]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_codegen_gcc/src/intrinsic/mod.rs
merge rustc history
[rust.git] / compiler / rustc_codegen_gcc / src / intrinsic / mod.rs
1 pub mod llvm;
2 mod simd;
3
4 use gccjit::{ComparisonOp, Function, RValue, ToRValue, Type, UnaryOp, FunctionType};
5 use rustc_codegen_ssa::MemFlags;
6 use rustc_codegen_ssa::base::wants_msvc_seh;
7 use rustc_codegen_ssa::common::{IntPredicate, span_invalid_monomorphization_error};
8 use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
9 use rustc_codegen_ssa::mir::place::PlaceRef;
10 use rustc_codegen_ssa::traits::{ArgAbiMethods, BaseTypeMethods, BuilderMethods, ConstMethods, IntrinsicCallMethods};
11 use rustc_middle::bug;
12 use rustc_middle::ty::{self, Instance, Ty};
13 use rustc_middle::ty::layout::LayoutOf;
14 use rustc_span::{Span, Symbol, symbol::kw, sym};
15 use rustc_target::abi::HasDataLayout;
16 use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
17 use rustc_target::spec::PanicStrategy;
18
19 use crate::abi::GccType;
20 use crate::builder::Builder;
21 use crate::common::{SignType, TypeReflection};
22 use crate::context::CodegenCx;
23 use crate::type_of::LayoutGccExt;
24 use crate::intrinsic::simd::generic_simd_intrinsic;
25
26 fn get_simple_intrinsic<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, name: Symbol) -> Option<Function<'gcc>> {
27     let gcc_name = match name {
28         sym::sqrtf32 => "sqrtf",
29         sym::sqrtf64 => "sqrt",
30         sym::powif32 => "__builtin_powif",
31         sym::powif64 => "__builtin_powi",
32         sym::sinf32 => "sinf",
33         sym::sinf64 => "sin",
34         sym::cosf32 => "cosf",
35         sym::cosf64 => "cos",
36         sym::powf32 => "powf",
37         sym::powf64 => "pow",
38         sym::expf32 => "expf",
39         sym::expf64 => "exp",
40         sym::exp2f32 => "exp2f",
41         sym::exp2f64 => "exp2",
42         sym::logf32 => "logf",
43         sym::logf64 => "log",
44         sym::log10f32 => "log10f",
45         sym::log10f64 => "log10",
46         sym::log2f32 => "log2f",
47         sym::log2f64 => "log2",
48         sym::fmaf32 => "fmaf",
49         sym::fmaf64 => "fma",
50         sym::fabsf32 => "fabsf",
51         sym::fabsf64 => "fabs",
52         sym::minnumf32 => "fminf",
53         sym::minnumf64 => "fmin",
54         sym::maxnumf32 => "fmaxf",
55         sym::maxnumf64 => "fmax",
56         sym::copysignf32 => "copysignf",
57         sym::copysignf64 => "copysign",
58         sym::floorf32 => "floorf",
59         sym::floorf64 => "floor",
60         sym::ceilf32 => "ceilf",
61         sym::ceilf64 => "ceil",
62         sym::truncf32 => "truncf",
63         sym::truncf64 => "trunc",
64         sym::rintf32 => "rintf",
65         sym::rintf64 => "rint",
66         sym::nearbyintf32 => "nearbyintf",
67         sym::nearbyintf64 => "nearbyint",
68         sym::roundf32 => "roundf",
69         sym::roundf64 => "round",
70         sym::abort => "abort",
71         _ => return None,
72     };
73     Some(cx.context.get_builtin_function(&gcc_name))
74 }
75
76 impl<'a, 'gcc, 'tcx> IntrinsicCallMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
77     fn codegen_intrinsic_call(&mut self, instance: Instance<'tcx>, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, args: &[OperandRef<'tcx, RValue<'gcc>>], llresult: RValue<'gcc>, span: Span) {
78         let tcx = self.tcx;
79         let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
80
81         let (def_id, substs) = match *callee_ty.kind() {
82             ty::FnDef(def_id, substs) => (def_id, substs),
83             _ => bug!("expected fn item type, found {}", callee_ty),
84         };
85
86         let sig = callee_ty.fn_sig(tcx);
87         let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
88         let arg_tys = sig.inputs();
89         let ret_ty = sig.output();
90         let name = tcx.item_name(def_id);
91         let name_str = name.as_str();
92
93         let llret_ty = self.layout_of(ret_ty).gcc_type(self, true);
94         let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
95
96         let simple = get_simple_intrinsic(self, name);
97         let llval =
98             match name {
99                 _ if simple.is_some() => {
100                     // FIXME(antoyo): remove this cast when the API supports function.
101                     let func = unsafe { std::mem::transmute(simple.expect("simple")) };
102                     self.call(self.type_void(), func, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None)
103                 },
104                 sym::likely => {
105                     self.expect(args[0].immediate(), true)
106                 }
107                 sym::unlikely => {
108                     self.expect(args[0].immediate(), false)
109                 }
110                 kw::Try => {
111                     try_intrinsic(
112                         self,
113                         args[0].immediate(),
114                         args[1].immediate(),
115                         args[2].immediate(),
116                         llresult,
117                     );
118                     return;
119                 }
120                 sym::breakpoint => {
121                     unimplemented!();
122                 }
123                 sym::va_copy => {
124                     unimplemented!();
125                 }
126                 sym::va_arg => {
127                     unimplemented!();
128                 }
129
130                 sym::volatile_load | sym::unaligned_volatile_load => {
131                     let tp_ty = substs.type_at(0);
132                     let mut ptr = args[0].immediate();
133                     if let PassMode::Cast(ty, _) = &fn_abi.ret.mode {
134                         ptr = self.pointercast(ptr, self.type_ptr_to(ty.gcc_type(self)));
135                     }
136                     let load = self.volatile_load(ptr.get_type(), ptr);
137                     // TODO(antoyo): set alignment.
