]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_codegen_gcc/src/intrinsic/simd.rs
Merge commit '0c89065b934397b62838fe3e4ef6f6352fc52daf' into libgccjit-codegen
[rust.git] / compiler / rustc_codegen_gcc / src / intrinsic / simd.rs
1 use gccjit::{RValue, Type};
2 use rustc_codegen_ssa::base::compare_simd_types;
3 use rustc_codegen_ssa::common::{TypeKind, span_invalid_monomorphization_error};
4 use rustc_codegen_ssa::mir::operand::OperandRef;
5 use rustc_codegen_ssa::traits::{BaseTypeMethods, BuilderMethods};
6 use rustc_hir as hir;
7 use rustc_middle::span_bug;
8 use rustc_middle::ty::layout::HasTyCtxt;
9 use rustc_middle::ty::{self, Ty};
10 use rustc_span::{Span, Symbol, sym};
11
12 use crate::builder::Builder;
13
14 pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, name: Symbol, callee_ty: Ty<'tcx>, args: &[OperandRef<'tcx, RValue<'gcc>>], ret_ty: Ty<'tcx>, llret_ty: Type<'gcc>, span: Span) -> Result<RValue<'gcc>, ()> {
15     //println!("Generic simd: {}", name);
16
17     // macros for error handling:
18     macro_rules! emit_error {
19         ($msg: tt) => {
20             emit_error!($msg, )
21         };
22         ($msg: tt, $($fmt: tt)*) => {
23             span_invalid_monomorphization_error(
24                 bx.sess(), span,
25                 &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
26                          name, $($fmt)*));
27         }
28     }
29
30     macro_rules! return_error {
31         ($($fmt: tt)*) => {
32             {
33                 emit_error!($($fmt)*);
34                 return Err(());
35             }
36         }
37     }
38
39     macro_rules! require {
40         ($cond: expr, $($fmt: tt)*) => {
41             if !$cond {
42                 return_error!($($fmt)*);
43             }
44         };
45     }
46
47     macro_rules! require_simd {
48         ($ty: expr, $position: expr) => {
49             require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
50         };
51     }
52
53     let tcx = bx.tcx();
54     let sig =
55         tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
56     let arg_tys = sig.inputs();
57     let name_str = &*name.as_str();
58
59     /*if name == sym::simd_select_bitmask {
60         let in_ty = arg_tys[0];
61         let m_len = match in_ty.kind() {
62             // Note that this `.unwrap()` crashes for isize/usize, that's sort
63             // of intentional as there's not currently a use case for that.
64             ty::Int(i) => i.bit_width().unwrap(),
65             ty::Uint(i) => i.bit_width().unwrap(),
66             _ => return_error!("`{}` is not an integral type", in_ty),
67         };
68         require_simd!(arg_tys[1], "argument");
69         let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
70         require!(
71             // Allow masks for vectors with fewer than 8 elements to be
72             // represented with a u8 or i8.
