
473             }
474         };
475         Ok(OpTy { op, layout: place.layout })
476     }
477
478     // Evaluate a place with the goal of reading from it.  This lets us sometimes
479     // avoid allocations.
480     pub fn eval_place_to_op(
481         &self,
482         place: mir::Place<'tcx>,
483         layout: Option<TyAndLayout<'tcx>>,
484     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
485         // Do not use the layout passed in as argument if the base we are looking at
486         // here is not the entire place.
487         let layout = if place.projection.is_empty() { layout } else { None };
488
489         let base_op = self.access_local(self.frame(), place.local, layout)?;
490
491         let op = place
492             .projection
493             .iter()
494             .try_fold(base_op, |op, elem| self.operand_projection(&op, elem))?;
495
496         trace!("eval_place_to_op: got {:?}", *op);
497         // Sanity-check the type we ended up with.
498         debug_assert!(mir_assign_valid_types(
499             *self.tcx,
500             self.param_env,
501             self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
502                 place.ty(&self.frame().body.local_decls, *self.tcx).ty
503             ))?,
504             op.layout,
505         ));
506         Ok(op)
507     }
508
509     /// Evaluate the operand, returning a place where you can then find the data.
510     /// If you already know the layout, you can save two table lookups
511     /// by passing it in here.
512     #[inline]
513     pub fn eval_operand(
514         &self,
515         mir_op: &mir::Operand<'tcx>,
516         layout: Option<TyAndLayout<'tcx>>,
517     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
518         use rustc_middle::mir::Operand::*;
519         let op = match *mir_op {
520             // FIXME: do some more logic on `move` to invalidate the old location
521             Copy(place) | Move(place) => self.eval_place_to_op(place, layout)?,
522
523             Constant(ref constant) => {
524                 let val =
525                     self.subst_from_current_frame_and_normalize_erasing_regions(constant.literal);
526                 // This can still fail:
527                 // * During ConstProp, with `TooGeneric` or since the `requried_consts` were not all
528                 //   checked yet.
529                 // * During CTFE, since promoteds in `const`/`static` initializer bodies can fail.
530
531                 self.mir_const_to_op(&val, layout)?
532             }
533         };
534         trace!("{:?}: {:?}", mir_op, *op);
535         Ok(op)
536     }
537
538     /// Evaluate a bunch of operands at once
539     pub(super) fn eval_operands(
540         &self,
541         ops: &[mir::Operand<'tcx>],
542     ) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>> {
543         ops.iter().map(|op| self.eval_operand(op, None)).collect()
544     }
545
546     // Used when the miri-engine runs into a constant and for extracting information from constants
547     // in patterns via the `const_eval` module
548     /// The `val` and `layout` are assumed to already be in our interpreter
549     /// "universe" (param_env).
550     pub fn const_to_op(
551         &self,
552         val: &ty::Const<'tcx>,
553         layout: Option<TyAndLayout<'tcx>>,
554     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
555         match val.val {
556             ty::ConstKind::Param(_) | ty::ConstKind::Bound(..) => throw_inval!(TooGeneric),
557             ty::ConstKind::Error(_) => throw_inval!(AlreadyReported(ErrorReported)),
558             ty::ConstKind::Unevaluated(uv) => {
559                 let instance = self.resolve(uv.def, uv.substs(*self.tcx))?;
560                 Ok(self.eval_to_allocation(GlobalId { instance, promoted: uv.promoted })?.into())
561             }
562             ty::ConstKind::Infer(..) | ty::ConstKind::Placeholder(..) => {
563                 span_bug!(self.cur_span(), "const_to_op: Unexpected ConstKind {:?}", val)
564             }
565             ty::ConstKind::Value(val_val) => self.const_val_to_op(val_val, val.ty, layout),
566         }
567     }
568
569     pub fn mir_const_to_op(
570         &self,
571         val: &mir::ConstantKind<'tcx>,
572         layout: Option<TyAndLayout<'tcx>>,
573     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
574         match val {
575             mir::ConstantKind::Ty(ct) => self.const_to_op(ct, layout),
576             mir::ConstantKind::Val(val, ty) => self.const_val_to_op(*val, ty, layout),
577         }
578     }
579
580     crate fn const_val_to_op(
581         &self,
582         val_val: ConstValue<'tcx>,
583         ty: Ty<'tcx>,
584         layout: Option<TyAndLayout<'tcx>>,
585     ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
586         // Other cases need layout.