138                     self.to_immediate(load, self.layout_of(tp_ty))
139                 }
140                 sym::volatile_store => {
141                     let dst = args[0].deref(self.cx());
142                     args[1].val.volatile_store(self, dst);
143                     return;
144                 }
145                 sym::unaligned_volatile_store => {
146                     let dst = args[0].deref(self.cx());
147                     args[1].val.unaligned_volatile_store(self, dst);
148                     return;
149                 }
150                 sym::prefetch_read_data
151                     | sym::prefetch_write_data
152                     | sym::prefetch_read_instruction
153                     | sym::prefetch_write_instruction => {
154                         unimplemented!();
155                     }
156                 sym::ctlz
157                     | sym::ctlz_nonzero
158                     | sym::cttz
159                     | sym::cttz_nonzero
160                     | sym::ctpop
161                     | sym::bswap
162                     | sym::bitreverse
163                     | sym::rotate_left
164                     | sym::rotate_right
165                     | sym::saturating_add
166                     | sym::saturating_sub => {
167                         let ty = arg_tys[0];
168                         match int_type_width_signed(ty, self) {
169                             Some((width, signed)) => match name {
170                                 sym::ctlz | sym::cttz => {
171                                     let func = self.current_func.borrow().expect("func");
172                                     let then_block = func.new_block("then");
173                                     let else_block = func.new_block("else");
174                                     let after_block = func.new_block("after");
175
176                                     let arg = args[0].immediate();
177                                     let result = func.new_local(None, arg.get_type(), "zeros");
178                                     let zero = self.cx.gcc_zero(arg.get_type());
179                                     let cond = self.gcc_icmp(IntPredicate::IntEQ, arg, zero);
180                                     self.llbb().end_with_conditional(None, cond, then_block, else_block);
181
182                                     let zero_result = self.cx.gcc_uint(arg.get_type(), width);
183                                     then_block.add_assignment(None, result, zero_result);
184                                     then_block.end_with_jump(None, after_block);
185
186                                     // NOTE: since jumps were added in a place
187                                     // count_leading_zeroes() does not expect, the current block
188                                     // in the state need to be updated.
189                                     self.switch_to_block(else_block);
190
191                                     let zeros =
192                                         match name {
193                                             sym::ctlz => self.count_leading_zeroes(width, arg),
194                                             sym::cttz => self.count_trailing_zeroes(width, arg),
195                                             _ => unreachable!(),
196                                         };
197                                     self.llbb().add_assignment(None, result, zeros);
198                                     self.llbb().end_with_jump(None, after_block);
199
200                                     // NOTE: since jumps were added in a place rustc does not
201                                     // expect, the current block in the state need to be updated.
202                                     self.switch_to_block(after_block);
203
204                                     result.to_rvalue()
205                                 }
206                                 sym::ctlz_nonzero => {
207                                     self.count_leading_zeroes(width, args[0].immediate())
208                                 },
209                                 sym::cttz_nonzero => {
210                                     self.count_trailing_zeroes(width, args[0].immediate())
211                                 }
212                                 sym::ctpop => self.pop_count(args[0].immediate()),
213                                 sym::bswap => {
214                                     if width == 8 {
215                                         args[0].immediate() // byte swap a u8/i8 is just a no-op
216                                     }
217                                     else {
218                                         self.gcc_bswap(args[0].immediate(), width)
219                                     }
220                                 },
221                                 sym::bitreverse => self.bit_reverse(width, args[0].immediate()),
222                                 sym::rotate_left | sym::rotate_right => {
223                                     // TODO(antoyo): implement using algorithm from:
224                                     // https://blog.regehr.org/archives/1063
225                                     // for other platforms.
226                                     let is_left = name == sym::rotate_left;
227                                     let val = args[0].immediate();
228                                     let raw_shift = args[1].immediate();
229                                     if is_left {
230                                         self.rotate_left(val, raw_shift, width)
231                                     }
232                                     else {
233                                         self.rotate_right(val, raw_shift, width)
234                                     }
235                                 },
236                                 sym::saturating_add => {
237                                     self.saturating_add(args[0].immediate(), args[1].immediate(), signed, width)
238                                 },
239                                 sym::saturating_sub => {
240                                     self.saturating_sub(args[0].immediate(), args[1].immediate(), signed, width)
241                                 },
242                                 _ => bug!(),
243                             },
244                             None => {
245                                 span_invalid_monomorphization_error(
246                                     tcx.sess,
247                                     span,
248                                     &format!(
249                                         "invalid monomorphization of `{}` intrinsic: \
250                                       expected basic integer type, found `{}`",
251                                       name, ty
252                                     ),
253                                 );
254                                 return;
255                             }
256                         }
257                     }
258
259                 sym::raw_eq => {
260                     use rustc_target::abi::Abi::*;
261                     let tp_ty = substs.type_at(0);
262                     let layout = self.layout_of(tp_ty).layout;
263                     let _use_integer_compare = match layout.abi() {
264                         Scalar(_) | ScalarPair(_, _) => true,
265                         Uninhabited | Vector { .. } => false,
266                         Aggregate { .. } => {
267                             // For rusty ABIs, small aggregates are actually passed
268                             // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
269                             // so we re-use that same threshold here.
270                             layout.size() <= self.data_layout().pointer_size * 2
271                         }
272                     };
273
274                     let a = args[0].immediate();
275                     let b = args[1].immediate();
276                     if layout.size().bytes() == 0 {
277                         self.const_bool(true)
278                     }
279                     /*else if use_integer_compare {
280                         let integer_ty = self.type_ix(layout.size.bits()); // FIXME(antoyo): LLVM creates an integer of 96 bits for [i32; 3], but gcc doesn't support this, so it creates an integer of 128 bits.
281                         let ptr_ty = self.type_ptr_to(integer_ty);
282                         let a_ptr = self.bitcast(a, ptr_ty);
283                         let a_val = self.load(integer_ty, a_ptr, layout.align.abi);
284                         let b_ptr = self.bitcast(b, ptr_ty);
285                         let b_val = self.load(integer_ty, b_ptr, layout.align.abi);
286                         self.icmp(IntPredicate::IntEQ, a_val, b_val)
287                     }*/
288                     else {
289                         let void_ptr_type = self.context.new_type::<*const ()>();
290                         let a_ptr = self.bitcast(a, void_ptr_type);
291                         let b_ptr = self.bitcast(b, void_ptr_type);
292                         let n = self.context.new_cast(None, self.const_usize(layout.size().bytes()), self.sizet_type);
293                         let builtin = self.context.get_builtin_function("memcmp");
294                         let cmp = self.context.new_call(None, builtin, &[a_ptr, b_ptr, n]);
295                         self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0))
296                     }
297                 }
298
299                 sym::black_box => {
300                     args[0].val.store(self, result);
301
302                     let block = self.llbb();
303                     let extended_asm = block.add_extended_asm(None, "");
304                     extended_asm.add_input_operand(None, "r", result.llval);
305                     extended_asm.add_clobber("memory");
306                     extended_asm.set_volatile_flag(true);
307
308                     // We have copied the value to `result` already.
