]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_builtin_macros/src/deriving/generic/mod.rs
Rollup merge of #105026 - oToToT:aarch64-v8a, r=davidtwco
[rust.git] / compiler / rustc_builtin_macros / src / deriving / generic / mod.rs
1 //! Some code that abstracts away much of the boilerplate of writing
2 //! `derive` instances for traits. Among other things it manages getting
3 //! access to the fields of the 4 different sorts of structs and enum
4 //! variants, as well as creating the method and impl ast instances.
5 //!
6 //! Supported features (fairly exhaustive):
7 //!
8 //! - Methods taking any number of parameters of any type, and returning
9 //!   any type, other than vectors, bottom and closures.
10 //! - Generating `impl`s for types with type parameters and lifetimes
11 //!   (e.g., `Option<T>`), the parameters are automatically given the
12 //!   current trait as a bound. (This includes separate type parameters
13 //!   and lifetimes for methods.)
14 //! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
15 //!
16 //! The most important thing for implementors is the `Substructure` and
17 //! `SubstructureFields` objects. The latter groups 5 possibilities of the
18 //! arguments:
19 //!
20 //! - `Struct`, when `Self` is a struct (including tuple structs, e.g
21 //!   `struct T(i32, char)`).
22 //! - `EnumMatching`, when `Self` is an enum and all the arguments are the
23 //!   same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
24 //! - `EnumTag` when `Self` is an enum, for comparing the enum tags.
25 //! - `StaticEnum` and `StaticStruct` for static methods, where the type
26 //!   being derived upon is either an enum or struct respectively. (Any
27 //!   argument with type Self is just grouped among the non-self
28 //!   arguments.)
29 //!
30 //! In the first two cases, the values from the corresponding fields in
31 //! all the arguments are grouped together.
32 //!
33 //! The non-static cases have `Option<ident>` in several places associated
34 //! with field `expr`s. This represents the name of the field it is
35 //! associated with. It is only not `None` when the associated field has
36 //! an identifier in the source code. For example, the `x`s in the
37 //! following snippet
38 //!
39 //! ```rust
40 //! # #![allow(dead_code)]
41 //! struct A { x : i32 }
42 //!
43 //! struct B(i32);
44 //!
45 //! enum C {
46 //!     C0(i32),
47 //!     C1 { x: i32 }
48 //! }
49 //! ```
50 //!
51 //! The `i32`s in `B` and `C0` don't have an identifier, so the
52 //! `Option<ident>`s would be `None` for them.
53 //!
54 //! In the static cases, the structure is summarized, either into the just
55 //! spans of the fields or a list of spans and the field idents (for tuple
56 //! structs and record structs, respectively), or a list of these, for
57 //! enums (one for each variant). For empty struct and empty enum
58 //! variants, it is represented as a count of 0.
59 //!
60 //! # "`cs`" functions
61 //!
62 //! The `cs_...` functions ("combine substructure") are designed to
63 //! make life easier by providing some pre-made recipes for common
64 //! threads; mostly calling the function being derived on all the
65 //! arguments and then combining them back together in some way (or
66 //! letting the user chose that). They are not meant to be the only
67 //! way to handle the structures that this code creates.
68 //!
69 //! # Examples
70 //!
71 //! The following simplified `PartialEq` is used for in-code examples:
72 //!
73 //! ```rust
74 //! trait PartialEq {
75 //!     fn eq(&self, other: &Self) -> bool;
76 //! }
77 //! impl PartialEq for i32 {
78 //!     fn eq(&self, other: &i32) -> bool {
79 //!         *self == *other
80 //!     }
81 //! }
82 //! ```
83 //!
84 //! Some examples of the values of `SubstructureFields` follow, using the
85 //! above `PartialEq`, `A`, `B` and `C`.
86 //!
87 //! ## Structs
88 //!
89 //! When generating the `expr` for the `A` impl, the `SubstructureFields` is
90 //!
91 //! ```{.text}
92 //! Struct(vec![FieldInfo {
93 //!            span: <span of x>
94 //!            name: Some(<ident of x>),
95 //!            self_: <expr for &self.x>,
96 //!            other: vec![<expr for &other.x]
97 //!          }])
98 //! ```
99 //!
100 //! For the `B` impl, called with `B(a)` and `B(b)`,
101 //!
102 //! ```{.text}
103 //! Struct(vec![FieldInfo {
104 //!           span: <span of `i32`>,
105 //!           name: None,
106 //!           self_: <expr for &a>
107 //!           other: vec![<expr for &b>]
108 //!          }])
109 //! ```
110 //!
111 //! ## Enums
112 //!
113 //! When generating the `expr` for a call with `self == C0(a)` and `other
114 //! == C0(b)`, the SubstructureFields is
115 //!
116 //! ```{.text}
117 //! EnumMatching(0, <ast::Variant for C0>,
118 //!              vec![FieldInfo {
119 //!                 span: <span of i32>
120 //!                 name: None,
121 //!                 self_: <expr for &a>,
122 //!                 other: vec![<expr for &b>]
123 //!               }])
124 //! ```
125 //!
126 //! For `C1 {x}` and `C1 {x}`,
127 //!
128 //! ```{.text}
129 //! EnumMatching(1, <ast::Variant for C1>,
130 //!              vec![FieldInfo {
131 //!                 span: <span of x>
132 //!                 name: Some(<ident of x>),
133 //!                 self_: <expr for &self.x>,
134 //!                 other: vec![<expr for &other.x>]
135 //!                }])
136 //! ```
137 //!
138 //! For the tags,
139 //!
140 //! ```{.text}
141 //! EnumTag(
142 //!     &[<ident of self tag>, <ident of other tag>], <expr to combine with>)
143 //! ```
144 //! Note that this setup doesn't allow for the brute-force "match every variant
145 //! against every other variant" approach, which is bad because it produces a
146 //! quadratic amount of code (see #15375).
147 //!
148 //! ## Static
149 //!
150 //! A static method on the types above would result in,
151 //!
152 //! ```{.text}
153 //! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
154 //!
155 //! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
156 //!
157 //! StaticEnum(<ast::EnumDef of C>,
158 //!            vec![(<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
159 //!                 (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)]))])
160 //! ```
161
162 pub use StaticFields::*;
163 pub use SubstructureFields::*;
164
165 use crate::deriving;
166 use rustc_ast::ptr::P;
167 use rustc_ast::{
168     self as ast, BindingAnnotation, ByRef, EnumDef, Expr, Generics, Mutability, PatKind,
169 };
170 use rustc_ast::{GenericArg, GenericParamKind, VariantData};
171 use rustc_attr as attr;
172 use rustc_expand::base::{Annotatable, ExtCtxt};
173 use rustc_span::symbol::{kw, sym, Ident, Symbol};
174 use rustc_span::{Span, DUMMY_SP};
175 use std::cell::RefCell;
176 use std::iter;
177 use std::ops::Not;
178 use std::vec;
179 use thin_vec::thin_vec;
180 use ty::{Bounds, Path, Ref, Self_, Ty};
181
182 pub mod ty;
183
184 pub struct TraitDef<'a> {
185     /// The span for the current #[derive(Foo)] header.