587         let tag_scalar = |scalar| -> InterpResult<'tcx, _> {
588             Ok(match scalar {
589                 Scalar::Ptr(ptr, size) => Scalar::Ptr(self.global_base_pointer(ptr)?, size),
590                 Scalar::Int(int) => Scalar::Int(int),
591             })
592         };
593         let layout = from_known_layout(self.tcx, self.param_env, layout, || self.layout_of(ty))?;
594         let op = match val_val {
595             ConstValue::ByRef { alloc, offset } => {
596                 let id = self.tcx.create_memory_alloc(alloc);
597                 // We rely on mutability being set correctly in that allocation to prevent writes
598                 // where none should happen.
599                 let ptr = self.global_base_pointer(Pointer::new(id, offset))?;
600                 Operand::Indirect(MemPlace::from_ptr(ptr.into(), layout.align.abi))
601             }
602             ConstValue::Scalar(x) => Operand::Immediate(tag_scalar(x)?.into()),
603             ConstValue::Slice { data, start, end } => {
604                 // We rely on mutability being set correctly in `data` to prevent writes
605                 // where none should happen.
606                 let ptr = Pointer::new(
607                     self.tcx.create_memory_alloc(data),
608                     Size::from_bytes(start), // offset: `start`
609                 );
610                 Operand::Immediate(Immediate::new_slice(
611                     Scalar::from_pointer(self.global_base_pointer(ptr)?, &*self.tcx),
612                     u64::try_from(end.checked_sub(start).unwrap()).unwrap(), // len: `end - start`
613                     self,
614                 ))
615             }
616         };
617         Ok(OpTy { op, layout })
618     }
619
620     /// Read discriminant, return the runtime value as well as the variant index.
621     /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
622     pub fn read_discriminant(
623         &self,
624         op: &OpTy<'tcx, M::PointerTag>,
625     ) -> InterpResult<'tcx, (Scalar<M::PointerTag>, VariantIdx)> {
626         trace!("read_discriminant_value {:#?}", op.layout);
627         // Get type and layout of the discriminant.
628         let discr_layout = self.layout_of(op.layout.ty.discriminant_ty(*self.tcx))?;
629         trace!("discriminant type: {:?}", discr_layout.ty);
630
631         // We use "discriminant" to refer to the value associated with a particular enum variant.
632         // This is not to be confused with its "variant index", which is just determining its position in the
633         // declared list of variants -- they can differ with explicitly assigned discriminants.
634         // We use "tag" to refer to how the discriminant is encoded in memory, which can be either
635         // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`).
636         let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout.variants {
637             Variants::Single { index } => {
638                 let discr = match op.layout.ty.discriminant_for_variant(*self.tcx, index) {
639                     Some(discr) => {
640                         // This type actually has discriminants.
641                         assert_eq!(discr.ty, discr_layout.ty);
642                         Scalar::from_uint(discr.val, discr_layout.size)
643                     }
644                     None => {
645                         // On a type without actual discriminants, variant is 0.
646                         assert_eq!(index.as_u32(), 0);
647                         Scalar::from_uint(index.as_u32(), discr_layout.size)
648                     }
649                 };
650                 return Ok((discr, index));
651             }
652             Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
653                 (tag, tag_encoding, tag_field)
654             }
655         };
656
657         // There are *three* layouts that come into play here:
658         // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for
659         //   the `Scalar` we return.
660         // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type,
661         //   and used to interpret the value we read from the tag field.
662         //   For the return value, a cast to `discr_layout` is performed.
663         // - The field storing the tag has a layout, which is very similar to `tag_layout` but
664         //   may be a pointer. This is `tag_val.layout`; we just use it for sanity checks.
665
666         // Get layout for tag.
667         let tag_layout = self.layout_of(tag_scalar_layout.value.to_int_ty(*self.tcx))?;
668
669         // Read tag and sanity-check `tag_layout`.
