]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_borrowck/src/type_check/mod.rs
Remove in_band_lifetimes from borrowck
[rust.git] / compiler / rustc_borrowck / src / type_check / mod.rs
1 //! This pass type-checks the MIR to ensure it is not broken.
2
3 use std::rc::Rc;
4 use std::{fmt, iter, mem};
5
6 use either::Either;
7
8 use rustc_data_structures::frozen::Frozen;
9 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
10 use rustc_data_structures::vec_map::VecMap;
11 use rustc_errors::struct_span_err;
12 use rustc_hir as hir;
13 use rustc_hir::def::DefKind;
14 use rustc_hir::def_id::LocalDefId;
15 use rustc_hir::lang_items::LangItem;
16 use rustc_index::vec::{Idx, IndexVec};
17 use rustc_infer::infer::canonical::QueryRegionConstraints;
18 use rustc_infer::infer::opaque_types::OpaqueTypeDecl;
19 use rustc_infer::infer::outlives::env::RegionBoundPairs;
20 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
21 use rustc_infer::infer::{
22     InferCtxt, InferOk, LateBoundRegionConversionTime, NllRegionVariableOrigin,
23 };
24 use rustc_middle::mir::tcx::PlaceTy;
25 use rustc_middle::mir::visit::{NonMutatingUseContext, PlaceContext, Visitor};
26 use rustc_middle::mir::AssertKind;
27 use rustc_middle::mir::*;
28 use rustc_middle::ty::adjustment::PointerCast;
29 use rustc_middle::ty::cast::CastTy;
30 use rustc_middle::ty::fold::TypeFoldable;
31 use rustc_middle::ty::subst::{GenericArgKind, SubstsRef, UserSubsts};
32 use rustc_middle::ty::{
33     self, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, OpaqueTypeKey, RegionVid,
34     ToPredicate, Ty, TyCtxt, UserType, UserTypeAnnotationIndex,
35 };
36 use rustc_span::def_id::CRATE_DEF_ID;
37 use rustc_span::{Span, DUMMY_SP};
38 use rustc_target::abi::VariantIdx;
39 use rustc_trait_selection::infer::InferCtxtExt as _;
40 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
41 use rustc_trait_selection::traits::query::type_op;
42 use rustc_trait_selection::traits::query::type_op::custom::CustomTypeOp;
43 use rustc_trait_selection::traits::query::Fallible;
44 use rustc_trait_selection::traits::{self, ObligationCause, PredicateObligations};
45
46 use rustc_const_eval::transform::{
47     check_consts::ConstCx, promote_consts::is_const_fn_in_array_repeat_expression,
48 };
49 use rustc_mir_dataflow::impls::MaybeInitializedPlaces;
50 use rustc_mir_dataflow::move_paths::MoveData;
51 use rustc_mir_dataflow::ResultsCursor;
52
53 use crate::{
54     borrow_set::BorrowSet,
55     constraints::{OutlivesConstraint, OutlivesConstraintSet},
56     diagnostics::UniverseInfo,
57     facts::AllFacts,
58     location::LocationTable,
59     member_constraints::MemberConstraintSet,
60     nll::ToRegionVid,
61     path_utils,
62     region_infer::values::{
63         LivenessValues, PlaceholderIndex, PlaceholderIndices, RegionValueElements,
64     },
65     region_infer::{ClosureRegionRequirementsExt, TypeTest},
66     type_check::free_region_relations::{CreateResult, UniversalRegionRelations},
67     universal_regions::{DefiningTy, UniversalRegions},
68     Upvar,
69 };
70
71 macro_rules! span_mirbug {
72     ($context:expr, $elem:expr, $($message:tt)*) => ({
73         $crate::type_check::mirbug(
74             $context.tcx(),
75             $context.last_span,
76             &format!(
77                 "broken MIR in {:?} ({:?}): {}",
78                 $context.body.source.def_id(),
79                 $elem,
80                 format_args!($($message)*),
81             ),
82         )
83     })
84 }
85
86 macro_rules! span_mirbug_and_err {
87     ($context:expr, $elem:expr, $($message:tt)*) => ({
88         {
89             span_mirbug!($context, $elem, $($message)*);
90             $context.error()
91         }
92     })
93 }
94
95 mod canonical;
96 mod constraint_conversion;
97 pub mod free_region_relations;
98 mod input_output;
99 crate mod liveness;
100 mod relate_tys;
101
102 /// Type checks the given `mir` in the context of the inference
103 /// context `infcx`. Returns any region constraints that have yet to
104 /// be proven. This result includes liveness constraints that
105 /// ensure that regions appearing in the types of all local variables
106 /// are live at all points where that local variable may later be
107 /// used.
108 ///
109 /// This phase of type-check ought to be infallible -- this is because
110 /// the original, HIR-based type-check succeeded. So if any errors
111 /// occur here, we will get a `bug!` reported.
112 ///
113 /// # Parameters
114 ///
115 /// - `infcx` -- inference context to use
116 /// - `param_env` -- parameter environment to use for trait solving
117 /// - `body` -- MIR body to type-check
118 /// - `promoted` -- map of promoted constants within `body`
119 /// - `universal_regions` -- the universal regions from `body`s function signature
120 /// - `location_table` -- MIR location map of `body`
121 /// - `borrow_set` -- information about borrows occurring in `body`
122 /// - `all_facts` -- when using Polonius, this is the generated set of Polonius facts
123 /// - `flow_inits` -- results of a maybe-init dataflow analysis
124 /// - `move_data` -- move-data constructed when performing the maybe-init dataflow analysis
125 /// - `elements` -- MIR region map
126 pub(crate) fn type_check<'mir, 'tcx>(
127     infcx: &InferCtxt<'_, 'tcx>,
128     param_env: ty::ParamEnv<'tcx>,
129     body: &Body<'tcx>,
130     promoted: &IndexVec<Promoted, Body<'tcx>>,
131     universal_regions: &Rc<UniversalRegions<'tcx>>,
132     location_table: &LocationTable,
133     borrow_set: &BorrowSet<'tcx>,
134     all_facts: &mut Option<AllFacts>,
135     flow_inits: &mut ResultsCursor<'mir, 'tcx, MaybeInitializedPlaces<'mir, 'tcx>>,
136     move_data: &MoveData<'tcx>,
137     elements: &Rc<RegionValueElements>,
138     upvars: &[Upvar<'tcx>],
139 ) -> MirTypeckResults<'tcx> {
140     let implicit_region_bound = infcx.tcx.mk_region(ty::ReVar(universal_regions.fr_fn_body));
141     let mut universe_causes = FxHashMap::default();
142     universe_causes.insert(ty::UniverseIndex::from_u32(0), UniverseInfo::other());
143     let mut constraints = MirTypeckRegionConstraints {
144         placeholder_indices: PlaceholderIndices::default(),
145         placeholder_index_to_region: IndexVec::default(),
146         liveness_constraints: LivenessValues::new(elements.clone()),
147         outlives_constraints: OutlivesConstraintSet::default(),
148         member_constraints: MemberConstraintSet::default(),
149         closure_bounds_mapping: Default::default(),
150         type_tests: Vec::default(),
151         universe_causes,
152     };
153
154     let CreateResult {
155         universal_region_relations,
156         region_bound_pairs,
157         normalized_inputs_and_output,
158     } = free_region_relations::create(
159         infcx,
160         param_env,
161         Some(implicit_region_bound),
162         universal_regions,
163         &mut constraints,
164     );
165
166     for u in ty::UniverseIndex::ROOT..infcx.universe() {