186     pub span: Span,
187
188     /// Path of the trait, including any type parameters
189     pub path: Path,
190
191     /// Whether to skip adding the current trait as a bound to the type parameters of the type.
192     pub skip_path_as_bound: bool,
193
194     /// Additional bounds required of any type parameters of the type,
195     /// other than the current trait
196     pub additional_bounds: Vec<Ty>,
197
198     /// Can this trait be derived for unions?
199     pub supports_unions: bool,
200
201     pub methods: Vec<MethodDef<'a>>,
202
203     pub associated_types: Vec<(Ident, Ty)>,
204
205     pub is_const: bool,
206 }
207
208 pub struct MethodDef<'a> {
209     /// name of the method
210     pub name: Symbol,
211     /// List of generics, e.g., `R: rand::Rng`
212     pub generics: Bounds,
213
214     /// Is there is a `&self` argument? If not, it is a static function.
215     pub explicit_self: bool,
216
217     /// Arguments other than the self argument.
218     pub nonself_args: Vec<(Ty, Symbol)>,
219
220     /// Returns type
221     pub ret_ty: Ty,
222
223     pub attributes: ast::AttrVec,
224
225     /// Can we combine fieldless variants for enums into a single match arm?
226     /// If true, indicates that the trait operation uses the enum tag in some
227     /// way.
228     pub unify_fieldless_variants: bool,
229
230     pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
231 }
232
233 /// All the data about the data structure/method being derived upon.
234 pub struct Substructure<'a> {
235     /// ident of self
236     pub type_ident: Ident,
237     /// Verbatim access to any non-selflike arguments, i.e. arguments that
238     /// don't have type `&Self`.
239     pub nonselflike_args: &'a [P<Expr>],
240     pub fields: &'a SubstructureFields<'a>,
241 }
242
243 /// Summary of the relevant parts of a struct/enum field.
244 pub struct FieldInfo {
245     pub span: Span,
246     /// None for tuple structs/normal enum variants, Some for normal
247     /// structs/struct enum variants.
248     pub name: Option<Ident>,
249     /// The expression corresponding to this field of `self`
250     /// (specifically, a reference to it).
251     pub self_expr: P<Expr>,
252     /// The expressions corresponding to references to this field in
253     /// the other selflike arguments.
254     pub other_selflike_exprs: Vec<P<Expr>>,
255 }
256
257 /// Fields for a static method
258 pub enum StaticFields {
259     /// Tuple and unit structs/enum variants like this.
260     Unnamed(Vec<Span>, bool /*is tuple*/),
261     /// Normal structs/struct variants.
262     Named(Vec<(Ident, Span)>),
263 }
264
265 /// A summary of the possible sets of fields.
266 pub enum SubstructureFields<'a> {
267     /// A non-static method with `Self` is a struct.
268     Struct(&'a ast::VariantData, Vec<FieldInfo>),
269
270     /// Matching variants of the enum: variant index, variant count, ast::Variant,
271     /// fields: the field name is only non-`None` in the case of a struct
272     /// variant.
273     EnumMatching(usize, usize, &'a ast::Variant, Vec<FieldInfo>),
274
275     /// The tag of an enum. The first field is a `FieldInfo` for the tags, as
276     /// if they were fields. The second field is the expression to combine the
277     /// tag expression with; it will be `None` if no match is necessary.
278     EnumTag(FieldInfo, Option<P<Expr>>),
279
280     /// A static method where `Self` is a struct.
281     StaticStruct(&'a ast::VariantData, StaticFields),
282
283     /// A static method where `Self` is an enum.
284     StaticEnum(&'a ast::EnumDef, Vec<(Ident, Span, StaticFields)>),
285 }
286
287 /// Combine the values of all the fields together. The last argument is
288 /// all the fields of all the structures.
289 pub type CombineSubstructureFunc<'a> =
290     Box<dyn FnMut(&mut ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
291
292 pub fn combine_substructure(
293     f: CombineSubstructureFunc<'_>,
294 ) -> RefCell<CombineSubstructureFunc<'_>> {
295     RefCell::new(f)
296 }
297
298 struct TypeParameter {
299     bound_generic_params: Vec<ast::GenericParam>,
300     ty: P<ast::Ty>,
301 }
302
303 /// The code snippets built up for derived code are sometimes used as blocks
304 /// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
305 /// arm). This structure avoids committing to either form until necessary,
306 /// avoiding the insertion of any unnecessary blocks.
307 ///
308 /// The statements come before the expression.
309 pub struct BlockOrExpr(Vec<ast::Stmt>, Option<P<Expr>>);
310
311 impl BlockOrExpr {
312     pub fn new_stmts(stmts: Vec<ast::Stmt>) -> BlockOrExpr {
313         BlockOrExpr(stmts, None)
314     }
315
316     pub fn new_expr(expr: P<Expr>) -> BlockOrExpr {
317         BlockOrExpr(vec![], Some(expr))
318     }
319
320     pub fn new_mixed(stmts: Vec<ast::Stmt>, expr: Option<P<Expr>>) -> BlockOrExpr {
321         BlockOrExpr(stmts, expr)
322     }
323
324     // Converts it into a block.
325     fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> P<ast::Block> {
326         if let Some(expr) = self.1 {
327             self.0.push(cx.stmt_expr(expr));
328         }
329         cx.block(span, self.0)
330     }
331
332     // Converts it into an expression.
333     fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> P<Expr> {
334         if self.0.is_empty() {
335             match self.1 {
336                 None => cx.expr_block(cx.block(span, vec![])),
337                 Some(expr) => expr,
338             }
339         } else if self.0.len() == 1
340             && let ast::StmtKind::Expr(expr) = &self.0[0].kind
341             && self.1.is_none()
342         {
343             // There's only a single statement expression. Pull it out.
344             expr.clone()
345         } else {
346             // Multiple statements and/or expressions.
347             cx.expr_block(self.into_block(cx, span))
348         }
349     }
350 }
351
352 /// This method helps to extract all the type parameters referenced from a
353 /// type. For a type parameter `<T>`, it looks for either a `TyPath` that
354 /// is not global and starts with `T`, or a `TyQPath`.
355 /// Also include bound generic params from the input type.
356 fn find_type_parameters(
357     ty: &ast::Ty,
358     ty_param_names: &[Symbol],
359     cx: &ExtCtxt<'_>,
360 ) -> Vec<TypeParameter> {
361     use rustc_ast::visit;
362
363     struct Visitor<'a, 'b> {
364         cx: &'a ExtCtxt<'b>,
365         ty_param_names: &'a [Symbol],
366         bound_generic_params_stack: Vec<ast::GenericParam>,
367         type_params: Vec<TypeParameter>,
368     }
369
370     impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
371         fn visit_ty(&mut self, ty: &'a ast::Ty) {
372             if let ast::TyKind::Path(_, ref path) = ty.kind {
373                 if let Some(segment) = path.segments.first() {
374                     if self.ty_param_names.contains(&segment.ident.name) {
375                         self.type_params.push(TypeParameter {
376                             bound_generic_params: self.bound_generic_params_stack.clone(),
377                             ty: P(ty.clone()),
378                         });
379                     }
380                 }
381             }
382
383             visit::walk_ty(self, ty)
384         }
385
386         // Place bound generic params on a stack, to extract them when a type is encountered.