73             m_len == v_len || (m_len == 8 && v_len < 8),
74             "mismatched lengths: mask length `{}` != other vector length `{}`",
75             m_len,
76             v_len
77         );
78         let i1 = bx.type_i1();
79         let im = bx.type_ix(v_len);
80         let i1xn = bx.type_vector(i1, v_len);
81         let m_im = bx.trunc(args[0].immediate(), im);
82         let m_i1s = bx.bitcast(m_im, i1xn);
83         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
84     }*/
85
86     // every intrinsic below takes a SIMD vector as its first argument
87     require_simd!(arg_tys[0], "input");
88     let in_ty = arg_tys[0];
89
90     let comparison = match name {
91         sym::simd_eq => Some(hir::BinOpKind::Eq),
92         sym::simd_ne => Some(hir::BinOpKind::Ne),
93         sym::simd_lt => Some(hir::BinOpKind::Lt),
94         sym::simd_le => Some(hir::BinOpKind::Le),
95         sym::simd_gt => Some(hir::BinOpKind::Gt),
96         sym::simd_ge => Some(hir::BinOpKind::Ge),
97         _ => None,
98     };
99
100     let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx());
101     if let Some(cmp_op) = comparison {
102         require_simd!(ret_ty, "return");
103
104         let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
105         require!(
106             in_len == out_len,
107             "expected return type with length {} (same as input type `{}`), \
108              found `{}` with length {}",
109             in_len,
110             in_ty,
111             ret_ty,
112             out_len
113         );
114         require!(
115             bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
116             "expected return type with integer elements, found `{}` with non-integer `{}`",
117             ret_ty,
118             out_ty
119         );
120
121         return Ok(compare_simd_types(
122             bx,
123             args[0].immediate(),
124             args[1].immediate(),
125             in_elem,
126             llret_ty,
127             cmp_op,
128         ));
129     }
130
131     if let Some(stripped) = name_str.strip_prefix("simd_shuffle") {
132         let n: u64 = stripped.parse().unwrap_or_else(|_| {
133             span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
134         });
135
136         require_simd!(ret_ty, "return");
137
138         let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
139         require!(
140             out_len == n,
141             "expected return type of length {}, found `{}` with length {}",
142             n,
143             ret_ty,
144             out_len
145         );
146         require!(
147             in_elem == out_ty,
148             "expected return element type `{}` (element of input `{}`), \
149              found `{}` with element type `{}`",
150             in_elem,
151             in_ty,
152             ret_ty,
153             out_ty
154         );
155
156         //let total_len = u128::from(in_len) * 2;
157
158         let vector = args[2].immediate();
159
160         // TODO:
161         /*let indices: Option<Vec<_>> = (0..n)
162             .map(|i| {
163                 let arg_idx = i;
164                 let val = bx.const_get_vector_element(vector, i as u64);
165                 match bx.const_to_opt_u128(val, true) {
166                     None => {
167                         emit_error!("shuffle index #{} is not a constant", arg_idx);
168                         None
169                     }
170                     Some(idx) if idx >= total_len => {
171                         emit_error!(
172                             "shuffle index #{} is out of bounds (limit {})",
173                             arg_idx,
174                             total_len
175                         );
176                         None
177                     }
178                     Some(idx) => Some(bx.const_i32(idx as i32)),
179                 }
180             })
181             .collect();
182         let indices = match indices {
183             Some(i) => i,
184             None => return Ok(bx.const_null(llret_ty)),
185         };*/
186
187         return Ok(bx.shuffle_vector(
188             args[0].immediate(),
189             args[1].immediate(),
190             vector,
191         ));
192     }
193
194     /*if name == sym::simd_insert {
195         require!(
196             in_elem == arg_tys[2],
197             "expected inserted type `{}` (element of input `{}`), found `{}`",
198             in_elem,
199             in_ty,
200             arg_tys[2]
201         );
202         return Ok(bx.insert_element(
203             args[0].immediate(),
204             args[2].immediate(),
205             args[1].immediate(),
206         ));
207     }
208     if name == sym::simd_extract {
209         require!(
210             ret_ty == in_elem,
211             "expected return type `{}` (element of input `{}`), found `{}`",
212             in_elem,
213             in_ty,
214             ret_ty
215         );
216         return Ok(bx.extract_element(args[0].immediate(), args[1].immediate()));
217     }
218
219     if name == sym::simd_select {
220         let m_elem_ty = in_elem;
221         let m_len = in_len;
222         require_simd!(arg_tys[1], "argument");
223         let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
224         require!(
225             m_len == v_len,
226             "mismatched lengths: mask length `{}` != other vector length `{}`",
227             m_len,
228             v_len
229         );
230         match m_elem_ty.kind() {
231             ty::Int(_) => {}
232             _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty),
233         }
234         // truncate the mask to a vector of i1s
235         let i1 = bx.type_i1();
236         let i1xn = bx.type_vector(i1, m_len as u64);
237         let m_i1s = bx.trunc(args[0].immediate(), i1xn);
238         return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
239     }
240
241     if name == sym::simd_bitmask {
242         // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
243         // vector mask and returns an unsigned integer containing the most
244         // significant bit (MSB) of each lane.