167         let info = UniverseInfo::other();
168         constraints.universe_causes.insert(u, info);
169     }
170
171     let mut borrowck_context = BorrowCheckContext {
172         universal_regions,
173         location_table,
174         borrow_set,
175         all_facts,
176         constraints: &mut constraints,
177         upvars,
178     };
179
180     let opaque_type_values = type_check_internal(
181         infcx,
182         param_env,
183         body,
184         promoted,
185         &region_bound_pairs,
186         implicit_region_bound,
187         &mut borrowck_context,
188         |mut cx| {
189             cx.equate_inputs_and_outputs(&body, universal_regions, &normalized_inputs_and_output);
190             liveness::generate(&mut cx, body, elements, flow_inits, move_data, location_table);
191
192             translate_outlives_facts(&mut cx);
193             let opaque_type_values = mem::take(&mut infcx.inner.borrow_mut().opaque_types);
194
195             opaque_type_values
196                 .into_iter()
197                 .filter_map(|(opaque_type_key, mut decl)| {
198                     decl.concrete_ty = infcx.resolve_vars_if_possible(decl.concrete_ty);
199                     trace!(
200                         "finalized opaque type {:?} to {:#?}",
201                         opaque_type_key,
202                         decl.concrete_ty.kind()
203                     );
204                     if decl.concrete_ty.has_infer_types_or_consts() {
205                         infcx.tcx.sess.delay_span_bug(
206                             body.span,
207                             &format!("could not resolve {:#?}", decl.concrete_ty.kind()),
208                         );
209                         decl.concrete_ty = infcx.tcx.ty_error();
210                     }
211                     let concrete_is_opaque = if let ty::Opaque(def_id, _) = decl.concrete_ty.kind()
212                     {
213                         *def_id == opaque_type_key.def_id
214                     } else {
215                         false
216                     };
217
218                     if concrete_is_opaque {
219                         // We're using an opaque `impl Trait` type without
220                         // 'revealing' it. For example, code like this:
221                         //
222                         // type Foo = impl Debug;
223                         // fn foo1() -> Foo { ... }
224                         // fn foo2() -> Foo { foo1() }
225                         //
226                         // In `foo2`, we're not revealing the type of `Foo` - we're
227                         // just treating it as the opaque type.
228                         //
229                         // When this occurs, we do *not* want to try to equate
230                         // the concrete type with the underlying defining type
231                         // of the opaque type - this will always fail, since
232                         // the defining type of an opaque type is always
233                         // some other type (e.g. not itself)
234                         // Essentially, none of the normal obligations apply here -
235                         // we're just passing around some unknown opaque type,
236                         // without actually looking at the underlying type it
237                         // gets 'revealed' into
238                         debug!(
239                             "eq_opaque_type_and_type: non-defining use of {:?}",
240                             opaque_type_key.def_id,
241                         );
242                         None
243                     } else {
244                         Some((opaque_type_key, decl))
245                     }
246                 })
247                 .collect()
248         },
249     );
250
251     MirTypeckResults { constraints, universal_region_relations, opaque_type_values }
252 }
253
254 #[instrument(
255     skip(infcx, body, promoted, region_bound_pairs, borrowck_context, extra),
256     level = "debug"
257 )]
258 fn type_check_internal<'a, 'tcx, R>(
259     infcx: &'a InferCtxt<'a, 'tcx>,
260     param_env: ty::ParamEnv<'tcx>,
261     body: &'a Body<'tcx>,
262     promoted: &'a IndexVec<Promoted, Body<'tcx>>,
263     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
264     implicit_region_bound: ty::Region<'tcx>,
265     borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
266     extra: impl FnOnce(TypeChecker<'a, 'tcx>) -> R,
267 ) -> R {
268     let mut checker = TypeChecker::new(
269         infcx,
270         body,
271         param_env,
272         region_bound_pairs,
273         implicit_region_bound,
274         borrowck_context,
275     );
276     let errors_reported = {
277         let mut verifier = TypeVerifier::new(&mut checker, body, promoted);
278         verifier.visit_body(&body);
279         verifier.errors_reported
280     };
281
282     if !errors_reported {
283         // if verifier failed, don't do further checks to avoid ICEs
284         checker.typeck_mir(body);
285     }
286
287     extra(checker)
288 }
289
290 fn translate_outlives_facts(typeck: &mut TypeChecker<'_, '_>) {
291     let cx = &mut typeck.borrowck_context;
292     if let Some(facts) = cx.all_facts {
293         let _prof_timer = typeck.infcx.tcx.prof.generic_activity("polonius_fact_generation");
294         let location_table = cx.location_table;
295         facts.subset_base.extend(cx.constraints.outlives_constraints.outlives().iter().flat_map(
296             |constraint: &OutlivesConstraint<'_>| {
297                 if let Some(from_location) = constraint.locations.from_location() {
298                     Either::Left(iter::once((
299                         constraint.sup,
300                         constraint.sub,
301                         location_table.mid_index(from_location),
302                     )))
303                 } else {
304                     Either::Right(
305                         location_table
306                             .all_points()
307                             .map(move |location| (constraint.sup, constraint.sub, location)),
308                     )
309                 }
310             },
311         ));
312     }
313 }
314
315 fn mirbug(tcx: TyCtxt<'_>, span: Span, msg: &str) {
316     // We sometimes see MIR failures (notably predicate failures) due to
317     // the fact that we check rvalue sized predicates here. So use `delay_span_bug`
318     // to avoid reporting bugs in those cases.
319     tcx.sess.diagnostic().delay_span_bug(span, msg);
320 }
321
322 enum FieldAccessError {
323     OutOfRange { field_count: usize },
324 }
325
326 /// Verifies that MIR types are sane to not crash further checks.
327 ///
328 /// The sanitize_XYZ methods here take an MIR object and compute its
329 /// type, calling `span_mirbug` and returning an error type if there
330 /// is a problem.