387         fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
388             let stack_len = self.bound_generic_params_stack.len();
389             self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
390
391             visit::walk_poly_trait_ref(self, trait_ref);
392
393             self.bound_generic_params_stack.truncate(stack_len);
394         }
395
396         fn visit_mac_call(&mut self, mac: &ast::MacCall) {
397             self.cx.span_err(mac.span(), "`derive` cannot be used on items with type macros");
398         }
399     }
400
401     let mut visitor = Visitor {
402         cx,
403         ty_param_names,
404         bound_generic_params_stack: Vec::new(),
405         type_params: Vec::new(),
406     };
407     visit::Visitor::visit_ty(&mut visitor, ty);
408
409     visitor.type_params
410 }
411
412 impl<'a> TraitDef<'a> {
413     pub fn expand(
414         self,
415         cx: &mut ExtCtxt<'_>,
416         mitem: &ast::MetaItem,
417         item: &'a Annotatable,
418         push: &mut dyn FnMut(Annotatable),
419     ) {
420         self.expand_ext(cx, mitem, item, push, false);
421     }
422
423     pub fn expand_ext(
424         self,
425         cx: &mut ExtCtxt<'_>,
426         mitem: &ast::MetaItem,
427         item: &'a Annotatable,
428         push: &mut dyn FnMut(Annotatable),
429         from_scratch: bool,
430     ) {
431         match *item {
432             Annotatable::Item(ref item) => {
433                 let is_packed = item.attrs.iter().any(|attr| {
434                     for r in attr::find_repr_attrs(&cx.sess, attr) {
435                         if let attr::ReprPacked(_) = r {
436                             return true;
437                         }
438                     }
439                     false
440                 });
441                 let has_no_type_params = match item.kind {
442                     ast::ItemKind::Struct(_, ref generics)
443                     | ast::ItemKind::Enum(_, ref generics)
444                     | ast::ItemKind::Union(_, ref generics) => !generics
445                         .params
446                         .iter()
447                         .any(|param| matches!(param.kind, ast::GenericParamKind::Type { .. })),
448                     _ => unreachable!(),
449                 };
450                 let container_id = cx.current_expansion.id.expn_data().parent.expect_local();
451                 let copy_fields =
452                     is_packed && has_no_type_params && cx.resolver.has_derive_copy(container_id);
453
454                 let newitem = match item.kind {
455                     ast::ItemKind::Struct(ref struct_def, ref generics) => self.expand_struct_def(
456                         cx,
457                         &struct_def,
458                         item.ident,
459                         generics,
460                         from_scratch,
461                         copy_fields,
462                     ),
463                     ast::ItemKind::Enum(ref enum_def, ref generics) => {
464                         // We ignore `is_packed` here, because `repr(packed)`
465                         // enums cause an error later on.
466                         //
467                         // This can only cause further compilation errors
468                         // downstream in blatantly illegal code, so it is fine.
469                         self.expand_enum_def(cx, enum_def, item.ident, generics, from_scratch)
470                     }
471                     ast::ItemKind::Union(ref struct_def, ref generics) => {
472                         if self.supports_unions {
473                             self.expand_struct_def(
474                                 cx,
475                                 &struct_def,
476                                 item.ident,
477                                 generics,
478                                 from_scratch,
479                                 copy_fields,
480                             )
481                         } else {
482                             cx.span_err(mitem.span, "this trait cannot be derived for unions");
483                             return;
484                         }
485                     }
486                     _ => unreachable!(),
487                 };
488                 // Keep the lint attributes of the previous item to control how the
489                 // generated implementations are linted
490                 let mut attrs = newitem.attrs.clone();
491                 attrs.extend(
492                     item.attrs
493                         .iter()
494                         .filter(|a| {
495                             [
496                                 sym::allow,
497                                 sym::warn,
498                                 sym::deny,
499                                 sym::forbid,
500                                 sym::stable,
501                                 sym::unstable,
502                             ]
503                             .contains(&a.name_or_empty())
504                         })
505                         .cloned(),
506                 );
507                 push(Annotatable::Item(P(ast::Item { attrs, ..(*newitem).clone() })))
508             }
509             _ => unreachable!(),
510         }
511     }
512
513     /// Given that we are deriving a trait `DerivedTrait` for a type like:
514     ///
515     /// ```ignore (only-for-syntax-highlight)
516     /// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z> where C: WhereTrait {
517     ///     a: A,
518     ///     b: B::Item,
519     ///     b1: <B as DeclaredTrait>::Item,
520     ///     c1: <C as WhereTrait>::Item,
521     ///     c2: Option<<C as WhereTrait>::Item>,
522     ///     ...
523     /// }
524     /// ```
525     ///
526     /// create an impl like:
527     ///
528     /// ```ignore (only-for-syntax-highlight)
529     /// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ... Z> where
530     ///     C:                       WhereTrait,
531     ///     A: DerivedTrait + B1 + ... + BN,
532     ///     B: DerivedTrait + B1 + ... + BN,
533     ///     C: DerivedTrait + B1 + ... + BN,
534     ///     B::Item:                 DerivedTrait + B1 + ... + BN,
535     ///     <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
536     ///     ...
537     /// {
538     ///     ...
539     /// }
540     /// ```
541     ///
542     /// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
543     /// therefore does not get bound by the derived trait.