309                     return;
310                 }
311
312                 sym::ptr_mask => {
313                     let usize_type = self.context.new_type::<usize>();
314                     let void_ptr_type = self.context.new_type::<*const ()>();
315
316                     let ptr = args[0].immediate();
317                     let mask = args[1].immediate();
318
319                     let addr = self.bitcast(ptr, usize_type);
320                     let masked = self.and(addr, mask);
321                     self.bitcast(masked, void_ptr_type)
322                 },
323                 
324                 _ if name_str.starts_with("simd_") => {
325                     match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
326                         Ok(llval) => llval,
327                         Err(()) => return,
328                     }
329                 }
330
331                 _ => bug!("unknown intrinsic '{}'", name),
332             };
333
334         if !fn_abi.ret.is_ignore() {
335             if let PassMode::Cast(ty, _) = &fn_abi.ret.mode {
336                 let ptr_llty = self.type_ptr_to(ty.gcc_type(self));
337                 let ptr = self.pointercast(result.llval, ptr_llty);
338                 self.store(llval, ptr, result.align);
339             }
340             else {
341                 OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
342                     .val
343                     .store(self, result);
344             }
345         }
346     }
347
348     fn abort(&mut self) {
349         let func = self.context.get_builtin_function("abort");
350         let func: RValue<'gcc> = unsafe { std::mem::transmute(func) };
351         self.call(self.type_void(), func, &[], None);
352     }
353
354     fn assume(&mut self, value: Self::Value) {
355         // TODO(antoyo): switch to assume when it exists.
356         // Or use something like this:
357         // #define __assume(cond) do { if (!(cond)) __builtin_unreachable(); } while (0)
358         self.expect(value, true);
359     }
360
361     fn expect(&mut self, cond: Self::Value, _expected: bool) -> Self::Value {
362         // TODO(antoyo)
363         cond
364     }
365
366     fn type_test(&mut self, _pointer: Self::Value, _typeid: Self::Value) -> Self::Value {
367         // Unsupported.
368         self.context.new_rvalue_from_int(self.int_type, 0)
369     }
370
371     fn type_checked_load(
372         &mut self,
373         _llvtable: Self::Value,
374         _vtable_byte_offset: u64,
375         _typeid: Self::Value,
376     ) -> Self::Value {
377         // Unsupported.
378         self.context.new_rvalue_from_int(self.int_type, 0)
379     }
380
381     fn va_start(&mut self, _va_list: RValue<'gcc>) -> RValue<'gcc> {
382         unimplemented!();
383     }
384
385     fn va_end(&mut self, _va_list: RValue<'gcc>) -> RValue<'gcc> {
386         unimplemented!();
387     }
388 }
389
390 impl<'a, 'gcc, 'tcx> ArgAbiMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
391     fn store_fn_arg(&mut self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, idx: &mut usize, dst: PlaceRef<'tcx, Self::Value>) {
392         arg_abi.store_fn_arg(self, idx, dst)
393     }
394
395     fn store_arg(&mut self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>) {
396         arg_abi.store(self, val, dst)
397     }
398
399     fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
400         arg_abi.memory_ty(self)
401     }
402 }
403
404 pub trait ArgAbiExt<'gcc, 'tcx> {
405     fn memory_ty(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
406     fn store(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>);
407     fn store_fn_arg(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx, RValue<'gcc>>);
408 }
409
410 impl<'gcc, 'tcx> ArgAbiExt<'gcc, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
411     /// Gets the LLVM type for a place of the original Rust type of
412     /// this argument/return, i.e., the result of `type_of::type_of`.
413     fn memory_ty(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
414         self.layout.gcc_type(cx, true)
415     }
416
417     /// Stores a direct/indirect value described by this ArgAbi into a
418     /// place for the original Rust type of this argument/return.
419     /// Can be used for both storing formal arguments into Rust variables
420     /// or results of call/invoke instructions into their destinations.
421     fn store(&self, bx: &mut Builder<'_, 'gcc, 'tcx>, val: RValue<'gcc>, dst: PlaceRef<'tcx, RValue<'gcc>>) {
422         if self.is_ignore() {
423             return;
424         }
425         if self.is_sized_indirect() {
426             OperandValue::Ref(val, None, self.layout.align.abi).store(bx, dst)
427         }
428         else if self.is_unsized_indirect() {
429             bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
430         }
431         else if let PassMode::Cast(ref cast, _) = self.mode {
432             // FIXME(eddyb): Figure out when the simpler Store is safe, clang
433             // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
434             let can_store_through_cast_ptr = false;
435             if can_store_through_cast_ptr {
436                 let cast_ptr_llty = bx.type_ptr_to(cast.gcc_type(bx));
437                 let cast_dst = bx.pointercast(dst.llval, cast_ptr_llty);
438                 bx.store(val, cast_dst, self.layout.align.abi);
439             }
440             else {
441                 // The actual return type is a struct, but the ABI
442                 // adaptation code has cast it into some scalar type.  The
443                 // code that follows is the only reliable way I have
444                 // found to do a transform like i64 -> {i32,i32}.
445                 // Basically we dump the data onto the stack then memcpy it.
446                 //
447                 // Other approaches I tried:
448                 // - Casting rust ret pointer to the foreign type and using Store
449                 //   is (a) unsafe if size of foreign type > size of rust type and
450                 //   (b) runs afoul of strict aliasing rules, yielding invalid
451                 //   assembly under -O (specifically, the store gets removed).
452                 // - Truncating foreign type to correct integral type and then
453                 //   bitcasting to the struct type yields invalid cast errors.
454
455                 // We instead thus allocate some scratch space...
456                 let scratch_size = cast.size(bx);
457                 let scratch_align = cast.align(bx);
458                 let llscratch = bx.alloca(cast.gcc_type(bx), scratch_align);
459                 bx.lifetime_start(llscratch, scratch_size);
460
461                 // ... where we first store the value...
462                 bx.store(val, llscratch, scratch_align);
463
464                 // ... and then memcpy it to the intended destination.