331 struct TypeVerifier<'a, 'b, 'tcx> {
332     cx: &'a mut TypeChecker<'b, 'tcx>,
333     body: &'b Body<'tcx>,
334     promoted: &'b IndexVec<Promoted, Body<'tcx>>,
335     last_span: Span,
336     errors_reported: bool,
337 }
338
339 impl<'a, 'b, 'tcx> Visitor<'tcx> for TypeVerifier<'a, 'b, 'tcx> {
340     fn visit_span(&mut self, span: &Span) {
341         if !span.is_dummy() {
342             self.last_span = *span;
343         }
344     }
345
346     fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
347         self.sanitize_place(place, location, context);
348     }
349
350     fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
351         self.super_constant(constant, location);
352         let ty = self.sanitize_type(constant, constant.literal.ty());
353
354         self.cx.infcx.tcx.for_each_free_region(&ty, |live_region| {
355             let live_region_vid =
356                 self.cx.borrowck_context.universal_regions.to_region_vid(live_region);
357             self.cx
358                 .borrowck_context
359                 .constraints
360                 .liveness_constraints
361                 .add_element(live_region_vid, location);
362         });
363
364         if let Some(annotation_index) = constant.user_ty {
365             if let Err(terr) = self.cx.relate_type_and_user_type(
366                 constant.literal.ty(),
367                 ty::Variance::Invariant,
368                 &UserTypeProjection { base: annotation_index, projs: vec![] },
369                 location.to_locations(),
370                 ConstraintCategory::Boring,
371             ) {
372                 let annotation = &self.cx.user_type_annotations[annotation_index];
373                 span_mirbug!(
374                     self,
375                     constant,
376                     "bad constant user type {:?} vs {:?}: {:?}",
377                     annotation,
378                     constant.literal.ty(),
379                     terr,
380                 );
381             }
382         } else {
383             let tcx = self.tcx();
384             let maybe_uneval = match constant.literal {
385                 ConstantKind::Ty(ct) => match ct.val {
386                     ty::ConstKind::Unevaluated(uv) => Some(uv),
387                     _ => None,
388                 },
389                 _ => None,
390             };
391             if let Some(uv) = maybe_uneval {
392                 if let Some(promoted) = uv.promoted {
393                     let check_err = |verifier: &mut TypeVerifier<'a, 'b, 'tcx>,
394                                      promoted: &Body<'tcx>,
395                                      ty,
396                                      san_ty| {
397                         if let Err(terr) = verifier.cx.eq_types(
398                             ty,
399                             san_ty,
400                             location.to_locations(),
401                             ConstraintCategory::Boring,
402                         ) {
403                             span_mirbug!(
404                                 verifier,
405                                 promoted,
406                                 "bad promoted type ({:?}: {:?}): {:?}",
407                                 ty,
408                                 san_ty,
409                                 terr
410                             );
411                         };
412                     };
413
414                     if !self.errors_reported {
415                         let promoted_body = &self.promoted[promoted];
416                         self.sanitize_promoted(promoted_body, location);
417
418                         let promoted_ty = promoted_body.return_ty();
419                         check_err(self, promoted_body, ty, promoted_ty);
420                     }
421                 } else {
422                     if let Err(terr) = self.cx.fully_perform_op(
423                         location.to_locations(),
424                         ConstraintCategory::Boring,
425                         self.cx.param_env.and(type_op::ascribe_user_type::AscribeUserType::new(
426                             constant.literal.ty(),
427                             uv.def.did,
428                             UserSubsts { substs: uv.substs(self.tcx()), user_self_ty: None },
429                         )),
430                     ) {
431                         span_mirbug!(
432                             self,
433                             constant,
434                             "bad constant type {:?} ({:?})",
435                             constant,
436                             terr
437                         );
438                     }
439                 }
440             } else if let Some(static_def_id) = constant.check_static_ptr(tcx) {
441                 let unnormalized_ty = tcx.type_of(static_def_id);
442                 let locations = location.to_locations();
443                 let normalized_ty = self.cx.normalize(unnormalized_ty, locations);
444                 let literal_ty = constant.literal.ty().builtin_deref(true).unwrap().ty;
445
446                 if let Err(terr) = self.cx.eq_types(
447                     literal_ty,
448                     normalized_ty,
449                     locations,
450                     ConstraintCategory::Boring,
451                 ) {
452                     span_mirbug!(self, constant, "bad static type {:?} ({:?})", constant, terr);
453                 }
454             }
455
456             if let ty::FnDef(def_id, substs) = *constant.literal.ty().kind() {
457                 let instantiated_predicates = tcx.predicates_of(def_id).instantiate(tcx, substs);
458                 self.cx.normalize_and_prove_instantiated_predicates(
459                     def_id,
460                     instantiated_predicates,
461                     location.to_locations(),
462                 );
463             }
464         }
465     }
466
467     fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
468         self.super_rvalue(rvalue, location);
469         let rval_ty = rvalue.ty(self.body, self.tcx());
470         self.sanitize_type(rvalue, rval_ty);
471     }
472
473     fn visit_local_decl(&mut self, local: Local, local_decl: &LocalDecl<'tcx>) {
474         self.super_local_decl(local, local_decl);
475         self.sanitize_type(local_decl, local_decl.ty);
476
477         if let Some(user_ty) = &local_decl.user_ty {
478             for (user_ty, span) in user_ty.projections_and_spans() {
479                 let ty = if !local_decl.is_nonref_binding() {
480                     // If we have a binding of the form `let ref x: T = ..`
481                     // then remove the outermost reference so we can check the
482                     // type annotation for the remaining type.
483                     if let ty::Ref(_, rty, _) = local_decl.ty.kind() {
484                         rty
485                     } else {
486                         bug!("{:?} with ref binding has wrong type {}", local, local_decl.ty);
487                     }
488                 } else {
489                     local_decl.ty
490                 };
491
492                 if let Err(terr) = self.cx.relate_type_and_user_type(
493                     ty,
494                     ty::Variance::Invariant,
495                     user_ty,
496                     Locations::All(*span),
497                     ConstraintCategory::TypeAnnotation,
498                 ) {
499                     span_mirbug!(
500                         self,
501                         local,
502                         "bad user type on variable {:?}: {:?} != {:?} ({:?})",
503                         local,
504                         local_decl.ty,
505                         local_decl.user_ty,
506                         terr,
507                     );
508                 }
509             }
510         }
511     }
512
513     fn visit_body(&mut self, body: &Body<'tcx>) {
514         self.sanitize_type(&"return type", body.return_ty());
515         for local_decl in &body.local_decls {
516             self.sanitize_type(local_decl, local_decl.ty);
517         }
518         if self.errors_reported {
519             return;
520         }
521         self.super_body(body);
522     }
523 }
524
525 impl<'a, 'b, 'tcx> TypeVerifier<'a, 'b, 'tcx> {
526     fn new(
527         cx: &'a mut TypeChecker<'b, 'tcx>,
528         body: &'b Body<'tcx>,
529         promoted: &'b IndexVec<Promoted, Body<'tcx>>,
530     ) -> Self {
531         TypeVerifier { body, promoted, cx, last_span: body.span, errors_reported: false }
532     }
533
534     fn tcx(&self) -> TyCtxt<'tcx> {
535         self.cx.infcx.tcx
536     }
537
538     fn sanitize_type(&mut self, parent: &dyn fmt::Debug, ty: Ty<'tcx>) -> Ty<'tcx> {
539         if ty.has_escaping_bound_vars() || ty.references_error() {
540             span_mirbug_and_err!(self, parent, "bad type {:?}", ty)
541         } else {
542             ty
543         }
544     }
545
546     /// Checks that the types internal to the `place` match up with
547     /// what would be expected.
548     fn sanitize_place(
549         &mut self,
550         place: &Place<'tcx>,
551         location: Location,
552         context: PlaceContext,
553     ) -> PlaceTy<'tcx> {
554         debug!("sanitize_place: {:?}", place);
555
556         let mut place_ty = PlaceTy::from_ty(self.body.local_decls[place.local].ty);
557
558         for elem in place.projection.iter() {
559             if place_ty.variant_index.is_none() {
560                 if place_ty.ty.references_error() {
561                     assert!(self.errors_reported);
562                     return PlaceTy::from_ty(self.tcx().ty_error());
563                 }
564             }
565             place_ty = self.sanitize_projection(place_ty, elem, place, location);
566         }
567
568         if let PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy) = context {
569             let tcx = self.tcx();
570             let trait_ref = ty::TraitRef {
571                 def_id: tcx.require_lang_item(LangItem::Copy, Some(self.last_span)),
572                 substs: tcx.mk_substs_trait(place_ty.ty, &[]),
573             };
574
575             // To have a `Copy` operand, the type `T` of the
576             // value must be `Copy`. Note that we prove that `T: Copy`,
577             // rather than using the `is_copy_modulo_regions`
578             // test. This is important because
579             // `is_copy_modulo_regions` ignores the resulting region
580             // obligations and assumes they pass. This can result in
581             // bounds from `Copy` impls being unsoundly ignored (e.g.,
582             // #29149). Note that we decide to use `Copy` before knowing
583             // whether the bounds fully apply: in effect, the rule is
584             // that if a value of some type could implement `Copy`, then
585             // it must.