245
246         // If the vector has less than 8 lanes, an u8 is returned with zeroed
247         // trailing bits.
248         let expected_int_bits = in_len.max(8);
249         match ret_ty.kind() {
250             ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => (),
251             _ => return_error!("bitmask `{}`, expected `u{}`", ret_ty, expected_int_bits),
252         }
253
254         // Integer vector <i{in_bitwidth} x in_len>:
255         let (i_xn, in_elem_bitwidth) = match in_elem.kind() {
256             ty::Int(i) => (
257                 args[0].immediate(),
258                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
259             ),
260             ty::Uint(i) => (
261                 args[0].immediate(),
262                 i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()),
263             ),
264             _ => return_error!(
265                 "vector argument `{}`'s element type `{}`, expected integer element type",
266                 in_ty,
267                 in_elem
268             ),
269         };
270
271         // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
272         let shift_indices =
273             vec![
274                 bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _);
275                 in_len as _
276             ];
277         let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
278         // Truncate vector to an <i1 x N>
279         let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len));
280         // Bitcast <i1 x N> to iN:
281         let i_ = bx.bitcast(i1xn, bx.type_ix(in_len));
282         // Zero-extend iN to the bitmask type:
283         return Ok(bx.zext(i_, bx.type_ix(expected_int_bits)));
284     }
285
286     fn simd_simple_float_intrinsic<'a, 'gcc, 'tcx>(
287         name: Symbol,
288         in_elem: &::rustc_middle::ty::TyS<'_>,
289         in_ty: &::rustc_middle::ty::TyS<'_>,
290         in_len: u64,
291         bx: &mut Builder<'a, 'gcc, 'tcx>,
292         span: Span,
293         args: &[OperandRef<'tcx, RValue<'gcc>>],
294     ) -> Result<RValue<'gcc>, ()> {
295         macro_rules! emit_error {
296             ($msg: tt) => {
297                 emit_error!($msg, )
298             };
299             ($msg: tt, $($fmt: tt)*) => {
300                 span_invalid_monomorphization_error(
301                     bx.sess(), span,
302                     &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
303                              name, $($fmt)*));
304             }
305         }
306         macro_rules! return_error {
307             ($($fmt: tt)*) => {
308                 {
309                     emit_error!($($fmt)*);
310                     return Err(());
311                 }
312             }
313         }
314
315         let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
316             let elem_ty = bx.cx.type_float_from_ty(*f);
317             match f.bit_width() {
318                 32 => ("f32", elem_ty),
319                 64 => ("f64", elem_ty),
320                 _ => {
321                     return_error!(
322                         "unsupported element type `{}` of floating-point vector `{}`",
323                         f.name_str(),
324                         in_ty
325                     );
326                 }
327             }
328         } else {
329             return_error!("`{}` is not a floating-point type", in_ty);
330         };
331
332         let vec_ty = bx.type_vector(elem_ty, in_len);
333
334         let (intr_name, fn_ty) = match name {
335             sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
336             sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)),
337             sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
338             sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
339             sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
340             sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
341             sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
342             sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
343             sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
344             sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
345             sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
346             sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
347             sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
348             sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
349             sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
350             sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
351             _ => return_error!("unrecognized intrinsic `{}`", name),
352         };
353         let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str);
354         let f = bx.declare_cfn(&llvm_name, fn_ty);
355         let c = bx.call(f, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None);
356         Ok(c)
357     }
358
359     if std::matches!(
360         name,
361         sym::simd_ceil
362             | sym::simd_fabs
363             | sym::simd_fcos
364             | sym::simd_fexp2
365             | sym::simd_fexp
366             | sym::simd_flog10
367             | sym::simd_flog2
368             | sym::simd_flog
369             | sym::simd_floor
370             | sym::simd_fma
371             | sym::simd_fpow
372             | sym::simd_fpowi
373             | sym::simd_fsin
374             | sym::simd_fsqrt
375             | sym::simd_round
376             | sym::simd_trunc
377     ) {
378         return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
379     }
380
381     // FIXME: use:
382     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
383     //  https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
384     fn llvm_vector_str(elem_ty: Ty<'_>, vec_len: u64, no_pointers: usize) -> String {
385         let p0s: String = "p0".repeat(no_pointers);
386         match *elem_ty.kind() {
387             ty::Int(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
388             ty::Uint(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
389             ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()),
390             _ => unreachable!(),
391         }
392     }
393
394     fn gcc_vector_ty<'gcc>(
395         cx: &CodegenCx<'gcc, '_>,
396         elem_ty: Ty<'_>,
397         vec_len: u64,
398         mut no_pointers: usize,
399     ) -> Type<'gcc> {
400         // FIXME: use cx.layout_of(ty).llvm_type() ?