544     fn create_derived_impl(
545         &self,
546         cx: &mut ExtCtxt<'_>,
547         type_ident: Ident,
548         generics: &Generics,
549         field_tys: Vec<P<ast::Ty>>,
550         methods: Vec<P<ast::AssocItem>>,
551     ) -> P<ast::Item> {
552         let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
553
554         // Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
555         let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
556             P(ast::AssocItem {
557                 id: ast::DUMMY_NODE_ID,
558                 span: self.span,
559                 ident,
560                 vis: ast::Visibility {
561                     span: self.span.shrink_to_lo(),
562                     kind: ast::VisibilityKind::Inherited,
563                     tokens: None,
564                 },
565                 attrs: ast::AttrVec::new(),
566                 kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
567                     defaultness: ast::Defaultness::Final,
568                     generics: Generics::default(),
569                     where_clauses: (
570                         ast::TyAliasWhereClause::default(),
571                         ast::TyAliasWhereClause::default(),
572                     ),
573                     where_predicates_split: 0,
574                     bounds: Vec::new(),
575                     ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
576                 })),
577                 tokens: None,
578             })
579         });
580
581         let mut where_clause = ast::WhereClause::default();
582         where_clause.span = generics.where_clause.span;
583         let ctxt = self.span.ctxt();
584         let span = generics.span.with_ctxt(ctxt);
585
586         // Create the generic parameters
587         let params: Vec<_> = generics
588             .params
589             .iter()
590             .map(|param| match &param.kind {
591                 GenericParamKind::Lifetime { .. } => param.clone(),
592                 GenericParamKind::Type { .. } => {
593                     // I don't think this can be moved out of the loop, since
594                     // a GenericBound requires an ast id
595                     let bounds: Vec<_> =
596                     // extra restrictions on the generics parameters to the
597                     // type being derived upon
598                     self.additional_bounds.iter().map(|p| {
599                         cx.trait_bound(p.to_path(cx, self.span, type_ident, generics))
600                     }).chain(
601                         // require the current trait
602                         self.skip_path_as_bound.not().then(|| cx.trait_bound(trait_path.clone()))
603                     ).chain(
604                         // also add in any bounds from the declaration
605                         param.bounds.iter().cloned()
606                     ).collect();
607
608                     cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
609                 }
610                 GenericParamKind::Const { ty, kw_span, .. } => {
611                     let const_nodefault_kind = GenericParamKind::Const {
612                         ty: ty.clone(),
613                         kw_span: kw_span.with_ctxt(ctxt),
614
615                         // We can't have default values inside impl block
616                         default: None,
617                     };
618                     let mut param_clone = param.clone();
619                     param_clone.kind = const_nodefault_kind;
620                     param_clone
621                 }
622             })
623             .collect();
624
625         // and similarly for where clauses
626         where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
627             match clause {
628                 ast::WherePredicate::BoundPredicate(wb) => {
629                     let span = wb.span.with_ctxt(ctxt);
630                     ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate {
631                         span,
632                         ..wb.clone()
633                     })
634                 }
635                 ast::WherePredicate::RegionPredicate(wr) => {
636                     let span = wr.span.with_ctxt(ctxt);
637                     ast::WherePredicate::RegionPredicate(ast::WhereRegionPredicate {
638                         span,
639                         ..wr.clone()
640                     })
641                 }
642                 ast::WherePredicate::EqPredicate(we) => {
643                     let span = we.span.with_ctxt(ctxt);
644                     ast::WherePredicate::EqPredicate(ast::WhereEqPredicate { span, ..we.clone() })
645                 }
646             }
647         }));
648
649         {
650             // Extra scope required here so ty_params goes out of scope before params is moved
651
652             let mut ty_params = params
653                 .iter()
654                 .filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
655                 .peekable();
656
657             if ty_params.peek().is_some() {
658                 let ty_param_names: Vec<Symbol> =
659                     ty_params.map(|ty_param| ty_param.ident.name).collect();
660
661                 for field_ty in field_tys {
662                     let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
663
664                     for field_ty_param in field_ty_params {
665                         // if we have already handled this type, skip it
666                         if let ast::TyKind::Path(_, ref p) = field_ty_param.ty.kind {
667                             if p.segments.len() == 1
668                                 && ty_param_names.contains(&p.segments[0].ident.name)
669                             {
670                                 continue;
671                             };
672                         }
673                         let mut bounds: Vec<_> = self
674                             .additional_bounds
675                             .iter()
676                             .map(|p| cx.trait_bound(p.to_path(cx, self.span, type_ident, generics)))
677                             .collect();
678
679                         // require the current trait
680                         bounds.push(cx.trait_bound(trait_path.clone()));
681
682                         let predicate = ast::WhereBoundPredicate {
683                             span: self.span,
684                             bound_generic_params: field_ty_param.bound_generic_params,
685                             bounded_ty: field_ty_param.ty,
686                             bounds,
687                         };
688
689                         let predicate = ast::WherePredicate::BoundPredicate(predicate);
690                         where_clause.predicates.push(predicate);
691                     }
692                 }
693             }
694         }
695
696         let trait_generics = Generics { params, where_clause, span };
697
698         // Create the reference to the trait.
699         let trait_ref = cx.trait_ref(trait_path);
700
701         let self_params: Vec<_> = generics
702             .params
703             .iter()
704             .map(|param| match param.kind {
705                 GenericParamKind::Lifetime { .. } => {
706                     GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
707                 }
708                 GenericParamKind::Type { .. } => {
709                     GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
710                 }
711                 GenericParamKind::Const { .. } => {
712                     GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
713                 }
714             })
715             .collect();
716
717         // Create the type of `self`.
718         let path = cx.path_all(self.span, false, vec![type_ident], self_params);
719         let self_type = cx.ty_path(path);
720
721         let attr = cx.attr_word(sym::automatically_derived, self.span);
722         let attrs = thin_vec![attr];
723         let opt_trait_ref = Some(trait_ref);
724
725         cx.item(
726             self.span,
727             Ident::empty(),
728             attrs,
729             ast::ItemKind::Impl(Box::new(ast::Impl {
730                 unsafety: ast::Unsafe::No,
731                 polarity: ast::ImplPolarity::Positive,
732                 defaultness: ast::Defaultness::Final,
733                 constness: if self.is_const { ast::Const::Yes(DUMMY_SP) } else { ast::Const::No },
734                 generics: trait_generics,
735                 of_trait: opt_trait_ref,
736                 self_ty: self_type,
737                 items: methods.into_iter().chain(associated_types).collect(),
738             })),
739         )
740     }
741
742     fn expand_struct_def(
743         &self,
744         cx: &mut ExtCtxt<'_>,
745         struct_def: &'a VariantData,
746         type_ident: Ident,
747         generics: &Generics,
748         from_scratch: bool,
749         copy_fields: bool,
750     ) -> P<ast::Item> {
751         let field_tys: Vec<P<ast::Ty>> =
752             struct_def.fields().iter().map(|field| field.ty.clone()).collect();
753
754         let methods = self
755             .methods
756             .iter()
757             .map(|method_def| {
758                 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
759                     method_def.extract_arg_details(cx, self, type_ident, generics);
760
761                 let body = if from_scratch || method_def.is_static() {