586             self.cx.prove_trait_ref(
587                 trait_ref,
588                 location.to_locations(),
589                 ConstraintCategory::CopyBound,
590             );
591         }
592
593         place_ty
594     }
595
596     fn sanitize_promoted(&mut self, promoted_body: &'b Body<'tcx>, location: Location) {
597         // Determine the constraints from the promoted MIR by running the type
598         // checker on the promoted MIR, then transfer the constraints back to
599         // the main MIR, changing the locations to the provided location.
600
601         let parent_body = mem::replace(&mut self.body, promoted_body);
602
603         // Use new sets of constraints and closure bounds so that we can
604         // modify their locations.
605         let all_facts = &mut None;
606         let mut constraints = Default::default();
607         let mut closure_bounds = Default::default();
608         let mut liveness_constraints =
609             LivenessValues::new(Rc::new(RegionValueElements::new(&promoted_body)));
610         // Don't try to add borrow_region facts for the promoted MIR
611
612         let mut swap_constraints = |this: &mut Self| {
613             mem::swap(this.cx.borrowck_context.all_facts, all_facts);
614             mem::swap(
615                 &mut this.cx.borrowck_context.constraints.outlives_constraints,
616                 &mut constraints,
617             );
618             mem::swap(
619                 &mut this.cx.borrowck_context.constraints.closure_bounds_mapping,
620                 &mut closure_bounds,
621             );
622             mem::swap(
623                 &mut this.cx.borrowck_context.constraints.liveness_constraints,
624                 &mut liveness_constraints,
625             );
626         };
627
628         swap_constraints(self);
629
630         self.visit_body(&promoted_body);
631
632         if !self.errors_reported {
633             // if verifier failed, don't do further checks to avoid ICEs
634             self.cx.typeck_mir(promoted_body);
635         }
636
637         self.body = parent_body;
638         // Merge the outlives constraints back in, at the given location.
639         swap_constraints(self);
640
641         let locations = location.to_locations();
642         for constraint in constraints.outlives().iter() {
643             let mut constraint = constraint.clone();
644             constraint.locations = locations;
645             if let ConstraintCategory::Return(_)
646             | ConstraintCategory::UseAsConst
647             | ConstraintCategory::UseAsStatic = constraint.category
648             {
649                 // "Returning" from a promoted is an assignment to a
650                 // temporary from the user's point of view.
651                 constraint.category = ConstraintCategory::Boring;
652             }
653             self.cx.borrowck_context.constraints.outlives_constraints.push(constraint)
654         }
655         for region in liveness_constraints.rows() {
656             // If the region is live at at least one location in the promoted MIR,
657             // then add a liveness constraint to the main MIR for this region
658             // at the location provided as an argument to this method
659             if liveness_constraints.get_elements(region).next().is_some() {
660                 self.cx
661                     .borrowck_context
662                     .constraints
663                     .liveness_constraints
664                     .add_element(region, location);
665             }
666         }
667
668         if !closure_bounds.is_empty() {
669             let combined_bounds_mapping =
670                 closure_bounds.into_iter().flat_map(|(_, value)| value).collect();
671             let existing = self
672                 .cx
673                 .borrowck_context
674                 .constraints
675                 .closure_bounds_mapping
676                 .insert(location, combined_bounds_mapping);
677             assert!(existing.is_none(), "Multiple promoteds/closures at the same location.");
678         }
679     }
680
681     fn sanitize_projection(
682         &mut self,
683         base: PlaceTy<'tcx>,
684         pi: PlaceElem<'tcx>,
685         place: &Place<'tcx>,
686         location: Location,
687     ) -> PlaceTy<'tcx> {
688         debug!("sanitize_projection: {:?} {:?} {:?}", base, pi, place);
689         let tcx = self.tcx();
690         let base_ty = base.ty;
691         match pi {
692             ProjectionElem::Deref => {
693                 let deref_ty = base_ty.builtin_deref(true);
694                 PlaceTy::from_ty(deref_ty.map(|t| t.ty).unwrap_or_else(|| {
695                     span_mirbug_and_err!(self, place, "deref of non-pointer {:?}", base_ty)
696                 }))
697             }
698             ProjectionElem::Index(i) => {
699                 let index_ty = Place::from(i).ty(self.body, tcx).ty;
700                 if index_ty != tcx.types.usize {
701                     PlaceTy::from_ty(span_mirbug_and_err!(self, i, "index by non-usize {:?}", i))
702                 } else {
703                     PlaceTy::from_ty(base_ty.builtin_index().unwrap_or_else(|| {
704                         span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
705                     }))
706                 }
707             }
708             ProjectionElem::ConstantIndex { .. } => {
709                 // consider verifying in-bounds
710                 PlaceTy::from_ty(base_ty.builtin_index().unwrap_or_else(|| {
711                     span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
712                 }))
713             }
714             ProjectionElem::Subslice { from, to, from_end } => {
715                 PlaceTy::from_ty(match base_ty.kind() {
716                     ty::Array(inner, _) => {
717                         assert!(!from_end, "array subslices should not use from_end");
718                         tcx.mk_array(inner, to - from)
719                     }
720                     ty::Slice(..) => {
721                         assert!(from_end, "slice subslices should use from_end");
722                         base_ty
723                     }
724                     _ => span_mirbug_and_err!(self, place, "slice of non-array {:?}", base_ty),
725                 })
726             }
727             ProjectionElem::Downcast(maybe_name, index) => match base_ty.kind() {
728                 ty::Adt(adt_def, _substs) if adt_def.is_enum() => {
729                     if index.as_usize() >= adt_def.variants.len() {
730                         PlaceTy::from_ty(span_mirbug_and_err!(
731                             self,
732                             place,
733                             "cast to variant #{:?} but enum only has {:?}",
734                             index,
735                             adt_def.variants.len()
736                         ))
737                     } else {
738                         PlaceTy { ty: base_ty, variant_index: Some(index) }
739                     }
740                 }
741                 // We do not need to handle generators here, because this runs
742                 // before the generator transform stage.