401         let mut elem_ty = match *elem_ty.kind() {
402             ty::Int(v) => cx.type_int_from_ty(v),
403             ty::Uint(v) => cx.type_uint_from_ty(v),
404             ty::Float(v) => cx.type_float_from_ty(v),
405             _ => unreachable!(),
406         };
407         while no_pointers > 0 {
408             elem_ty = cx.type_ptr_to(elem_ty);
409             no_pointers -= 1;
410         }
411         cx.type_vector(elem_ty, vec_len)
412     }
413
414     if name == sym::simd_gather {
415         // simd_gather(values: <N x T>, pointers: <N x *_ T>,
416         //             mask: <N x i{M}>) -> <N x T>
417         // * N: number of elements in the input vectors
418         // * T: type of the element to load
419         // * M: any integer width is supported, will be truncated to i1
420
421         // All types must be simd vector types
422         require_simd!(in_ty, "first");
423         require_simd!(arg_tys[1], "second");
424         require_simd!(arg_tys[2], "third");
425         require_simd!(ret_ty, "return");
426
427         // Of the same length:
428         let (out_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
429         let (out_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
430         require!(
431             in_len == out_len,
432             "expected {} argument with length {} (same as input type `{}`), \
433              found `{}` with length {}",
434             "second",
435             in_len,
436             in_ty,
437             arg_tys[1],
438             out_len
439         );
440         require!(
441             in_len == out_len2,
442             "expected {} argument with length {} (same as input type `{}`), \
443              found `{}` with length {}",
444             "third",
445             in_len,
446             in_ty,
447             arg_tys[2],
448             out_len2
449         );
450
451         // The return type must match the first argument type
452         require!(ret_ty == in_ty, "expected return type `{}`, found `{}`", in_ty, ret_ty);
453
454         // This counts how many pointers
455         fn ptr_count(t: Ty<'_>) -> usize {
456             match t.kind() {
457                 ty::RawPtr(p) => 1 + ptr_count(p.ty),
458                 _ => 0,
459             }
460         }
461
462         // Non-ptr type
463         fn non_ptr(t: Ty<'_>) -> Ty<'_> {
464             match t.kind() {
465                 ty::RawPtr(p) => non_ptr(p.ty),
466                 _ => t,
467             }
468         }
469
470         // The second argument must be a simd vector with an element type that's a pointer
471         // to the element type of the first argument
472         let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
473         let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
474         let (pointer_count, underlying_ty) = match element_ty1.kind() {
475             ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)),
476             _ => {
477                 require!(
478                     false,
479                     "expected element type `{}` of second argument `{}` \
480                         to be a pointer to the element type `{}` of the first \
481                         argument `{}`, found `{}` != `*_ {}`",
482                     element_ty1,
483                     arg_tys[1],
484                     in_elem,
485                     in_ty,
486                     element_ty1,
487                     in_elem
488                 );
489                 unreachable!();
490             }
491         };
492         assert!(pointer_count > 0);
493         assert_eq!(pointer_count - 1, ptr_count(element_ty0));
494         assert_eq!(underlying_ty, non_ptr(element_ty0));
495
496         // The element type of the third argument must be a signed integer type of any width:
497         let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
498         match element_ty2.kind() {
499             ty::Int(_) => (),
500             _ => {
501                 require!(
502                     false,
503                     "expected element type `{}` of third argument `{}` \
504                                  to be a signed integer type",
505                     element_ty2,
506                     arg_tys[2]
507                 );
508             }
509         }
510
511         // Alignment of T, must be a constant integer value:
512         let alignment_ty = bx.type_i32();
513         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
514
515         // Truncate the mask vector to a vector of i1s:
516         let (mask, mask_ty) = {
517             let i1 = bx.type_i1();