465                 bx.memcpy(
466                     dst.llval,
467                     self.layout.align.abi,
468                     llscratch,
469                     scratch_align,
470                     bx.const_usize(self.layout.size.bytes()),
471                     MemFlags::empty(),
472                 );
473
474                 bx.lifetime_end(llscratch, scratch_size);
475             }
476         }
477         else {
478             OperandValue::Immediate(val).store(bx, dst);
479         }
480     }
481
482     fn store_fn_arg<'a>(&self, bx: &mut Builder<'a, 'gcc, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx, RValue<'gcc>>) {
483         let mut next = || {
484             let val = bx.current_func().get_param(*idx as i32);
485             *idx += 1;
486             val.to_rvalue()
487         };
488         match self.mode {
489             PassMode::Ignore => {},
490             PassMode::Pair(..) => {
491                 OperandValue::Pair(next(), next()).store(bx, dst);
492             },
493             PassMode::Indirect { extra_attrs: Some(_), .. } => {
494                 OperandValue::Ref(next(), Some(next()), self.layout.align.abi).store(bx, dst);
495             },
496             PassMode::Direct(_) | PassMode::Indirect { extra_attrs: None, .. } | PassMode::Cast(..) => {
497                 let next_arg = next();
498                 self.store(bx, next_arg, dst);
499             },
500         }
501     }
502 }
503
504 fn int_type_width_signed<'gcc, 'tcx>(ty: Ty<'tcx>, cx: &CodegenCx<'gcc, 'tcx>) -> Option<(u64, bool)> {
505     match ty.kind() {
506         ty::Int(t) => Some((
507             match t {
508                 rustc_middle::ty::IntTy::Isize => u64::from(cx.tcx.sess.target.pointer_width),
509                 rustc_middle::ty::IntTy::I8 => 8,
510                 rustc_middle::ty::IntTy::I16 => 16,
511                 rustc_middle::ty::IntTy::I32 => 32,
512                 rustc_middle::ty::IntTy::I64 => 64,
513                 rustc_middle::ty::IntTy::I128 => 128,
514             },
515             true,
516         )),
517         ty::Uint(t) => Some((
518             match t {
519                 rustc_middle::ty::UintTy::Usize => u64::from(cx.tcx.sess.target.pointer_width),
520                 rustc_middle::ty::UintTy::U8 => 8,
521                 rustc_middle::ty::UintTy::U16 => 16,
522                 rustc_middle::ty::UintTy::U32 => 32,
523                 rustc_middle::ty::UintTy::U64 => 64,
524                 rustc_middle::ty::UintTy::U128 => 128,
525             },
526             false,
527         )),
528         _ => None,
529     }
530 }
531
532 impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
533     fn bit_reverse(&mut self, width: u64, value: RValue<'gcc>) -> RValue<'gcc> {
534         let result_type = value.get_type();
535         let typ = result_type.to_unsigned(self.cx);
536
537         let value =
538             if result_type.is_signed(self.cx) {
539                 self.gcc_int_cast(value, typ)
540             }
541             else {
542                 value
543             };
544
545         let context = &self.cx.context;
546         let result =
547             match width {
548                 8 => {
549                     // First step.
550                     let left = self.and(value, context.new_rvalue_from_int(typ, 0xF0));
551                     let left = self.lshr(left, context.new_rvalue_from_int(typ, 4));
552                     let right = self.and(value, context.new_rvalue_from_int(typ, 0x0F));
553                     let right = self.shl(right, context.new_rvalue_from_int(typ, 4));
554                     let step1 = self.or(left, right);
555
556                     // Second step.
557                     let left = self.and(step1, context.new_rvalue_from_int(typ, 0xCC));
558                     let left = self.lshr(left, context.new_rvalue_from_int(typ, 2));
559                     let right = self.and(step1, context.new_rvalue_from_int(typ, 0x33));
560                     let right = self.shl(right, context.new_rvalue_from_int(typ, 2));
561                     let step2 = self.or(left, right);
562
563                     // Third step.
564                     let left = self.and(step2, context.new_rvalue_from_int(typ, 0xAA));
565                     let left = self.lshr(left, context.new_rvalue_from_int(typ, 1));
566                     let right = self.and(step2, context.new_rvalue_from_int(typ, 0x55));
567                     let right = self.shl(right, context.new_rvalue_from_int(typ, 1));
568                     let step3 = self.or(left, right);
569
570                     step3
571                 },
572                 16 => {
573                     // First step.
574                     let left = self.and(value, context.new_rvalue_from_int(typ, 0x5555));
575                     let left = self.shl(left, context.new_rvalue_from_int(typ, 1));
576                     let right = self.and(value, context.new_rvalue_from_int(typ, 0xAAAA));
577                     let right = self.lshr(right, context.new_rvalue_from_int(typ, 1));
578                     let step1 = self.or(left, right);
579
580                     // Second step.
581                     let left = self.and(step1, context.new_rvalue_from_int(typ, 0x3333));
582                     let left = self.shl(left, context.new_rvalue_from_int(typ, 2));
583                     let right = self.and(step1, context.new_rvalue_from_int(typ, 0xCCCC));
584                     let right = self.lshr(right, context.new_rvalue_from_int(typ, 2));
585                     let step2 = self.or(left, right);
586
587                     // Third step.
588                     let left = self.and(step2, context.new_rvalue_from_int(typ, 0x0F0F));
589                     let left = self.shl(left, context.new_rvalue_from_int(typ, 4));
590                     let right = self.and(step2, context.new_rvalue_from_int(typ, 0xF0F0));
591                     let right = self.lshr(right, context.new_rvalue_from_int(typ, 4));
592                     let step3 = self.or(left, right);
593
594                     // Fourth step.
595                     let left = self.and(step3, context.new_rvalue_from_int(typ, 0x00FF));
596                     let left = self.shl(left, context.new_rvalue_from_int(typ, 8));
597                     let right = self.and(step3, context.new_rvalue_from_int(typ, 0xFF00));
598                     let right = self.lshr(right, context.new_rvalue_from_int(typ, 8));
599                     let step4 = self.or(left, right);
600
601                     step4
602                 },
603                 32 => {
604                     // TODO(antoyo): Refactor with other implementations.
605                     // First step.
606                     let left = self.and(value, context.new_rvalue_from_long(typ, 0x55555555));
607                     let left = self.shl(left, context.new_rvalue_from_long(typ, 1));
608                     let right = self.and(value, context.new_rvalue_from_long(typ, 0xAAAAAAAA));
609                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 1));
610                     let step1 = self.or(left, right);
611
612                     // Second step.