743                 _ => {
744                     let ty = if let Some(name) = maybe_name {
745                         span_mirbug_and_err!(
746                             self,
747                             place,
748                             "can't downcast {:?} as {:?}",
749                             base_ty,
750                             name
751                         )
752                     } else {
753                         span_mirbug_and_err!(self, place, "can't downcast {:?}", base_ty)
754                     };
755                     PlaceTy::from_ty(ty)
756                 }
757             },
758             ProjectionElem::Field(field, fty) => {
759                 let fty = self.sanitize_type(place, fty);
760                 match self.field_ty(place, base, field, location) {
761                     Ok(ty) => {
762                         let ty = self.cx.normalize(ty, location);
763                         if let Err(terr) = self.cx.eq_types(
764                             ty,
765                             fty,
766                             location.to_locations(),
767                             ConstraintCategory::Boring,
768                         ) {
769                             span_mirbug!(
770                                 self,
771                                 place,
772                                 "bad field access ({:?}: {:?}): {:?}",
773                                 ty,
774                                 fty,
775                                 terr
776                             );
777                         }
778                     }
779                     Err(FieldAccessError::OutOfRange { field_count }) => span_mirbug!(
780                         self,
781                         place,
782                         "accessed field #{} but variant only has {}",
783                         field.index(),
784                         field_count
785                     ),
786                 }
787                 PlaceTy::from_ty(fty)
788             }
789         }
790     }
791
792     fn error(&mut self) -> Ty<'tcx> {
793         self.errors_reported = true;
794         self.tcx().ty_error()
795     }
796
797     fn field_ty(
798         &mut self,
799         parent: &dyn fmt::Debug,
800         base_ty: PlaceTy<'tcx>,
801         field: Field,
802         location: Location,
803     ) -> Result<Ty<'tcx>, FieldAccessError> {
804         let tcx = self.tcx();
805
806         let (variant, substs) = match base_ty {
807             PlaceTy { ty, variant_index: Some(variant_index) } => match *ty.kind() {
808                 ty::Adt(adt_def, substs) => (&adt_def.variants[variant_index], substs),
809                 ty::Generator(def_id, substs, _) => {
810                     let mut variants = substs.as_generator().state_tys(def_id, tcx);
811                     let mut variant = match variants.nth(variant_index.into()) {
812                         Some(v) => v,
813                         None => bug!(
814                             "variant_index of generator out of range: {:?}/{:?}",
815                             variant_index,
816                             substs.as_generator().state_tys(def_id, tcx).count()
817                         ),
818                     };
819                     return match variant.nth(field.index()) {
820                         Some(ty) => Ok(ty),
821                         None => Err(FieldAccessError::OutOfRange { field_count: variant.count() }),
822                     };
823                 }
824                 _ => bug!("can't have downcast of non-adt non-generator type"),
825             },
826             PlaceTy { ty, variant_index: None } => match *ty.kind() {
827                 ty::Adt(adt_def, substs) if !adt_def.is_enum() => {
828                     (&adt_def.variants[VariantIdx::new(0)], substs)
829                 }
830                 ty::Closure(_, substs) => {
831                     return match substs
832                         .as_closure()
833                         .tupled_upvars_ty()
834                         .tuple_element_ty(field.index())
835                     {
836                         Some(ty) => Ok(ty),
837                         None => Err(FieldAccessError::OutOfRange {
838                             field_count: substs.as_closure().upvar_tys().count(),
839                         }),
840                     };
841                 }
842                 ty::Generator(_, substs, _) => {
843                     // Only prefix fields (upvars and current state) are
844                     // accessible without a variant index.
845                     return match substs.as_generator().prefix_tys().nth(field.index()) {
846                         Some(ty) => Ok(ty),
847                         None => Err(FieldAccessError::OutOfRange {
848                             field_count: substs.as_generator().prefix_tys().count(),
849                         }),
850                     };
851                 }
852                 ty::Tuple(tys) => {
853                     return match tys.get(field.index()) {
854                         Some(&ty) => Ok(ty.expect_ty()),
855                         None => Err(FieldAccessError::OutOfRange { field_count: tys.len() }),
856                     };
857                 }
858                 _ => {
859                     return Ok(span_mirbug_and_err!(
860                         self,
861                         parent,
862                         "can't project out of {:?}",
863                         base_ty
864                     ));
865                 }
866             },
867         };
868
869         if let Some(field) = variant.fields.get(field.index()) {
870             Ok(self.cx.normalize(field.ty(tcx, substs), location))
871         } else {
872             Err(FieldAccessError::OutOfRange { field_count: variant.fields.len() })
873         }
874     }
875 }
876
877 /// The MIR type checker. Visits the MIR and enforces all the
878 /// constraints needed for it to be valid and well-typed. Along the
879 /// way, it accrues region constraints -- these can later be used by
880 /// NLL region checking.
881 struct TypeChecker<'a, 'tcx> {
882     infcx: &'a InferCtxt<'a, 'tcx>,
883     param_env: ty::ParamEnv<'tcx>,
884     last_span: Span,
885     body: &'a Body<'tcx>,
886     /// User type annotations are shared between the main MIR and the MIR of
887     /// all of the promoted items.
888     user_type_annotations: &'a CanonicalUserTypeAnnotations<'tcx>,
889     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
890     implicit_region_bound: ty::Region<'tcx>,
891     reported_errors: FxHashSet<(Ty<'tcx>, Span)>,
892     borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
893 }
894
895 struct BorrowCheckContext<'a, 'tcx> {
896     pub(crate) universal_regions: &'a UniversalRegions<'tcx>,
897     location_table: &'a LocationTable,
898     all_facts: &'a mut Option<AllFacts>,
899     borrow_set: &'a BorrowSet<'tcx>,
900     pub(crate) constraints: &'a mut MirTypeckRegionConstraints<'tcx>,
901     upvars: &'a [Upvar<'tcx>],
902 }
903
904 crate struct MirTypeckResults<'tcx> {
905     crate constraints: MirTypeckRegionConstraints<'tcx>,
906     crate universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
907     crate opaque_type_values: VecMap<OpaqueTypeKey<'tcx>, OpaqueTypeDecl<'tcx>>,
908 }
909
910 /// A collection of region constraints that must be satisfied for the
911 /// program to be considered well-typed.
912 crate struct MirTypeckRegionConstraints<'tcx> {
913     /// Maps from a `ty::Placeholder` to the corresponding
914     /// `PlaceholderIndex` bit that we will use for it.
915     ///
916     /// To keep everything in sync, do not insert this set
917     /// directly. Instead, use the `placeholder_region` helper.
918     crate placeholder_indices: PlaceholderIndices,
919
920     /// Each time we add a placeholder to `placeholder_indices`, we
921     /// also create a corresponding "representative" region vid for
922     /// that wraps it. This vector tracks those. This way, when we
923     /// convert the same `ty::RePlaceholder(p)` twice, we can map to
924     /// the same underlying `RegionVid`.
925     crate placeholder_index_to_region: IndexVec<PlaceholderIndex, ty::Region<'tcx>>,
926
927     /// In general, the type-checker is not responsible for enforcing
928     /// liveness constraints; this job falls to the region inferencer,
929     /// which performs a liveness analysis. However, in some limited
930     /// cases, the MIR type-checker creates temporary regions that do
931     /// not otherwise appear in the MIR -- in particular, the
932     /// late-bound regions that it instantiates at call-sites -- and
933     /// hence it must report on their liveness constraints.
934     crate liveness_constraints: LivenessValues<RegionVid>,
935
936     crate outlives_constraints: OutlivesConstraintSet<'tcx>,
937
938     crate member_constraints: MemberConstraintSet<'tcx, RegionVid>,
939
940     crate closure_bounds_mapping:
941         FxHashMap<Location, FxHashMap<(RegionVid, RegionVid), (ConstraintCategory, Span)>>,
942
943     crate universe_causes: FxHashMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
944
945     crate type_tests: Vec<TypeTest<'tcx>>,
946 }
947
948 impl<'tcx> MirTypeckRegionConstraints<'tcx> {
949     fn placeholder_region(
950         &mut self,
951         infcx: &InferCtxt<'_, 'tcx>,
952         placeholder: ty::PlaceholderRegion,
953     ) -> ty::Region<'tcx> {
954         let placeholder_index = self.placeholder_indices.insert(placeholder);
955         match self.placeholder_index_to_region.get(placeholder_index) {
956             Some(&v) => v,
957             None => {
958                 let origin = NllRegionVariableOrigin::Placeholder(placeholder);
959                 let region = infcx.next_nll_region_var_in_universe(origin, placeholder.universe);
960                 self.placeholder_index_to_region.push(region);
961                 region
962             }
963         }
964     }
965 }
966
967 /// The `Locations` type summarizes *where* region constraints are
968 /// required to hold. Normally, this is at a particular point which
969 /// created the obligation, but for constraints that the user gave, we
970 /// want the constraint to hold at all points.