762                     method_def.expand_static_struct_method_body(
763                         cx,
764                         self,
765                         struct_def,
766                         type_ident,
767                         &nonselflike_args,
768                     )
769                 } else {
770                     method_def.expand_struct_method_body(
771                         cx,
772                         self,
773                         struct_def,
774                         type_ident,
775                         &selflike_args,
776                         &nonselflike_args,
777                         copy_fields,
778                     )
779                 };
780
781                 method_def.create_method(
782                     cx,
783                     self,
784                     type_ident,
785                     generics,
786                     explicit_self,
787                     nonself_arg_tys,
788                     body,
789                 )
790             })
791             .collect();
792
793         self.create_derived_impl(cx, type_ident, generics, field_tys, methods)
794     }
795
796     fn expand_enum_def(
797         &self,
798         cx: &mut ExtCtxt<'_>,
799         enum_def: &'a EnumDef,
800         type_ident: Ident,
801         generics: &Generics,
802         from_scratch: bool,
803     ) -> P<ast::Item> {
804         let mut field_tys = Vec::new();
805
806         for variant in &enum_def.variants {
807             field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
808         }
809
810         let methods = self
811             .methods
812             .iter()
813             .map(|method_def| {
814                 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
815                     method_def.extract_arg_details(cx, self, type_ident, generics);
816
817                 let body = if from_scratch || method_def.is_static() {
818                     method_def.expand_static_enum_method_body(
819                         cx,
820                         self,
821                         enum_def,
822                         type_ident,
823                         &nonselflike_args,
824                     )
825                 } else {
826                     method_def.expand_enum_method_body(
827                         cx,
828                         self,
829                         enum_def,
830                         type_ident,
831                         selflike_args,
832                         &nonselflike_args,
833                     )
834                 };
835
836                 method_def.create_method(
837                     cx,
838                     self,
839                     type_ident,
840                     generics,
841                     explicit_self,
842                     nonself_arg_tys,
843                     body,
844                 )
845             })
846             .collect();
847
848         self.create_derived_impl(cx, type_ident, generics, field_tys, methods)
849     }
850 }
851
852 impl<'a> MethodDef<'a> {
853     fn call_substructure_method(
854         &self,
855         cx: &mut ExtCtxt<'_>,
856         trait_: &TraitDef<'_>,
857         type_ident: Ident,
858         nonselflike_args: &[P<Expr>],
859         fields: &SubstructureFields<'_>,
860     ) -> BlockOrExpr {
861         let span = trait_.span;
862         let substructure = Substructure { type_ident, nonselflike_args, fields };
863         let mut f = self.combine_substructure.borrow_mut();
864         let f: &mut CombineSubstructureFunc<'_> = &mut *f;
865         f(cx, span, &substructure)
866     }
867
868     fn get_ret_ty(
869         &self,
870         cx: &mut ExtCtxt<'_>,
871         trait_: &TraitDef<'_>,
872         generics: &Generics,
873         type_ident: Ident,
874     ) -> P<ast::Ty> {
875         self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
876     }
877
878     fn is_static(&self) -> bool {
879         !self.explicit_self
880     }
881
882     // The return value includes:
883     // - explicit_self: The `&self` arg, if present.
884     // - selflike_args: Expressions for `&self` (if present) and also any other
885     //   args with the same type (e.g. the `other` arg in `PartialEq::eq`).
886     // - nonselflike_args: Expressions for all the remaining args.
887     // - nonself_arg_tys: Additional information about all the args other than
888     //   `&self`.
889     fn extract_arg_details(
890         &self,
891         cx: &mut ExtCtxt<'_>,
892         trait_: &TraitDef<'_>,
893         type_ident: Ident,
894         generics: &Generics,
895     ) -> (Option<ast::ExplicitSelf>, Vec<P<Expr>>, Vec<P<Expr>>, Vec<(Ident, P<ast::Ty>)>) {
896         let mut selflike_args = Vec::new();
897         let mut nonselflike_args = Vec::new();
898         let mut nonself_arg_tys = Vec::new();
899         let span = trait_.span;
900
901         let explicit_self = if self.explicit_self {
902             let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
903             selflike_args.push(self_expr);
904             Some(explicit_self)
905         } else {
906             None
907         };
908
909         for (ty, name) in self.nonself_args.iter() {
910             let ast_ty = ty.to_ty(cx, span, type_ident, generics);
911             let ident = Ident::new(*name, span);
912             nonself_arg_tys.push((ident, ast_ty));
913
914             let arg_expr = cx.expr_ident(span, ident);
915
916             match ty {
917                 // Selflike (`&Self`) arguments only occur in non-static methods.
918                 Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
919                 Self_ => cx.span_bug(span, "`Self` in non-return position"),
920                 _ => nonselflike_args.push(arg_expr),
921             }
922         }
923
924         (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
925     }
926
927     fn create_method(
928         &self,
929         cx: &mut ExtCtxt<'_>,
930         trait_: &TraitDef<'_>,
931         type_ident: Ident,
932         generics: &Generics,
933         explicit_self: Option<ast::ExplicitSelf>,
934         nonself_arg_tys: Vec<(Ident, P<ast::Ty>)>,
935         body: BlockOrExpr,
936     ) -> P<ast::AssocItem> {
937         let span = trait_.span;
938         // Create the generics that aren't for `Self`.
939         let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
940
941         let args = {
942             let self_arg = explicit_self.map(|explicit_self| {
943                 let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
944                 ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
945             });
946             let nonself_args =
947                 nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
948             self_arg.into_iter().chain(nonself_args).collect()
949         };
950
951         let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
952
953         let method_ident = Ident::new(self.name, span);
954         let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
955         let body_block = body.into_block(cx, span);
956
957         let trait_lo_sp = span.shrink_to_lo();
958
959         let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
960         let defaultness = ast::Defaultness::Final;
961
962         // Create the method.
963         P(ast::AssocItem {
964             id: ast::DUMMY_NODE_ID,
965             attrs: self.attributes.clone(),
966             span,
967             vis: ast::Visibility {
968                 span: trait_lo_sp,
969                 kind: ast::VisibilityKind::Inherited,
970                 tokens: None,
971             },
972             ident: method_ident,
973             kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
974                 defaultness,
975                 sig,
976                 generics: fn_generics,
977                 body: Some(body_block),
978             })),
979             tokens: None,
980         })
981     }
982
983     /// The normal case uses field access.
984     /// ```
985     /// #[derive(PartialEq)]
986     /// # struct Dummy;
987     /// struct A { x: u8, y: u8 }
988     ///
989     /// // equivalent to:
990     /// impl PartialEq for A {
991     ///     fn eq(&self, other: &A) -> bool {
992     ///         self.x == other.x && self.y == other.y
993     ///     }
994     /// }
995     /// ```
996     /// But if the struct is `repr(packed)`, we can't use something like
997     /// `&self.x` because that might cause an unaligned ref. So for any trait
998     /// method that takes a reference, if the struct impls `Copy` then we use a
999     /// local block to force a copy:
1000     /// ```
1001     /// # struct A { x: u8, y: u8 }
1002     /// impl PartialEq for A {
1003     ///     fn eq(&self, other: &A) -> bool {
1004     ///         // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
1005     ///         { self.x } == { other.y } && { self.y } == { other.y }
1006     ///     }
1007     /// }
1008     /// impl Hash for A {
1009     ///     fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
1010     ///         ::core::hash::Hash::hash(&{ self.x }, state);
1011     ///         ::core::hash::Hash::hash(&{ self.y }, state)
1012     ///     }
1013     /// }
1014     /// ```
1015     /// If the struct doesn't impl `Copy`, we use the normal `&self.x`. This
1016     /// only works if the fields match the alignment required by the
1017     /// `packed(N)` attribute. (We'll get errors later on if not.)