518             let i1xn = bx.type_vector(i1, in_len);
519             (bx.trunc(args[2].immediate(), i1xn), i1xn)
520         };
521
522         // Type of the vector of pointers:
523         let llvm_pointer_vec_ty = gcc_vector_ty(bx, underlying_ty, in_len, pointer_count);
524         let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
525
526         // Type of the vector of elements:
527         let llvm_elem_vec_ty = gcc_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
528         let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
529
530         let llvm_intrinsic =
531             format!("llvm.masked.gather.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
532         let f = bx.declare_cfn(
533             &llvm_intrinsic,
534             bx.type_func(
535                 &[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
536                 llvm_elem_vec_ty,
537             ),
538         );
539         let v = bx.call(f, &[args[1].immediate(), alignment, mask, args[0].immediate()], None);
540         return Ok(v);
541     }
542
543     if name == sym::simd_scatter {
544         // simd_scatter(values: <N x T>, pointers: <N x *mut T>,
545         //             mask: <N x i{M}>) -> ()
546         // * N: number of elements in the input vectors
547         // * T: type of the element to load
548         // * M: any integer width is supported, will be truncated to i1
549
550         // All types must be simd vector types
551         require_simd!(in_ty, "first");
552         require_simd!(arg_tys[1], "second");
553         require_simd!(arg_tys[2], "third");
554
555         // Of the same length:
556         let (element_len1, _) = arg_tys[1].simd_size_and_type(bx.tcx());
557         let (element_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
558         require!(
559             in_len == element_len1,
560             "expected {} argument with length {} (same as input type `{}`), \
561             found `{}` with length {}",
562             "second",
563             in_len,
564             in_ty,
565             arg_tys[1],
566             element_len1
567         );
568         require!(
569             in_len == element_len2,
570             "expected {} argument with length {} (same as input type `{}`), \
571             found `{}` with length {}",
572             "third",
573             in_len,
574             in_ty,
575             arg_tys[2],
576             element_len2
577         );
578
579         // This counts how many pointers
580         fn ptr_count(t: Ty<'_>) -> usize {
581             match t.kind() {
582                 ty::RawPtr(p) => 1 + ptr_count(p.ty),
583                 _ => 0,
584             }
585         }
586
587         // Non-ptr type
588         fn non_ptr(t: Ty<'_>) -> Ty<'_> {
589             match t.kind() {
590                 ty::RawPtr(p) => non_ptr(p.ty),
591                 _ => t,
592             }
593         }
594
595         // The second argument must be a simd vector with an element type that's a pointer
596         // to the element type of the first argument
597         let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
598         let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
599         let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
600         let (pointer_count, underlying_ty) = match element_ty1.kind() {
601             ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
602                 (ptr_count(element_ty1), non_ptr(element_ty1))
603             }
604             _ => {
605                 require!(
606                     false,
607                     "expected element type `{}` of second argument `{}` \
608                         to be a pointer to the element type `{}` of the first \
609                         argument `{}`, found `{}` != `*mut {}`",
610                     element_ty1,
611                     arg_tys[1],
612                     in_elem,
613                     in_ty,
614                     element_ty1,
615                     in_elem
616                 );
617                 unreachable!();
618             }
619         };
620         assert!(pointer_count > 0);
621         assert_eq!(pointer_count - 1, ptr_count(element_ty0));
622         assert_eq!(underlying_ty, non_ptr(element_ty0));
623
624         // The element type of the third argument must be a signed integer type of any width:
625         match element_ty2.kind() {
626             ty::Int(_) => (),
627             _ => {
628                 require!(
629                     false,
630                     "expected element type `{}` of third argument `{}` \