613                     let left = self.and(step1, context.new_rvalue_from_long(typ, 0x33333333));
614                     let left = self.shl(left, context.new_rvalue_from_long(typ, 2));
615                     let right = self.and(step1, context.new_rvalue_from_long(typ, 0xCCCCCCCC));
616                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 2));
617                     let step2 = self.or(left, right);
618
619                     // Third step.
620                     let left = self.and(step2, context.new_rvalue_from_long(typ, 0x0F0F0F0F));
621                     let left = self.shl(left, context.new_rvalue_from_long(typ, 4));
622                     let right = self.and(step2, context.new_rvalue_from_long(typ, 0xF0F0F0F0));
623                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 4));
624                     let step3 = self.or(left, right);
625
626                     // Fourth step.
627                     let left = self.and(step3, context.new_rvalue_from_long(typ, 0x00FF00FF));
628                     let left = self.shl(left, context.new_rvalue_from_long(typ, 8));
629                     let right = self.and(step3, context.new_rvalue_from_long(typ, 0xFF00FF00));
630                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 8));
631                     let step4 = self.or(left, right);
632
633                     // Fifth step.
634                     let left = self.and(step4, context.new_rvalue_from_long(typ, 0x0000FFFF));
635                     let left = self.shl(left, context.new_rvalue_from_long(typ, 16));
636                     let right = self.and(step4, context.new_rvalue_from_long(typ, 0xFFFF0000));
637                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 16));
638                     let step5 = self.or(left, right);
639
640                     step5
641                 },
642                 64 => {
643                     // First step.
644                     let left = self.shl(value, context.new_rvalue_from_long(typ, 32));
645                     let right = self.lshr(value, context.new_rvalue_from_long(typ, 32));
646                     let step1 = self.or(left, right);
647
648                     // Second step.
649                     let left = self.and(step1, context.new_rvalue_from_long(typ, 0x0001FFFF0001FFFF));
650                     let left = self.shl(left, context.new_rvalue_from_long(typ, 15));
651                     let right = self.and(step1, context.new_rvalue_from_long(typ, 0xFFFE0000FFFE0000u64 as i64)); // TODO(antoyo): transmute the number instead?
652                     let right = self.lshr(right, context.new_rvalue_from_long(typ, 17));
653                     let step2 = self.or(left, right);
654
655                     // Third step.
656                     let left = self.lshr(step2, context.new_rvalue_from_long(typ, 10));
657                     let left = self.xor(step2, left);
658                     let temp = self.and(left, context.new_rvalue_from_long(typ, 0x003F801F003F801F));
659
660                     let left = self.shl(temp, context.new_rvalue_from_long(typ, 10));
661                     let left = self.or(temp, left);
662                     let step3 = self.xor(left, step2);
663
664                     // Fourth step.
665                     let left = self.lshr(step3, context.new_rvalue_from_long(typ, 4));
666                     let left = self.xor(step3, left);
667                     let temp = self.and(left, context.new_rvalue_from_long(typ, 0x0E0384210E038421));
668
669                     let left = self.shl(temp, context.new_rvalue_from_long(typ, 4));
670                     let left = self.or(temp, left);
671                     let step4 = self.xor(left, step3);
672
673                     // Fifth step.
674                     let left = self.lshr(step4, context.new_rvalue_from_long(typ, 2));
675                     let left = self.xor(step4, left);
676                     let temp = self.and(left, context.new_rvalue_from_long(typ, 0x2248884222488842));
677
678                     let left = self.shl(temp, context.new_rvalue_from_long(typ, 2));
679                     let left = self.or(temp, left);
680                     let step5 = self.xor(left, step4);
681
682                     step5
683                 },
684                 128 => {
685                     // TODO(antoyo): find a more efficient implementation?
686                     let sixty_four = self.gcc_int(typ, 64);
687                     let right_shift = self.gcc_lshr(value, sixty_four);
688                     let high = self.gcc_int_cast(right_shift, self.u64_type);
689                     let low = self.gcc_int_cast(value, self.u64_type);
690
691                     let reversed_high = self.bit_reverse(64, high);
692                     let reversed_low = self.bit_reverse(64, low);
693
694                     let new_low = self.gcc_int_cast(reversed_high, typ);
695                     let new_high = self.shl(self.gcc_int_cast(reversed_low, typ), sixty_four);
696
697                     self.gcc_or(new_low, new_high)
698                 },
699                 _ => {
700                     panic!("cannot bit reverse with width = {}", width);
701                 },
702             };
703
704         self.gcc_int_cast(result, result_type)
705     }
706
707     fn count_leading_zeroes(&mut self, width: u64, arg: RValue<'gcc>) -> RValue<'gcc> {
708         // TODO(antoyo): use width?
709         let arg_type = arg.get_type();
710         let count_leading_zeroes =
711             // TODO(antoyo): write a new function Type::is_compatible_with(&Type) and use it here
712             // instead of using is_uint().
713             if arg_type.is_uint(&self.cx) {
714                 "__builtin_clz"
715             }
716             else if arg_type.is_ulong(&self.cx) {
717                 "__builtin_clzl"
718             }
719             else if arg_type.is_ulonglong(&self.cx) {
720                 "__builtin_clzll"
721             }
722             else if width == 128 {
723                 // Algorithm from: https://stackoverflow.com/a/28433850/389119
724                 let array_type = self.context.new_array_type(None, arg_type, 3);
725                 let result = self.current_func()
726                     .new_local(None, array_type, "count_loading_zeroes_results");
727
728                 let sixty_four = self.const_uint(arg_type, 64);
729                 let shift = self.lshr(arg, sixty_four);
730                 let high = self.gcc_int_cast(shift, self.u64_type);
731                 let low = self.gcc_int_cast(arg, self.u64_type);
732
733                 let zero = self.context.new_rvalue_zero(self.usize_type);
734                 let one = self.context.new_rvalue_one(self.usize_type);
735                 let two = self.context.new_rvalue_from_long(self.usize_type, 2);
736
737                 let clzll = self.context.get_builtin_function("__builtin_clzll");
738
739                 let first_elem = self.context.new_array_access(None, result, zero);
740                 let first_value = self.gcc_int_cast(self.context.new_call(None, clzll, &[high]), arg_type);
741                 self.llbb()
742                     .add_assignment(None, first_elem, first_value);
743
744                 let second_elem = self.context.new_array_access(None, result, one);
745                 let cast = self.gcc_int_cast(self.context.new_call(None, clzll, &[low]), arg_type);
746                 let second_value = self.add(cast, sixty_four);
747                 self.llbb()
748                     .add_assignment(None, second_elem, second_value);
749
750                 let third_elem = self.context.new_array_access(None, result, two);
751                 let third_value = self.const_uint(arg_type, 128);
752                 self.llbb()
753                     .add_assignment(None, third_elem, third_value);
754
755                 let not_high = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, high);
756                 let not_low = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, low);
757                 let not_low_and_not_high = not_low & not_high;
758                 let index = not_high + not_low_and_not_high;
759                 // NOTE: the following cast is necessary to avoid a GIMPLE verification failure in
760                 // gcc.