971 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
972 pub enum Locations {
973     /// Indicates that a type constraint should always be true. This
974     /// is particularly important in the new borrowck analysis for
975     /// things like the type of the return slot. Consider this
976     /// example:
977     ///
978     /// ```
979     /// fn foo<'a>(x: &'a u32) -> &'a u32 {
980     ///     let y = 22;
981     ///     return &y; // error
982     /// }
983     /// ```
984     ///
985     /// Here, we wind up with the signature from the return type being
986     /// something like `&'1 u32` where `'1` is a universal region. But
987     /// the type of the return slot `_0` is something like `&'2 u32`
988     /// where `'2` is an existential region variable. The type checker
989     /// requires that `&'2 u32 = &'1 u32` -- but at what point? In the
990     /// older NLL analysis, we required this only at the entry point
991     /// to the function. By the nature of the constraints, this wound
992     /// up propagating to all points reachable from start (because
993     /// `'1` -- as a universal region -- is live everywhere). In the
994     /// newer analysis, though, this doesn't work: `_0` is considered
995     /// dead at the start (it has no usable value) and hence this type
996     /// equality is basically a no-op. Then, later on, when we do `_0
997     /// = &'3 y`, that region `'3` never winds up related to the
998     /// universal region `'1` and hence no error occurs. Therefore, we
999     /// use Locations::All instead, which ensures that the `'1` and
1000     /// `'2` are equal everything. We also use this for other
1001     /// user-given type annotations; e.g., if the user wrote `let mut
1002     /// x: &'static u32 = ...`, we would ensure that all values
1003     /// assigned to `x` are of `'static` lifetime.
1004     ///
1005     /// The span points to the place the constraint arose. For example,
1006     /// it points to the type in a user-given type annotation. If
1007     /// there's no sensible span then it's DUMMY_SP.
1008     All(Span),
1009
1010     /// An outlives constraint that only has to hold at a single location,
1011     /// usually it represents a point where references flow from one spot to
1012     /// another (e.g., `x = y`)
1013     Single(Location),
1014 }
1015
1016 impl Locations {
1017     pub fn from_location(&self) -> Option<Location> {
1018         match self {
1019             Locations::All(_) => None,
1020             Locations::Single(from_location) => Some(*from_location),
1021         }
1022     }
1023
1024     /// Gets a span representing the location.
1025     pub fn span(&self, body: &Body<'_>) -> Span {
1026         match self {
1027             Locations::All(span) => *span,
1028             Locations::Single(l) => body.source_info(*l).span,
1029         }
1030     }
1031 }
1032
1033 impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
1034     fn new(
1035         infcx: &'a InferCtxt<'a, 'tcx>,
1036         body: &'a Body<'tcx>,
1037         param_env: ty::ParamEnv<'tcx>,
1038         region_bound_pairs: &'a RegionBoundPairs<'tcx>,
1039         implicit_region_bound: ty::Region<'tcx>,
1040         borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
1041     ) -> Self {
1042         let mut checker = Self {
1043             infcx,
1044             last_span: DUMMY_SP,
1045             body,
1046             user_type_annotations: &body.user_type_annotations,
1047             param_env,
1048             region_bound_pairs,
1049             implicit_region_bound,
1050             borrowck_context,
1051             reported_errors: Default::default(),
1052         };
1053         checker.check_user_type_annotations();
1054         checker
1055     }
1056
1057     fn unsized_feature_enabled(&self) -> bool {
1058         let features = self.tcx().features();
1059         features.unsized_locals || features.unsized_fn_params
1060     }
1061
1062     /// Equate the inferred type and the annotated type for user type annotations
1063     fn check_user_type_annotations(&mut self) {
1064         debug!(
1065             "check_user_type_annotations: user_type_annotations={:?}",
1066             self.user_type_annotations
1067         );
1068         for user_annotation in self.user_type_annotations {
1069             let CanonicalUserTypeAnnotation { span, ref user_ty, inferred_ty } = *user_annotation;
1070             let inferred_ty = self.normalize(inferred_ty, Locations::All(span));
1071             let annotation = self.instantiate_canonical_with_fresh_inference_vars(span, user_ty);
1072             match annotation {
1073                 UserType::Ty(mut ty) => {
1074                     ty = self.normalize(ty, Locations::All(span));
1075
1076                     if let Err(terr) = self.eq_types(
1077                         ty,
1078                         inferred_ty,
1079                         Locations::All(span),
1080                         ConstraintCategory::BoringNoLocation,
1081                     ) {
1082                         span_mirbug!(
1083                             self,
1084                             user_annotation,
1085                             "bad user type ({:?} = {:?}): {:?}",
1086                             ty,
1087                             inferred_ty,
1088                             terr
1089                         );
1090                     }
1091
1092                     self.prove_predicate(
1093                         ty::Binder::dummy(ty::PredicateKind::WellFormed(inferred_ty.into()))
1094                             .to_predicate(self.tcx()),
1095                         Locations::All(span),
1096                         ConstraintCategory::TypeAnnotation,
1097                     );
1098                 }
1099                 UserType::TypeOf(def_id, user_substs) => {
1100                     if let Err(terr) = self.fully_perform_op(
1101                         Locations::All(span),
1102                         ConstraintCategory::BoringNoLocation,
1103                         self.param_env.and(type_op::ascribe_user_type::AscribeUserType::new(
1104                             inferred_ty,
1105                             def_id,
1106                             user_substs,
1107                         )),
1108                     ) {
1109                         span_mirbug!(
1110                             self,
1111                             user_annotation,
1112                             "bad user type AscribeUserType({:?}, {:?} {:?}, type_of={:?}): {:?}",
1113                             inferred_ty,
1114                             def_id,
1115                             user_substs,
1116                             self.tcx().type_of(def_id),
1117                             terr,
1118                         );
1119                     }
1120                 }
1121             }
1122         }
1123     }
1124
1125     #[instrument(skip(self, data), level = "debug")]
1126     fn push_region_constraints(
1127         &mut self,
1128         locations: Locations,
1129         category: ConstraintCategory,
1130         data: &QueryRegionConstraints<'tcx>,
1131     ) {
1132         debug!("constraints generated: {:#?}", data);
1133
1134         constraint_conversion::ConstraintConversion::new(
1135             self.infcx,
1136             self.borrowck_context.universal_regions,
1137             self.region_bound_pairs,
1138             Some(self.implicit_region_bound),
1139             self.param_env,
1140             locations,
1141             category,
1142             &mut self.borrowck_context.constraints,
1143         )
1144         .convert_all(data);
1145     }
1146
1147     /// Try to relate `sub <: sup`
1148     fn sub_types(
1149         &mut self,
1150         sub: Ty<'tcx>,
1151         sup: Ty<'tcx>,
1152         locations: Locations,
1153         category: ConstraintCategory,
1154     ) -> Fallible<()> {
1155         // Use this order of parameters because the sup type is usually the
1156         // "expected" type in diagnostics.