631                          be a signed integer type",
632                     element_ty2,
633                     arg_tys[2]
634                 );
635             }
636         }
637
638         // Alignment of T, must be a constant integer value:
639         let alignment_ty = bx.type_i32();
640         let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
641
642         // Truncate the mask vector to a vector of i1s:
643         let (mask, mask_ty) = {
644             let i1 = bx.type_i1();
645             let i1xn = bx.type_vector(i1, in_len);
646             (bx.trunc(args[2].immediate(), i1xn), i1xn)
647         };
648
649         let ret_t = bx.type_void();
650
651         // Type of the vector of pointers:
652         let llvm_pointer_vec_ty = gcc_vector_ty(bx, underlying_ty, in_len, pointer_count);
653         let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
654
655         // Type of the vector of elements:
656         let llvm_elem_vec_ty = gcc_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
657         let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
658
659         let llvm_intrinsic =
660             format!("llvm.masked.scatter.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
661         let f = bx.declare_cfn(
662             &llvm_intrinsic,
663             bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t),
664         );
665         let v = bx.call(f, &[args[0].immediate(), args[1].immediate(), alignment, mask], None);
666         return Ok(v);
667     }
668
669     macro_rules! arith_red {
670         ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident,
671          $identity:expr) => {
672             if name == sym::$name {
673                 require!(
674                     ret_ty == in_elem,
675                     "expected return type `{}` (element of input `{}`), found `{}`",
676                     in_elem,
677                     in_ty,
678                     ret_ty
679                 );
680                 return match in_elem.kind() {
681                     ty::Int(_) | ty::Uint(_) => {
682                         let r = bx.$integer_reduce(args[0].immediate());
683                         if $ordered {
684                             // if overflow occurs, the result is the
685                             // mathematical result modulo 2^n:
686                             Ok(bx.$op(args[1].immediate(), r))
687                         } else {
688                             Ok(bx.$integer_reduce(args[0].immediate()))
689                         }
690                     }
691                     ty::Float(f) => {
692                         let acc = if $ordered {
693                             // ordered arithmetic reductions take an accumulator
694                             args[1].immediate()
695                         } else {
696                             // unordered arithmetic reductions use the identity accumulator
697                             match f.bit_width() {
698                                 32 => bx.const_real(bx.type_f32(), $identity),
699                                 64 => bx.const_real(bx.type_f64(), $identity),
700                                 v => return_error!(
701                                     r#"
702 unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
703                                     sym::$name,
704                                     in_ty,
705                                     in_elem,
706                                     v,
707                                     ret_ty
708                                 ),
709                             }
710                         };
711                         Ok(bx.$float_reduce(acc, args[0].immediate()))
712                     }
713                     _ => return_error!(
714                         "unsupported {} from `{}` with element `{}` to `{}`",
715                         sym::$name,
716                         in_ty,
717                         in_elem,
718                         ret_ty
719                     ),
720                 };
721             }
722         };
723     }
724
725     arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, 0.0);
726     arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0);
727     arith_red!(
728         simd_reduce_add_unordered: vector_reduce_add,
729         vector_reduce_fadd_fast,
730         false,
731         add,
732         0.0
733     );
734     arith_red!(
735         simd_reduce_mul_unordered: vector_reduce_mul,
736         vector_reduce_fmul_fast,
737         false,
738         mul,