761                 // TODO(antoyo): do the correct verification in libgccjit to avoid an error at the
762                 // compilation stage.
763                 let index = self.context.new_cast(None, index, self.i32_type);
764
765                 let res = self.context.new_array_access(None, result, index);
766
767                 return self.gcc_int_cast(res.to_rvalue(), arg_type);
768             }
769             else {
770                 let count_leading_zeroes = self.context.get_builtin_function("__builtin_clzll");
771                 let arg = self.context.new_cast(None, arg, self.ulonglong_type);
772                 let diff = self.ulonglong_type.get_size() as i64 - arg_type.get_size() as i64;
773                 let diff = self.context.new_rvalue_from_long(self.int_type, diff * 8);
774                 let res = self.context.new_call(None, count_leading_zeroes, &[arg]) - diff;
775                 return self.context.new_cast(None, res, arg_type);
776             };
777         let count_leading_zeroes = self.context.get_builtin_function(count_leading_zeroes);
778         let res = self.context.new_call(None, count_leading_zeroes, &[arg]);
779         self.context.new_cast(None, res, arg_type)
780     }
781
782     fn count_trailing_zeroes(&mut self, _width: u64, arg: RValue<'gcc>) -> RValue<'gcc> {
783         let result_type = arg.get_type();
784         let arg =
785             if result_type.is_signed(self.cx) {
786                 let new_type = result_type.to_unsigned(self.cx);
787                 self.gcc_int_cast(arg, new_type)
788             }
789             else {
790                 arg
791             };
792         let arg_type = arg.get_type();
793         let (count_trailing_zeroes, expected_type) =
794             // TODO(antoyo): write a new function Type::is_compatible_with(&Type) and use it here
795             // instead of using is_uint().
796             if arg_type.is_uchar(&self.cx) || arg_type.is_ushort(&self.cx) || arg_type.is_uint(&self.cx) {
797                 // NOTE: we don't need to & 0xFF for uchar because the result is undefined on zero.
798                 ("__builtin_ctz", self.cx.uint_type)
799             }
800             else if arg_type.is_ulong(&self.cx) {
801                 ("__builtin_ctzl", self.cx.ulong_type)
802             }
803             else if arg_type.is_ulonglong(&self.cx) {
804                 ("__builtin_ctzll", self.cx.ulonglong_type)
805             }
806             else if arg_type.is_u128(&self.cx) {
807                 // Adapted from the algorithm to count leading zeroes from: https://stackoverflow.com/a/28433850/389119
808                 let array_type = self.context.new_array_type(None, arg_type, 3);
809                 let result = self.current_func()
810                     .new_local(None, array_type, "count_loading_zeroes_results");
811
812                 let sixty_four = self.gcc_int(arg_type, 64);
813                 let shift = self.gcc_lshr(arg, sixty_four);
814                 let high = self.gcc_int_cast(shift, self.u64_type);
815                 let low = self.gcc_int_cast(arg, self.u64_type);
816
817                 let zero = self.context.new_rvalue_zero(self.usize_type);
818                 let one = self.context.new_rvalue_one(self.usize_type);
819                 let two = self.context.new_rvalue_from_long(self.usize_type, 2);
820
821                 let ctzll = self.context.get_builtin_function("__builtin_ctzll");
822
823                 let first_elem = self.context.new_array_access(None, result, zero);
824                 let first_value = self.gcc_int_cast(self.context.new_call(None, ctzll, &[low]), arg_type);
825                 self.llbb()
826                     .add_assignment(None, first_elem, first_value);
827
828                 let second_elem = self.context.new_array_access(None, result, one);
829                 let second_value = self.gcc_add(self.gcc_int_cast(self.context.new_call(None, ctzll, &[high]), arg_type), sixty_four);
830                 self.llbb()
831                     .add_assignment(None, second_elem, second_value);
832
833                 let third_elem = self.context.new_array_access(None, result, two);
834                 let third_value = self.gcc_int(arg_type, 128);
835                 self.llbb()
836                     .add_assignment(None, third_elem, third_value);
837
838                 let not_low = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, low);
839                 let not_high = self.context.new_unary_op(None, UnaryOp::LogicalNegate, self.u64_type, high);
840                 let not_low_and_not_high = not_low & not_high;
841                 let index = not_low + not_low_and_not_high;
842                 // NOTE: the following cast is necessary to avoid a GIMPLE verification failure in
843                 // gcc.
844                 // TODO(antoyo): do the correct verification in libgccjit to avoid an error at the
845                 // compilation stage.
846                 let index = self.context.new_cast(None, index, self.i32_type);
847
848                 let res = self.context.new_array_access(None, result, index);
849
850                 return self.gcc_int_cast(res.to_rvalue(), result_type);
851             }
852             else {
853                 let count_trailing_zeroes = self.context.get_builtin_function("__builtin_ctzll");
854                 let arg_size = arg_type.get_size();
855                 let casted_arg = self.context.new_cast(None, arg, self.ulonglong_type);
856                 let byte_diff = self.ulonglong_type.get_size() as i64 - arg_size as i64;
857                 let diff = self.context.new_rvalue_from_long(self.int_type, byte_diff * 8);
858                 let mask = self.context.new_rvalue_from_long(arg_type, -1); // To get the value with all bits set.
859                 let masked = mask & self.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, arg);
860                 let cond = self.context.new_comparison(None, ComparisonOp::Equals, masked, mask);
861                 let diff = diff * self.context.new_cast(None, cond, self.int_type);
862                 let res = self.context.new_call(None, count_trailing_zeroes, &[casted_arg]) - diff;
863                 return self.context.new_cast(None, res, result_type);
864             };
865         let count_trailing_zeroes = self.context.get_builtin_function(count_trailing_zeroes);
866         let arg =
867             if arg_type != expected_type {
868                 self.context.new_cast(None, arg, expected_type)
869             }
870             else {
871                 arg
872             };
873         let res = self.context.new_call(None, count_trailing_zeroes, &[arg]);
874         self.context.new_cast(None, res, result_type)
875     }
876
877     fn pop_count(&mut self, value: RValue<'gcc>) -> RValue<'gcc> {
878         // TODO(antoyo): use the optimized version with fewer operations.