1018     fn expand_struct_method_body<'b>(
1019         &self,
1020         cx: &mut ExtCtxt<'_>,
1021         trait_: &TraitDef<'b>,
1022         struct_def: &'b VariantData,
1023         type_ident: Ident,
1024         selflike_args: &[P<Expr>],
1025         nonselflike_args: &[P<Expr>],
1026         copy_fields: bool,
1027     ) -> BlockOrExpr {
1028         assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
1029
1030         let selflike_fields =
1031             trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, copy_fields);
1032         self.call_substructure_method(
1033             cx,
1034             trait_,
1035             type_ident,
1036             nonselflike_args,
1037             &Struct(struct_def, selflike_fields),
1038         )
1039     }
1040
1041     fn expand_static_struct_method_body(
1042         &self,
1043         cx: &mut ExtCtxt<'_>,
1044         trait_: &TraitDef<'_>,
1045         struct_def: &VariantData,
1046         type_ident: Ident,
1047         nonselflike_args: &[P<Expr>],
1048     ) -> BlockOrExpr {
1049         let summary = trait_.summarise_struct(cx, struct_def);
1050
1051         self.call_substructure_method(
1052             cx,
1053             trait_,
1054             type_ident,
1055             nonselflike_args,
1056             &StaticStruct(struct_def, summary),
1057         )
1058     }
1059
1060     /// ```
1061     /// #[derive(PartialEq)]
1062     /// # struct Dummy;
1063     /// enum A {
1064     ///     A1,
1065     ///     A2(i32)
1066     /// }
1067     /// ```
1068     /// is equivalent to:
1069     /// ```
1070     /// #![feature(core_intrinsics)]
1071     /// enum A {
1072     ///     A1,
1073     ///     A2(i32)
1074     /// }
1075     /// impl ::core::cmp::PartialEq for A {
1076     ///     #[inline]
1077     ///     fn eq(&self, other: &A) -> bool {
1078     ///         let __self_tag = ::core::intrinsics::discriminant_value(self);
1079     ///         let __arg1_tag = ::core::intrinsics::discriminant_value(other);
1080     ///         __self_tag == __arg1_tag &&
1081     ///             match (self, other) {
1082     ///                 (A::A2(__self_0), A::A2(__arg1_0)) =>
1083     ///                     *__self_0 == *__arg1_0,
1084     ///                 _ => true,
1085     ///             }
1086     ///     }
1087     /// }
1088     /// ```
1089     /// Creates a tag check combined with a match for a tuple of all
1090     /// `selflike_args`, with an arm for each variant with fields, possibly an
1091     /// arm for each fieldless variant (if `!unify_fieldless_variants` is not
1092     /// true), and possibly a default arm.
1093     fn expand_enum_method_body<'b>(
1094         &self,
1095         cx: &mut ExtCtxt<'_>,
1096         trait_: &TraitDef<'b>,
1097         enum_def: &'b EnumDef,
1098         type_ident: Ident,
1099         selflike_args: Vec<P<Expr>>,
1100         nonselflike_args: &[P<Expr>],
1101     ) -> BlockOrExpr {
1102         let span = trait_.span;
1103         let variants = &enum_def.variants;
1104
1105         // Traits that unify fieldless variants always use the tag(s).
1106         let uses_tags = self.unify_fieldless_variants;
1107
1108         // There is no sensible code to be generated for *any* deriving on a
1109         // zero-variant enum. So we just generate a failing expression.
1110         if variants.is_empty() {
1111             return BlockOrExpr(vec![], Some(deriving::call_unreachable(cx, span)));
1112         }
1113
1114         let prefixes = iter::once("__self".to_string())
1115             .chain(
1116                 selflike_args
1117                     .iter()
1118                     .enumerate()
1119                     .skip(1)
1120                     .map(|(arg_count, _selflike_arg)| format!("__arg{}", arg_count)),
1121             )
1122             .collect::<Vec<String>>();
1123
1124         // Build a series of let statements mapping each selflike_arg
1125         // to its discriminant value.
1126         //
1127         // e.g. for `PartialEq::eq` builds two statements:
1128         // ```
1129         // let __self_tag = ::core::intrinsics::discriminant_value(self);
1130         // let __arg1_tag = ::core::intrinsics::discriminant_value(other);
1131         // ```
1132         let get_tag_pieces = |cx: &ExtCtxt<'_>| {
1133             let tag_idents: Vec<_> = prefixes
1134                 .iter()
1135                 .map(|name| Ident::from_str_and_span(&format!("{}_tag", name), span))
1136                 .collect();
1137
1138             let mut tag_exprs: Vec<_> = tag_idents
1139                 .iter()
1140                 .map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
1141                 .collect();
1142
1143             let self_expr = tag_exprs.remove(0);
1144             let other_selflike_exprs = tag_exprs;
1145             let tag_field = FieldInfo { span, name: None, self_expr, other_selflike_exprs };
1146
1147             let tag_let_stmts: Vec<_> = iter::zip(&tag_idents, &selflike_args)
1148                 .map(|(&ident, selflike_arg)| {
1149                     let variant_value = deriving::call_intrinsic(
1150                         cx,
1151                         span,
1152                         sym::discriminant_value,
1153                         vec![selflike_arg.clone()],
1154                     );
1155                     cx.stmt_let(span, false, ident, variant_value)
1156                 })
1157                 .collect();
1158
1159             (tag_field, tag_let_stmts)
1160         };
1161
1162         // There are some special cases involving fieldless enums where no
1163         // match is necessary.
1164         let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
1165         if all_fieldless {
1166             if uses_tags && variants.len() > 1 {
1167                 // If the type is fieldless and the trait uses the tag and
1168                 // there are multiple variants, we need just an operation on
1169                 // the tag(s).
1170                 let (tag_field, mut tag_let_stmts) = get_tag_pieces(cx);
1171                 let mut tag_check = self.call_substructure_method(
1172                     cx,
1173                     trait_,
1174                     type_ident,
1175                     nonselflike_args,
1176                     &EnumTag(tag_field, None),
1177                 );
1178                 tag_let_stmts.append(&mut tag_check.0);
1179                 return BlockOrExpr(tag_let_stmts, tag_check.1);
1180             }
1181
1182             if variants.len() == 1 {
1183                 // If there is a single variant, we don't need an operation on
1184                 // the tag(s). Just use the most degenerate result.
1185                 return self.call_substructure_method(
1186                     cx,
1187                     trait_,
1188                     type_ident,
1189                     nonselflike_args,
1190                     &EnumMatching(0, 1, &variants[0], Vec::new()),
1191                 );
1192             };
1193         }
1194
1195         // These arms are of the form:
1196         // (Variant1, Variant1, ...) => Body1
1197         // (Variant2, Variant2, ...) => Body2
1198         // ...
1199         // where each tuple has length = selflike_args.len()
1200         let mut match_arms: Vec<ast::Arm> = variants
1201             .iter()
1202             .enumerate()
1203             .filter(|&(_, v)| !(self.unify_fieldless_variants && v.data.fields().is_empty()))
1204             .map(|(index, variant)| {
1205                 // A single arm has form (&VariantK, &VariantK, ...) => BodyK
1206                 // (see "Final wrinkle" note below for why.)