739         1.0
740     );
741
742     macro_rules! minmax_red {
743         ($name:ident: $int_red:ident, $float_red:ident) => {
744             if name == sym::$name {
745                 require!(
746                     ret_ty == in_elem,
747                     "expected return type `{}` (element of input `{}`), found `{}`",
748                     in_elem,
749                     in_ty,
750                     ret_ty
751                 );
752                 return match in_elem.kind() {
753                     ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
754                     ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
755                     ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
756                     _ => return_error!(
757                         "unsupported {} from `{}` with element `{}` to `{}`",
758                         sym::$name,
759                         in_ty,
760                         in_elem,
761                         ret_ty
762                     ),
763                 };
764             }
765         };
766     }
767
768     minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
769     minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
770
771     minmax_red!(simd_reduce_min_nanless: vector_reduce_min, vector_reduce_fmin_fast);
772     minmax_red!(simd_reduce_max_nanless: vector_reduce_max, vector_reduce_fmax_fast);
773
774     macro_rules! bitwise_red {
775         ($name:ident : $red:ident, $boolean:expr) => {
776             if name == sym::$name {
777                 let input = if !$boolean {
778                     require!(
779                         ret_ty == in_elem,
780                         "expected return type `{}` (element of input `{}`), found `{}`",
781                         in_elem,
782                         in_ty,
783                         ret_ty
784                     );
785                     args[0].immediate()
786                 } else {
787                     match in_elem.kind() {
788                         ty::Int(_) | ty::Uint(_) => {}
789                         _ => return_error!(
790                             "unsupported {} from `{}` with element `{}` to `{}`",
791                             sym::$name,
792                             in_ty,
793                             in_elem,
794                             ret_ty
795                         ),
796                     }
797
798                     // boolean reductions operate on vectors of i1s:
799                     let i1 = bx.type_i1();
800                     let i1xn = bx.type_vector(i1, in_len as u64);
801                     bx.trunc(args[0].immediate(), i1xn)
802                 };
803                 return match in_elem.kind() {
804                     ty::Int(_) | ty::Uint(_) => {
805                         let r = bx.$red(input);
806                         Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
807                     }
808                     _ => return_error!(
809                         "unsupported {} from `{}` with element `{}` to `{}`",
810                         sym::$name,
811                         in_ty,
812                         in_elem,
813                         ret_ty
814                     ),
815                 };
816             }
817         };
818     }
819
820     bitwise_red!(simd_reduce_and: vector_reduce_and, false);
821     bitwise_red!(simd_reduce_or: vector_reduce_or, false);
822     bitwise_red!(simd_reduce_xor: vector_reduce_xor, false);
823     bitwise_red!(simd_reduce_all: vector_reduce_and, true);
824     bitwise_red!(simd_reduce_any: vector_reduce_or, true);
825
826     if name == sym::simd_cast {
827         require_simd!(ret_ty, "return");
828         let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx());
829         require!(
830             in_len == out_len,
831             "expected return type with length {} (same as input type `{}`), \
832                   found `{}` with length {}",
833             in_len,
834             in_ty,
835             ret_ty,
836             out_len
837         );
838         // casting cares about nominal type, not just structural type
839         if in_elem == out_elem {
840             return Ok(args[0].immediate());
841         }
842
843         enum Style {
844             Float,
845             Int(/* is signed? */ bool),
846             Unsupported,
847         }
848
849         let (in_style, in_width) = match in_elem.kind() {
850             // vectors of pointer-sized integers should've been
851             // disallowed before here, so this unwrap is safe.