879         let result_type = value.get_type();
880         let value_type = result_type.to_unsigned(self.cx);
881
882         let value =
883             if result_type.is_signed(self.cx) {
884                 self.gcc_int_cast(value, value_type)
885             }
886             else {
887                 value
888             };
889
890         if value_type.is_u128(&self.cx) {
891             // TODO(antoyo): implement in the normal algorithm below to have a more efficient
892             // implementation (that does not require a call to __popcountdi2).
893             let popcount = self.context.get_builtin_function("__builtin_popcountll");
894             let sixty_four = self.gcc_int(value_type, 64);
895             let right_shift = self.gcc_lshr(value, sixty_four);
896             let high = self.gcc_int_cast(right_shift, self.cx.ulonglong_type);
897             let high = self.context.new_call(None, popcount, &[high]);
898             let low = self.gcc_int_cast(value, self.cx.ulonglong_type);
899             let low = self.context.new_call(None, popcount, &[low]);
900             let res = high + low;
901             return self.gcc_int_cast(res, result_type);
902         }
903
904         // First step.
905         let mask = self.context.new_rvalue_from_long(value_type, 0x5555555555555555);
906         let left = value & mask;
907         let shifted = value >> self.context.new_rvalue_from_int(value_type, 1);
908         let right = shifted & mask;
909         let value = left + right;
910
911         // Second step.
912         let mask = self.context.new_rvalue_from_long(value_type, 0x3333333333333333);
913         let left = value & mask;
914         let shifted = value >> self.context.new_rvalue_from_int(value_type, 2);
915         let right = shifted & mask;
916         let value = left + right;
917
918         // Third step.
919         let mask = self.context.new_rvalue_from_long(value_type, 0x0F0F0F0F0F0F0F0F);
920         let left = value & mask;
921         let shifted = value >> self.context.new_rvalue_from_int(value_type, 4);
922         let right = shifted & mask;
923         let value = left + right;
924
925         if value_type.is_u8(&self.cx) {
926             return self.context.new_cast(None, value, result_type);
927         }
928
929         // Fourth step.
930         let mask = self.context.new_rvalue_from_long(value_type, 0x00FF00FF00FF00FF);
931         let left = value & mask;
932         let shifted = value >> self.context.new_rvalue_from_int(value_type, 8);
933         let right = shifted & mask;
934         let value = left + right;
935
936         if value_type.is_u16(&self.cx) {
937             return self.context.new_cast(None, value, result_type);
938         }
939
940         // Fifth step.
941         let mask = self.context.new_rvalue_from_long(value_type, 0x0000FFFF0000FFFF);
942         let left = value & mask;
943         let shifted = value >> self.context.new_rvalue_from_int(value_type, 16);
944         let right = shifted & mask;
945         let value = left + right;
946
947         if value_type.is_u32(&self.cx) {
948             return self.context.new_cast(None, value, result_type);
949         }
950
951         // Sixth step.
952         let mask = self.context.new_rvalue_from_long(value_type, 0x00000000FFFFFFFF);
953         let left = value & mask;
954         let shifted = value >> self.context.new_rvalue_from_int(value_type, 32);
955         let right = shifted & mask;
956         let value = left + right;
957
958         self.context.new_cast(None, value, result_type)
959     }
960
961     // Algorithm from: https://blog.regehr.org/archives/1063
962     fn rotate_left(&mut self, value: RValue<'gcc>, shift: RValue<'gcc>, width: u64) -> RValue<'gcc> {
963         let max = self.const_uint(shift.get_type(), width);
964         let shift = self.urem(shift, max);
965         let lhs = self.shl(value, shift);
966         let result_neg = self.neg(shift);
967         let result_and =
968             self.and(
969                 result_neg,
970                 self.const_uint(shift.get_type(), width - 1),
971             );
972         let rhs = self.lshr(value, result_and);
973         self.or(lhs, rhs)
974     }
975
976     // Algorithm from: https://blog.regehr.org/archives/1063
977     fn rotate_right(&mut self, value: RValue<'gcc>, shift: RValue<'gcc>, width: u64) -> RValue<'gcc> {
978         let max = self.const_uint(shift.get_type(), width);
979         let shift = self.urem(shift, max);
980         let lhs = self.lshr(value, shift);
981         let result_neg = self.neg(shift);
982         let result_and =
983             self.and(
984                 result_neg,
985                 self.const_uint(shift.get_type(), width - 1),
986             );
987         let rhs = self.shl(value, result_and);
988         self.or(lhs, rhs)
989     }
990
991     fn saturating_add(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>, signed: bool, width: u64) -> RValue<'gcc> {
992         let result_type = lhs.get_type();
993         if signed {
994             // Based on algorithm from: https://stackoverflow.com/a/56531252/389119
995             let func = self.current_func.borrow().expect("func");
996             let res = func.new_local(None, result_type, "saturating_sum");
997             let supports_native_type = self.is_native_int_type(result_type);
998             let overflow =
999                 if supports_native_type {
1000                     let func_name =
1001                         match width {
1002                             8 => "__builtin_add_overflow",
1003                             16 => "__builtin_add_overflow",
1004                             32 => "__builtin_sadd_overflow",
1005                             64 => "__builtin_saddll_overflow",
1006                             128 => "__builtin_add_overflow",
1007                             _ => unreachable!(),
1008                         };
1009                     let overflow_func = self.context.get_builtin_function(func_name);
1010                     self.overflow_call(overflow_func, &[lhs, rhs, res.get_address(None)], None)
1011                 }
1012                 else {
1013                     let func_name =
1014                         match width {
1015                             128 => "__rust_i128_addo",
1016                             _ => unreachable!(),
1017                         };
1018                     let param_a = self.context.new_parameter(None, result_type, "a");
1019                     let param_b = self.context.new_parameter(None, result_type, "b");
1020                     let result_field = self.context.new_field(None, result_type, "result");
1021                     let overflow_field = self.context.new_field(None, self.bool_type, "overflow");
1022                     let return_type = self.context.new_struct_type(None, "result_overflow", &[result_field, overflow_field]);
1023                     let func = self.context.new_function(None, FunctionType::Extern, return_type.as_type(), &[param_a, param_b], func_name, false);
1024                     let result = self.context.new_call(None, func, &[lhs, rhs]);
1025                     let overflow = result.access_field(None, overflow_field);
1026                     let int_result = result.access_field(None, result_field);
1027                     self.llbb().add_assignment(None, res, int_result);
1028                     overflow
1029                 };
1030
1031             let then_block = func.new_block("then");
1032             let after_block = func.new_block("after");
1033
1034             // Return `result_type`'s maximum or minimum value on overflow
1035             // NOTE: convert the type to unsigned to have an unsigned shift.