670         let tag_val = self.read_immediate(&self.operand_field(op, tag_field)?)?;
671         assert_eq!(tag_layout.size, tag_val.layout.size);
672         assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed());
673         let tag_val = tag_val.to_scalar()?;
674         trace!("tag value: {:?}", tag_val);
675
676         // Figure out which discriminant and variant this corresponds to.
677         Ok(match *tag_encoding {
678             TagEncoding::Direct => {
679                 let tag_bits = tag_val
680                     .try_to_int()
681                     .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))?
682                     .assert_bits(tag_layout.size);
683                 // Cast bits from tag layout to discriminant layout.
684                 let discr_val = self.cast_from_scalar(tag_bits, tag_layout, discr_layout.ty);
685                 let discr_bits = discr_val.assert_bits(discr_layout.size);
686                 // Convert discriminant to variant index, and catch invalid discriminants.
687                 let index = match *op.layout.ty.kind() {
688                     ty::Adt(adt, _) => {
689                         adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits)
690                     }
691                     ty::Generator(def_id, substs, _) => {
692                         let substs = substs.as_generator();
693                         substs
694                             .discriminants(def_id, *self.tcx)
695                             .find(|(_, var)| var.val == discr_bits)
696                     }
697                     _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-generator"),
698                 }
699                 .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?;
700                 // Return the cast value, and the index.
701                 (discr_val, index.0)
702             }
703             TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start } => {
704                 // Compute the variant this niche value/"tag" corresponds to. With niche layout,
705                 // discriminant (encoded in niche/tag) and variant index are the same.
706                 let variants_start = niche_variants.start().as_u32();
707                 let variants_end = niche_variants.end().as_u32();
708                 let variant = match tag_val.try_to_int() {
709                     Err(dbg_val) => {
710                         // So this is a pointer then, and casting to an int failed.
711                         // Can only happen during CTFE.
712                         let ptr = self.scalar_to_ptr(tag_val);
713                         // The niche must be just 0, and the ptr not null, then we know this is
714                         // okay. Everything else, we conservatively reject.
715                         let ptr_valid = niche_start == 0
716                             && variants_start == variants_end
717                             && !self.memory.ptr_may_be_null(ptr);
718                         if !ptr_valid {
719                             throw_ub!(InvalidTag(dbg_val))
720                         }
721                         dataful_variant
722                     }
723                     Ok(tag_bits) => {
724                         let tag_bits = tag_bits.assert_bits(tag_layout.size);
725                         // We need to use machine arithmetic to get the relative variant idx:
726                         // variant_index_relative = tag_val - niche_start_val
727                         let tag_val = ImmTy::from_uint(tag_bits, tag_layout);
728                         let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
729                         let variant_index_relative_val =
730                             self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?;
731                         let variant_index_relative = variant_index_relative_val
732                             .to_scalar()?
733                             .assert_bits(tag_val.layout.size);
734                         // Check if this is in the range that indicates an actual discriminant.
735                         if variant_index_relative <= u128::from(variants_end - variants_start) {
736                             let variant_index_relative = u32::try_from(variant_index_relative)
737                                 .expect("we checked that this fits into a u32");
738                             // Then computing the absolute variant idx should not overflow any more.
739                             let variant_index = variants_start
740                                 .checked_add(variant_index_relative)
741                                 .expect("overflow computing absolute variant idx");
742                             let variants_len = op
743                                 .layout
744                                 .ty
745                                 .ty_adt_def()
746                                 .expect("tagged layout for non adt")
747                                 .variants
748                                 .len();
749                             assert!(usize::try_from(variant_index).unwrap() < variants_len);
750                             VariantIdx::from_u32(variant_index)
751                         } else {
752                             dataful_variant
753                         }
754                     }
755                 };
756                 // Compute the size of the scalar we need to return.
757                 // No need to cast, because the variant index directly serves as discriminant and is
758                 // encoded in the tag.
759                 (Scalar::from_uint(variant.as_u32(), discr_layout.size), variant)
760             }
761         })
762     }
763 }