852             ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
853             ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
854             ty::Float(f) => (Style::Float, f.bit_width()),
855             _ => (Style::Unsupported, 0),
856         };
857         let (out_style, out_width) = match out_elem.kind() {
858             ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
859             ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
860             ty::Float(f) => (Style::Float, f.bit_width()),
861             _ => (Style::Unsupported, 0),
862         };
863
864         match (in_style, out_style) {
865             (Style::Int(in_is_signed), Style::Int(_)) => {
866                 return Ok(match in_width.cmp(&out_width) {
867                     Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
868                     Ordering::Equal => args[0].immediate(),
869                     Ordering::Less => {
870                         if in_is_signed {
871                             bx.sext(args[0].immediate(), llret_ty)
872                         } else {
873                             bx.zext(args[0].immediate(), llret_ty)
874                         }
875                     }
876                 });
877             }
878             (Style::Int(in_is_signed), Style::Float) => {
879                 return Ok(if in_is_signed {
880                     bx.sitofp(args[0].immediate(), llret_ty)
881                 } else {
882                     bx.uitofp(args[0].immediate(), llret_ty)
883                 });
884             }
885             (Style::Float, Style::Int(out_is_signed)) => {
886                 return Ok(if out_is_signed {
887                     bx.fptosi(args[0].immediate(), llret_ty)
888                 } else {
889                     bx.fptoui(args[0].immediate(), llret_ty)
890                 });
891             }
892             (Style::Float, Style::Float) => {
893                 return Ok(match in_width.cmp(&out_width) {
894                     Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
895                     Ordering::Equal => args[0].immediate(),
896                     Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
897                 });
898             }
899             _ => { /* Unsupported. Fallthrough. */ }
900         }
901         require!(
902             false,
903             "unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
904             in_ty,
905             in_elem,
906             ret_ty,
907             out_elem
908         );
909     }*/
910
911     macro_rules! arith_binary {
912         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
913             $(if name == sym::$name {
914                 match in_elem.kind() {
915                     $($(ty::$p(_))|* => {
916                         return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
917                     })*
918                     _ => {},
919                 }
920                 require!(false,
921                          "unsupported operation on `{}` with element `{}`",
922                          in_ty,
923                          in_elem)
924             })*
925         }
926     }
927
928     arith_binary! {
929         simd_add: Uint, Int => add, Float => fadd;
930         simd_sub: Uint, Int => sub, Float => fsub;
931         simd_mul: Uint, Int => mul, Float => fmul;
932         simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
933         simd_rem: Uint => urem, Int => srem, Float => frem;
934         simd_shl: Uint, Int => shl;
935         simd_shr: Uint => lshr, Int => ashr;
936         simd_and: Uint, Int => and;
937         simd_or: Uint, Int => or; // FIXME: calling or might not work on vectors.
938         simd_xor: Uint, Int => xor;
939         /*simd_fmax: Float => maxnum;
940         simd_fmin: Float => minnum;*/
941     }
942
943     /*macro_rules! arith_unary {
944         ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
945             $(if name == sym::$name {
946                 match in_elem.kind() {
947                     $($(ty::$p(_))|* => {
948                         return Ok(bx.$call(args[0].immediate()))
949                     })*
950                     _ => {},
951                 }
952                 require!(false,
953                          "unsupported operation on `{}` with element `{}`",
954                          in_ty,
955                          in_elem)
956             })*
957         }
958     }
959
960     arith_unary! {
961         simd_neg: Int => neg, Float => fneg;
962     }
963
964     if name == sym::simd_saturating_add || name == sym::simd_saturating_sub {
965         let lhs = args[0].immediate();
966         let rhs = args[1].immediate();
967         let is_add = name == sym::simd_saturating_add;
968         let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
969         let (signed, elem_width, elem_ty) = match *in_elem.kind() {
970             ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
971             ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
972             _ => {
973                 return_error!(
974                     "expected element type `{}` of vector type `{}` \
975                      to be a signed or unsigned integer type",
976                     arg_tys[0].simd_size_and_type(bx.tcx()).1,
977                     arg_tys[0]
978                 );
979             }
980         };
981         let llvm_intrinsic = &format!(
982             "llvm.{}{}.sat.v{}i{}",
983             if signed { 's' } else { 'u' },
984             if is_add { "add" } else { "sub" },
985             in_len,
986             elem_width
987         );
988         let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
989
990         let f = bx.declare_cfn(
991             &llvm_intrinsic,
992             bx.type_func(&[vec_ty, vec_ty], vec_ty),
993         );
994         let v = bx.call(f, &[lhs, rhs], None);
995         return Ok(v);
996     }*/
997
998     unimplemented!("simd {}", name);
999
1000     //span_bug!(span, "unknown SIMD intrinsic");
1001 }