1036             let unsigned_type = result_type.to_unsigned(&self.cx);
1037             let shifted = self.gcc_lshr(self.gcc_int_cast(lhs, unsigned_type), self.gcc_int(unsigned_type, width as i64 - 1));
1038             let uint_max = self.gcc_not(self.gcc_int(unsigned_type, 0));
1039             let int_max = self.gcc_lshr(uint_max, self.gcc_int(unsigned_type, 1));
1040             then_block.add_assignment(None, res, self.gcc_int_cast(self.gcc_add(shifted, int_max), result_type));
1041             then_block.end_with_jump(None, after_block);
1042
1043             self.llbb().end_with_conditional(None, overflow, then_block, after_block);
1044
1045             // NOTE: since jumps were added in a place rustc does not
1046             // expect, the current block in the state need to be updated.
1047             self.switch_to_block(after_block);
1048
1049             res.to_rvalue()
1050         }
1051         else {
1052             // Algorithm from: http://locklessinc.com/articles/sat_arithmetic/
1053             let res = self.gcc_add(lhs, rhs);
1054             let cond = self.gcc_icmp(IntPredicate::IntULT, res, lhs);
1055             let value = self.gcc_neg(self.gcc_int_cast(cond, result_type));
1056             self.gcc_or(res, value)
1057         }
1058     }
1059
1060     // Algorithm from: https://locklessinc.com/articles/sat_arithmetic/
1061     fn saturating_sub(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>, signed: bool, width: u64) -> RValue<'gcc> {
1062         let result_type = lhs.get_type();
1063         if signed {
1064             // Based on algorithm from: https://stackoverflow.com/a/56531252/389119
1065             let func = self.current_func.borrow().expect("func");
1066             let res = func.new_local(None, result_type, "saturating_diff");
1067             let supports_native_type = self.is_native_int_type(result_type);
1068             let overflow =
1069                 if supports_native_type {
1070                     let func_name =
1071                         match width {
1072                             8 => "__builtin_sub_overflow",
1073                             16 => "__builtin_sub_overflow",
1074                             32 => "__builtin_ssub_overflow",
1075                             64 => "__builtin_ssubll_overflow",
1076                             128 => "__builtin_sub_overflow",
1077                             _ => unreachable!(),
1078                         };
1079                     let overflow_func = self.context.get_builtin_function(func_name);
1080                     self.overflow_call(overflow_func, &[lhs, rhs, res.get_address(None)], None)
1081                 }
1082                 else {
1083                     let func_name =
1084                         match width {
1085                             128 => "__rust_i128_subo",
1086                             _ => unreachable!(),
1087                         };
1088                     let param_a = self.context.new_parameter(None, result_type, "a");
1089                     let param_b = self.context.new_parameter(None, result_type, "b");
1090                     let result_field = self.context.new_field(None, result_type, "result");
1091                     let overflow_field = self.context.new_field(None, self.bool_type, "overflow");
1092                     let return_type = self.context.new_struct_type(None, "result_overflow", &[result_field, overflow_field]);
1093                     let func = self.context.new_function(None, FunctionType::Extern, return_type.as_type(), &[param_a, param_b], func_name, false);
1094                     let result = self.context.new_call(None, func, &[lhs, rhs]);
1095                     let overflow = result.access_field(None, overflow_field);
1096                     let int_result = result.access_field(None, result_field);
1097                     self.llbb().add_assignment(None, res, int_result);
1098                     overflow
1099                 };
1100
1101             let then_block = func.new_block("then");
1102             let after_block = func.new_block("after");
1103
1104             // Return `result_type`'s maximum or minimum value on overflow
1105             // NOTE: convert the type to unsigned to have an unsigned shift.
1106             let unsigned_type = result_type.to_unsigned(&self.cx);
1107             let shifted = self.gcc_lshr(self.gcc_int_cast(lhs, unsigned_type), self.gcc_int(unsigned_type, width as i64 - 1));
1108             let uint_max = self.gcc_not(self.gcc_int(unsigned_type, 0));
1109             let int_max = self.gcc_lshr(uint_max, self.gcc_int(unsigned_type, 1));
1110             then_block.add_assignment(None, res, self.gcc_int_cast(self.gcc_add(shifted, int_max), result_type));
1111             then_block.end_with_jump(None, after_block);
1112
1113             self.llbb().end_with_conditional(None, overflow, then_block, after_block);
1114
1115             // NOTE: since jumps were added in a place rustc does not
1116             // expect, the current block in the state need to be updated.
1117             self.switch_to_block(after_block);
1118
1119             res.to_rvalue()
1120         }
1121         else {
1122             let res = self.gcc_sub(lhs, rhs);
1123             let comparison = self.gcc_icmp(IntPredicate::IntULE, res, lhs);
1124             let value = self.gcc_neg(self.gcc_int_cast(comparison, result_type));
1125             self.gcc_and(res, value)
1126         }
1127     }
1128 }
1129
1130 fn try_intrinsic<'gcc, 'tcx>(bx: &mut Builder<'_, 'gcc, 'tcx>, try_func: RValue<'gcc>, data: RValue<'gcc>, _catch_func: RValue<'gcc>, dest: RValue<'gcc>) {
1131     // NOTE: the `|| true` here is to use the panic=abort strategy with panic=unwind too
1132     if bx.sess().panic_strategy() == PanicStrategy::Abort || true {
1133         // TODO(bjorn3): Properly implement unwinding and remove the `|| true` once this is done.
1134         bx.call(bx.type_void(), try_func, &[data], None);
1135         // Return 0 unconditionally from the intrinsic call;
1136         // we can never unwind.
1137         let ret_align = bx.tcx.data_layout.i32_align.abi;
1138         bx.store(bx.const_i32(0), dest, ret_align);
1139     }
1140     else if wants_msvc_seh(bx.sess()) {
1141         unimplemented!();
1142     }
1143     else {
1144         unimplemented!();
1145     }
1146 }