1157         self.relate_types(sup, ty::Variance::Contravariant, sub, locations, category)
1158     }
1159
1160     #[instrument(skip(self, category), level = "debug")]
1161     fn eq_types(
1162         &mut self,
1163         expected: Ty<'tcx>,
1164         found: Ty<'tcx>,
1165         locations: Locations,
1166         category: ConstraintCategory,
1167     ) -> Fallible<()> {
1168         self.relate_types(expected, ty::Variance::Invariant, found, locations, category)
1169     }
1170
1171     #[instrument(skip(self), level = "debug")]
1172     fn relate_type_and_user_type(
1173         &mut self,
1174         a: Ty<'tcx>,
1175         v: ty::Variance,
1176         user_ty: &UserTypeProjection,
1177         locations: Locations,
1178         category: ConstraintCategory,
1179     ) -> Fallible<()> {
1180         let annotated_type = self.user_type_annotations[user_ty.base].inferred_ty;
1181         let mut curr_projected_ty = PlaceTy::from_ty(annotated_type);
1182
1183         let tcx = self.infcx.tcx;
1184
1185         for proj in &user_ty.projs {
1186             let projected_ty = curr_projected_ty.projection_ty_core(
1187                 tcx,
1188                 self.param_env,
1189                 proj,
1190                 |this, field, &()| {
1191                     let ty = this.field_ty(tcx, field);
1192                     self.normalize(ty, locations)
1193                 },
1194             );
1195             curr_projected_ty = projected_ty;
1196         }
1197         debug!(
1198             "user_ty base: {:?} freshened: {:?} projs: {:?} yields: {:?}",
1199             user_ty.base, annotated_type, user_ty.projs, curr_projected_ty
1200         );
1201
1202         let ty = curr_projected_ty.ty;
1203         self.relate_types(ty, v.xform(ty::Variance::Contravariant), a, locations, category)?;
1204
1205         Ok(())
1206     }
1207
1208     /// Equates a type `anon_ty` that may contain opaque types whose
1209     /// values are to be inferred by the MIR.
1210     ///
1211     /// The type `revealed_ty` contains the same type as `anon_ty`, but with the
1212     /// hidden types for impl traits revealed.
1213     ///
1214     /// # Example
1215     ///
1216     /// Consider a piece of code like
1217     ///
1218     /// ```rust
1219     /// type Foo<U> = impl Debug;
1220     ///
1221     /// fn foo<T: Debug>(t: T) -> Box<Foo<T>> {
1222     ///      Box::new((t, 22_u32))
1223     /// }
1224     /// ```
1225     ///
1226     /// Here, the function signature would be something like
1227     /// `fn(T) -> Box<impl Debug>`. The MIR return slot would have
1228     /// the type with the opaque type revealed, so `Box<(T, u32)>`.
1229     ///
1230     /// In terms of our function parameters:
1231     ///
1232     /// * `anon_ty` would be `Box<Foo<T>>` where `Foo<T>` is an opaque type
1233     ///   scoped to this function (note that it is parameterized by the
1234     ///   generics of `foo`). Note that `anon_ty` is not just the opaque type,
1235     ///   but the entire return type (which may contain opaque types within it).
1236     /// * `revealed_ty` would be `Box<(T, u32)>`
1237     #[instrument(skip(self), level = "debug")]
1238     fn eq_opaque_type_and_type(
1239         &mut self,
1240         revealed_ty: Ty<'tcx>,
1241         anon_ty: Ty<'tcx>,
1242         locations: Locations,
1243         category: ConstraintCategory,
1244     ) -> Fallible<()> {
1245         // Fast path for the common case.
1246         if !anon_ty.has_opaque_types() {
1247             if let Err(terr) = self.eq_types(anon_ty, revealed_ty, locations, category) {
1248                 span_mirbug!(
1249                     self,
1250                     locations,
1251                     "eq_opaque_type_and_type: `{:?}=={:?}` failed with `{:?}`",
1252                     revealed_ty,
1253                     anon_ty,
1254                     terr
1255                 );
1256             }
1257             return Ok(());
1258         }
1259
1260         let param_env = self.param_env;
1261         let body = self.body;
1262         let mir_def_id = body.source.def_id().expect_local();
1263
1264         debug!(?mir_def_id);
1265         self.fully_perform_op(
1266             locations,
1267             category,
1268             CustomTypeOp::new(
1269                 |infcx| {
1270                     let mut obligations = ObligationAccumulator::default();
1271
1272                     let dummy_body_id = hir::CRATE_HIR_ID;
1273
1274                     // Replace the opaque types defined by this function with
1275                     // inference variables, creating a map. In our example above,
1276                     // this would transform the type `Box<Foo<T>>` (where `Foo` is an opaque type)
1277                     // to `Box<?T>`, returning an `opaque_type_map` mapping `{Foo<T> -> ?T}`.
1278                     // (Note that the key of the map is both the def-id of `Foo` along with
1279                     // any generic parameters.)
1280                     let output_ty = obligations.add(infcx.instantiate_opaque_types(
1281                         dummy_body_id,
1282                         param_env,
1283                         anon_ty,
1284                         locations.span(body),
1285                     ));
1286                     debug!(?output_ty, ?revealed_ty);
1287
1288                     // Make sure that the inferred types are well-formed. I'm
1289                     // not entirely sure this is needed (the HIR type check
1290                     // didn't do this) but it seems sensible to prevent opaque
1291                     // types hiding ill-formed types.
1292                     obligations.obligations.push(traits::Obligation::new(
1293                         ObligationCause::dummy(),
1294                         param_env,
1295                         ty::Binder::dummy(ty::PredicateKind::WellFormed(revealed_ty.into()))
1296                             .to_predicate(infcx.tcx),
1297                     ));
1298                     obligations.add(
1299                         infcx
1300                             .at(&ObligationCause::dummy(), param_env)
1301                             .eq(output_ty, revealed_ty)?,
1302                     );
1303
1304                     debug!("equated");
1305
1306                     Ok(InferOk { value: (), obligations: obligations.into_vec() })
1307                 },
1308                 || "input_output".to_string(),
1309             ),
1310         )?;
1311
1312         // Finally, if we instantiated the anon types successfully, we
1313         // have to solve any bounds (e.g., `-> impl Iterator` needs to
1314         // prove that `T: Iterator` where `T` is the type we
1315         // instantiated it with).
1316         let opaque_type_map = self.infcx.inner.borrow().opaque_types.clone();
1317         for (opaque_type_key, opaque_decl) in opaque_type_map {
1318             self.fully_perform_op(
1319                 locations,
1320                 ConstraintCategory::OpaqueType,
1321                 CustomTypeOp::new(
1322                     |infcx| {
1323                         infcx.constrain_opaque_type(opaque_type_key, &opaque_decl);
1324                         Ok(InferOk { value: (), obligations: vec![] })
1325                     },
1326                     || "opaque_type_map".to_string(),
1327                 ),
1328             )?;
1329         }
1330         Ok(())
1331     }
1332
1333     fn tcx(&self) -> TyCtxt<'tcx> {
1334         self.infcx.tcx
1335     }
1336
1337     #[instrument(skip(self, body, location), level = "debug")]
1338     fn check_stmt(&mut self, body: &Body<'tcx>, stmt: &Statement<'tcx>, location: Location) {
1339         let tcx = self.tcx();
1340         match stmt.kind {
1341             StatementKind::Assign(box (ref place, ref rv)) => {
1342                 // Assignments to temporaries are not "interesting";
1343                 // they are not caused by the user, but rather artifacts
1344                 // of lowering. Assignments to other sorts of places *are* interesting
1345                 // though.