1207
1208                 let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
1209
1210                 let sp = variant.span.with_ctxt(trait_.span.ctxt());
1211                 let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
1212                 let by_ref = ByRef::No; // because enums can't be repr(packed)
1213                 let mut subpats: Vec<_> = trait_.create_struct_patterns(
1214                     cx,
1215                     variant_path,
1216                     &variant.data,
1217                     &prefixes,
1218                     by_ref,
1219                 );
1220
1221                 // `(VariantK, VariantK, ...)` or just `VariantK`.
1222                 let single_pat = if subpats.len() == 1 {
1223                     subpats.pop().unwrap()
1224                 } else {
1225                     cx.pat_tuple(span, subpats)
1226                 };
1227
1228                 // For the BodyK, we need to delegate to our caller,
1229                 // passing it an EnumMatching to indicate which case
1230                 // we are in.
1231                 //
1232                 // Now, for some given VariantK, we have built up
1233                 // expressions for referencing every field of every
1234                 // Self arg, assuming all are instances of VariantK.
1235                 // Build up code associated with such a case.
1236                 let substructure = EnumMatching(index, variants.len(), variant, fields);
1237                 let arm_expr = self
1238                     .call_substructure_method(
1239                         cx,
1240                         trait_,
1241                         type_ident,
1242                         nonselflike_args,
1243                         &substructure,
1244                     )
1245                     .into_expr(cx, span);
1246
1247                 cx.arm(span, single_pat, arm_expr)
1248             })
1249             .collect();
1250
1251         // Add a default arm to the match, if necessary.
1252         let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
1253         let default = match first_fieldless {
1254             Some(v) if self.unify_fieldless_variants => {
1255                 // We need a default case that handles all the fieldless
1256                 // variants. The index and actual variant aren't meaningful in
1257                 // this case, so just use dummy values.
1258                 Some(
1259                     self.call_substructure_method(
1260                         cx,
1261                         trait_,
1262                         type_ident,
1263                         nonselflike_args,
1264                         &EnumMatching(0, variants.len(), v, Vec::new()),
1265                     )
1266                     .into_expr(cx, span),
1267                 )
1268             }
1269             _ if variants.len() > 1 && selflike_args.len() > 1 => {
1270                 // Because we know that all the arguments will match if we reach
1271                 // the match expression we add the unreachable intrinsics as the
1272                 // result of the default which should help llvm in optimizing it.
1273                 Some(deriving::call_unreachable(cx, span))
1274             }
1275             _ => None,
1276         };
1277         if let Some(arm) = default {
1278             match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
1279         }
1280
1281         // Create a match expression with one arm per discriminant plus
1282         // possibly a default arm, e.g.:
1283         //      match (self, other) {
1284         //          (Variant1, Variant1, ...) => Body1
1285         //          (Variant2, Variant2, ...) => Body2,
1286         //          ...
1287         //          _ => ::core::intrinsics::unreachable()
1288         //      }
1289         let get_match_expr = |mut selflike_args: Vec<P<Expr>>| {
1290             let match_arg = if selflike_args.len() == 1 {
1291                 selflike_args.pop().unwrap()
1292             } else {
1293                 cx.expr(span, ast::ExprKind::Tup(selflike_args))
1294             };
1295             cx.expr_match(span, match_arg, match_arms)
1296         };
1297
1298         // If the trait uses the tag and there are multiple variants, we need
1299         // to add a tag check operation before the match. Otherwise, the match
1300         // is enough.
1301         if uses_tags && variants.len() > 1 {
1302             let (tag_field, mut tag_let_stmts) = get_tag_pieces(cx);
1303
1304             // Combine a tag check with the match.
1305             let mut tag_check_plus_match = self.call_substructure_method(
1306                 cx,
1307                 trait_,
1308                 type_ident,
1309                 nonselflike_args,
1310                 &EnumTag(tag_field, Some(get_match_expr(selflike_args))),
1311             );
1312             tag_let_stmts.append(&mut tag_check_plus_match.0);
1313             BlockOrExpr(tag_let_stmts, tag_check_plus_match.1)
1314         } else {
1315             BlockOrExpr(vec![], Some(get_match_expr(selflike_args)))
1316         }
1317     }
1318
1319     fn expand_static_enum_method_body(
1320         &self,
1321         cx: &mut ExtCtxt<'_>,
1322         trait_: &TraitDef<'_>,
1323         enum_def: &EnumDef,
1324         type_ident: Ident,
1325         nonselflike_args: &[P<Expr>],
1326     ) -> BlockOrExpr {
1327         let summary = enum_def
1328             .variants
1329             .iter()
1330             .map(|v| {
1331                 let sp = v.span.with_ctxt(trait_.span.ctxt());
1332                 let summary = trait_.summarise_struct(cx, &v.data);
1333                 (v.ident, sp, summary)
1334             })
1335             .collect();
1336         self.call_substructure_method(
1337             cx,
1338             trait_,
1339             type_ident,
1340             nonselflike_args,
1341             &StaticEnum(enum_def, summary),
1342         )
1343     }
1344 }
1345
1346 // general helper methods.
1347 impl<'a> TraitDef<'a> {
1348     fn summarise_struct(&self, cx: &mut ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
1349         let mut named_idents = Vec::new();
1350         let mut just_spans = Vec::new();
1351         for field in struct_def.fields() {
1352             let sp = field.span.with_ctxt(self.span.ctxt());
1353             match field.ident {
1354                 Some(ident) => named_idents.push((ident, sp)),
1355                 _ => just_spans.push(sp),
1356             }
1357         }
1358
1359         let is_tuple = matches!(struct_def, ast::VariantData::Tuple(..));
1360         match (just_spans.is_empty(), named_idents.is_empty()) {
1361             (false, false) => {
1362                 cx.span_bug(self.span, "a struct with named and unnamed fields in generic `derive`")
1363             }
1364             // named fields
1365             (_, false) => Named(named_idents),
1366             // unnamed fields
1367             (false, _) => Unnamed(just_spans, is_tuple),
1368             // empty
1369             _ => Named(Vec::new()),
1370         }
1371     }
1372
1373     fn create_struct_patterns(
1374         &self,
1375         cx: &mut ExtCtxt<'_>,
1376         struct_path: ast::Path,
1377         struct_def: &'a VariantData,
1378         prefixes: &[String],
1379         by_ref: ByRef,
1380     ) -> Vec<P<ast::Pat>> {
1381         prefixes
1382             .iter()
1383             .map(|prefix| {
1384                 let pieces_iter =
1385                     struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
1386                         let sp = struct_field.span.with_ctxt(self.span.ctxt());
1387                         let ident = self.mk_pattern_ident(prefix, i);
1388                         let path = ident.with_span_pos(sp);
1389                         (
1390                             sp,
1391                             struct_field.ident,
1392                             cx.pat(
1393                                 path.span,
1394                                 PatKind::Ident(
1395                                     BindingAnnotation(by_ref, Mutability::Not),
1396                                     path,
1397                                     None,
1398                                 ),
1399                             ),
1400                         )
1401                     });
1402
1403                 let struct_path = struct_path.clone();
1404                 match *struct_def {
1405                     VariantData::Struct(..) => {
1406                         let field_pats = pieces_iter
1407                             .map(|(sp, ident, pat)| {
1408                                 if ident.is_none() {
1409                                     cx.span_bug(
1410                                         sp,
1411                                         "a braced struct with unnamed fields in `derive`",
1412                                     );
1413                                 }
1414                                 ast::PatField {
1415                                     ident: ident.unwrap(),
1416                                     is_shorthand: false,
1417                                     attrs: ast::AttrVec::new(),
1418                                     id: ast::DUMMY_NODE_ID,
1419                                     span: pat.span.with_ctxt(self.span.ctxt()),
1420                                     pat,
1421                                     is_placeholder: false,
1422                                 }
1423                             })
1424                             .collect();
1425                         cx.pat_struct(self.span, struct_path, field_pats)
1426                     }
1427                     VariantData::Tuple(..) => {
1428                         let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
1429                         cx.pat_tuple_struct(self.span, struct_path, subpats)
1430                     }
1431                     VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
1432                 }
1433             })
1434             .collect()
1435     }
1436
1437     fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
1438     where
1439         F: Fn(usize, &ast::FieldDef, Span) -> Vec<P<ast::Expr>>,
1440     {
1441         struct_def
1442             .fields()
1443             .iter()
1444             .enumerate()
1445             .map(|(i, struct_field)| {
1446                 // For this field, get an expr for each selflike_arg. E.g. for
1447                 // `PartialEq::eq`, one for each of `&self` and `other`.
1448                 let sp = struct_field.span.with_ctxt(self.span.ctxt());
1449                 let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
1450                 let self_expr = exprs.remove(0);
1451                 let other_selflike_exprs = exprs;
1452                 FieldInfo {
1453                     span: sp.with_ctxt(self.span.ctxt()),
1454                     name: struct_field.ident,
1455                     self_expr,
1456                     other_selflike_exprs,
1457                 }
1458             })
1459             .collect()
1460     }
1461
1462     fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
1463         Ident::from_str_and_span(&format!("{}_{}", prefix, i), self.span)
1464     }
1465
1466     fn create_struct_pattern_fields(
1467         &self,
1468         cx: &mut ExtCtxt<'_>,
1469         struct_def: &'a VariantData,
1470         prefixes: &[String],
1471     ) -> Vec<FieldInfo> {
1472         self.create_fields(struct_def, |i, _struct_field, sp| {
1473             prefixes
1474                 .iter()
1475                 .map(|prefix| {
1476                     let ident = self.mk_pattern_ident(prefix, i);
1477                     cx.expr_path(cx.path_ident(sp, ident))
1478                 })
1479                 .collect()
1480         })
1481     }
1482
1483     fn create_struct_field_access_fields(
1484         &self,
1485         cx: &mut ExtCtxt<'_>,
1486         selflike_args: &[P<Expr>],
1487         struct_def: &'a VariantData,
1488         copy_fields: bool,
1489     ) -> Vec<FieldInfo> {
1490         self.create_fields(struct_def, |i, struct_field, sp| {
1491             selflike_args
1492                 .iter()
1493                 .map(|selflike_arg| {
1494                     // Note: we must use `struct_field.span` rather than `sp` in the
1495                     // `unwrap_or_else` case otherwise the hygiene is wrong and we get
1496                     // "field `0` of struct `Point` is private" errors on tuple
1497                     // structs.
1498                     let mut field_expr = cx.expr(
1499                         sp,
1500                         ast::ExprKind::Field(
1501                             selflike_arg.clone(),
1502                             struct_field.ident.unwrap_or_else(|| {
1503                                 Ident::from_str_and_span(&i.to_string(), struct_field.span)
1504                             }),
1505                         ),
1506                     );
1507                     if copy_fields {
1508                         field_expr = cx.expr_block(
1509                             cx.block(struct_field.span, vec![cx.stmt_expr(field_expr)]),
1510                         );
1511                     }
1512                     cx.expr_addr_of(sp, field_expr)
1513                 })
1514                 .collect()
1515         })
1516     }
1517 }
1518
1519 /// The function passed to `cs_fold` is called repeatedly with a value of this
1520 /// type. It describes one part of the code generation. The result is always an
1521 /// expression.
1522 pub enum CsFold<'a> {
1523     /// The basic case: a field expression for one or more selflike args. E.g.
1524     /// for `PartialEq::eq` this is something like `self.x == other.x`.
1525     Single(&'a FieldInfo),
1526
1527     /// The combination of two field expressions. E.g. for `PartialEq::eq` this
1528     /// is something like `<field1 equality> && <field2 equality>`.
1529     Combine(Span, P<Expr>, P<Expr>),
1530
1531     // The fallback case for a struct or enum variant with no fields.
1532     Fieldless,
1533 }
1534
1535 /// Folds over fields, combining the expressions for each field in a sequence.
1536 /// Statics may not be folded over.
1537 pub fn cs_fold<F>(
1538     use_foldl: bool,
1539     cx: &mut ExtCtxt<'_>,
1540     trait_span: Span,
1541     substructure: &Substructure<'_>,
1542     mut f: F,
1543 ) -> P<Expr>
1544 where
1545     F: FnMut(&mut ExtCtxt<'_>, CsFold<'_>) -> P<Expr>,
1546 {
1547     match substructure.fields {
1548         EnumMatching(.., all_fields) | Struct(_, all_fields) => {
1549             if all_fields.is_empty() {
1550                 return f(cx, CsFold::Fieldless);
1551             }
1552
1553             let (base_field, rest) = if use_foldl {
1554                 all_fields.split_first().unwrap()
1555             } else {
1556                 all_fields.split_last().unwrap()
1557             };
1558
1559             let base_expr = f(cx, CsFold::Single(base_field));
1560
1561             let op = |old, field: &FieldInfo| {
1562                 let new = f(cx, CsFold::Single(field));
1563                 f(cx, CsFold::Combine(field.span, old, new))
1564             };
1565
1566             if use_foldl {
1567                 rest.iter().fold(base_expr, op)
1568             } else {
1569                 rest.iter().rfold(base_expr, op)
1570             }
1571         }
1572         EnumTag(tag_field, match_expr) => {
1573             let tag_check_expr = f(cx, CsFold::Single(tag_field));
1574             if let Some(match_expr) = match_expr {
1575                 if use_foldl {
1576                     f(cx, CsFold::Combine(trait_span, tag_check_expr, match_expr.clone()))
1577                 } else {
1578                     f(cx, CsFold::Combine(trait_span, match_expr.clone(), tag_check_expr))
1579                 }
1580             } else {
1581                 tag_check_expr
1582             }
1583         }
1584         StaticEnum(..) | StaticStruct(..) => cx.span_bug(trait_span, "static function in `derive`"),
1585     }
1586 }