1346                 let category = match place.as_local() {
1347                     Some(RETURN_PLACE) => {
1348                         let defining_ty = &self.borrowck_context.universal_regions.defining_ty;
1349                         if defining_ty.is_const() {
1350                             if tcx.is_static(defining_ty.def_id()) {
1351                                 ConstraintCategory::UseAsStatic
1352                             } else {
1353                                 ConstraintCategory::UseAsConst
1354                             }
1355                         } else {
1356                             ConstraintCategory::Return(ReturnConstraint::Normal)
1357                         }
1358                     }
1359                     Some(l)
1360                         if matches!(
1361                             body.local_decls[l].local_info,
1362                             Some(box LocalInfo::AggregateTemp)
1363                         ) =>
1364                     {
1365                         ConstraintCategory::Usage
1366                     }
1367                     Some(l) if !body.local_decls[l].is_user_variable() => {
1368                         ConstraintCategory::Boring
1369                     }
1370                     _ => ConstraintCategory::Assignment,
1371                 };
1372                 debug!(
1373                     "assignment category: {:?} {:?}",
1374                     category,
1375                     place.as_local().map(|l| &body.local_decls[l])
1376                 );
1377
1378                 let place_ty = place.ty(body, tcx).ty;
1379                 let place_ty = self.normalize(place_ty, location);
1380                 let rv_ty = rv.ty(body, tcx);
1381                 let rv_ty = self.normalize(rv_ty, location);
1382                 if let Err(terr) =
1383                     self.sub_types(rv_ty, place_ty, location.to_locations(), category)
1384                 {
1385                     span_mirbug!(
1386                         self,
1387                         stmt,
1388                         "bad assignment ({:?} = {:?}): {:?}",
1389                         place_ty,
1390                         rv_ty,
1391                         terr
1392                     );
1393                 }
1394
1395                 if let Some(annotation_index) = self.rvalue_user_ty(rv) {
1396                     if let Err(terr) = self.relate_type_and_user_type(
1397                         rv_ty,
1398                         ty::Variance::Invariant,
1399                         &UserTypeProjection { base: annotation_index, projs: vec![] },
1400                         location.to_locations(),
1401                         ConstraintCategory::Boring,
1402                     ) {
1403                         let annotation = &self.user_type_annotations[annotation_index];
1404                         span_mirbug!(
1405                             self,
1406                             stmt,
1407                             "bad user type on rvalue ({:?} = {:?}): {:?}",
1408                             annotation,
1409                             rv_ty,
1410                             terr
1411                         );
1412                     }
1413                 }
1414
1415                 self.check_rvalue(body, rv, location);
1416                 if !self.unsized_feature_enabled() {
1417                     let trait_ref = ty::TraitRef {
1418                         def_id: tcx.require_lang_item(LangItem::Sized, Some(self.last_span)),
1419                         substs: tcx.mk_substs_trait(place_ty, &[]),
1420                     };
1421                     self.prove_trait_ref(
1422                         trait_ref,
1423                         location.to_locations(),
1424                         ConstraintCategory::SizedBound,
1425                     );
1426                 }
1427             }
1428             StatementKind::SetDiscriminant { ref place, variant_index } => {
1429                 let place_type = place.ty(body, tcx).ty;
1430                 let adt = match place_type.kind() {
1431                     ty::Adt(adt, _) if adt.is_enum() => adt,
1432                     _ => {
1433                         span_bug!(
1434                             stmt.source_info.span,
1435                             "bad set discriminant ({:?} = {:?}): lhs is not an enum",
1436                             place,
1437                             variant_index
1438                         );
1439                     }
1440                 };
1441                 if variant_index.as_usize() >= adt.variants.len() {
1442                     span_bug!(
1443                         stmt.source_info.span,
1444                         "bad set discriminant ({:?} = {:?}): value of of range",
1445                         place,
1446                         variant_index
1447                     );
1448                 };
1449             }
1450             StatementKind::AscribeUserType(box (ref place, ref projection), variance) => {
1451                 let place_ty = place.ty(body, tcx).ty;
1452                 if let Err(terr) = self.relate_type_and_user_type(
1453                     place_ty,
1454                     variance,
1455                     projection,
1456                     Locations::All(stmt.source_info.span),
1457                     ConstraintCategory::TypeAnnotation,
1458                 ) {
1459                     let annotation = &self.user_type_annotations[projection.base];
1460                     span_mirbug!(
1461                         self,
1462                         stmt,
1463                         "bad type assert ({:?} <: {:?} with projections {:?}): {:?}",
1464                         place_ty,
1465                         annotation,
1466                         projection.projs,
1467                         terr
1468                     );
1469                 }
1470             }
1471             StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping {
1472                 ..
1473             }) => span_bug!(
1474                 stmt.source_info.span,
1475                 "Unexpected StatementKind::CopyNonOverlapping, should only appear after lowering_intrinsics",
1476             ),
1477             StatementKind::FakeRead(..)
1478             | StatementKind::StorageLive(..)
1479             | StatementKind::StorageDead(..)
1480             | StatementKind::LlvmInlineAsm { .. }
1481             | StatementKind::Retag { .. }
1482             | StatementKind::Coverage(..)
1483             | StatementKind::Nop => {}
1484         }
1485     }
1486
1487     #[instrument(skip(self, body, term_location), level = "debug")]
1488     fn check_terminator(
1489         &mut self,
1490         body: &Body<'tcx>,
1491         term: &Terminator<'tcx>,
1492         term_location: Location,
1493     ) {
1494         let tcx = self.tcx();
1495         match term.kind {
1496             TerminatorKind::Goto { .. }
1497             | TerminatorKind::Resume
1498             | TerminatorKind::Abort
1499             | TerminatorKind::Return
1500             | TerminatorKind::GeneratorDrop
1501             | TerminatorKind::Unreachable
1502             | TerminatorKind::Drop { .. }
1503             | TerminatorKind::FalseEdge { .. }
1504             | TerminatorKind::FalseUnwind { .. }
1505             | TerminatorKind::InlineAsm { .. } => {
1506                 // no checks needed for these
1507             }
1508
1509             TerminatorKind::DropAndReplace { ref place, ref value, target: _, unwind: _ } => {
1510                 let place_ty = place.ty(body, tcx).ty;
1511                 let rv_ty = value.ty(body, tcx);
1512
1513                 let locations = term_location.to_locations();
1514                 if let Err(terr) =
1515                     self.sub_types(rv_ty, place_ty, locations, ConstraintCategory::Assignment)
1516                 {
1517                     span_mirbug!(
1518                         self,
1519                         term,
1520                         "bad DropAndReplace ({:?} = {:?}): {:?}",
1521                         place_ty,
1522                         rv_ty,
1523                         terr
1524                     );
1525                 }
1526             }
1527             TerminatorKind::SwitchInt { ref discr, switch_ty, .. } => {
1528                 self.check_operand(discr, term_location);
1529
1530                 let discr_ty = discr.ty(body, tcx);
1531                 if let Err(terr) = self.sub_types(
1532                     discr_ty,
1533                     switch_ty,
1534                     term_location.to_locations(),
1535                     ConstraintCategory::Assignment,
1536                 ) {
1537                     span_mirbug!(
1538                         self,
1539                         term,
1540                         "bad SwitchInt ({:?} on {:?}): {:?}",
1541                         switch_ty,
1542                         discr_ty,
1543                         terr
1544                     );
1545                 }
1546                 if !switch_ty.is_integral() && !switch_ty.is_char() && !switch_ty.is_bool() {
1547                     span_mirbug!(self, term, "bad SwitchInt discr ty {:?}", switch_ty);
1548                 }
1549                 // FIXME: check the values
1550             }
1551             TerminatorKind::Call { ref func, ref args, ref destination, from_hir_call, .. } => {
1552                 self.check_operand(func, term_location);
1553                 for arg in args {
1554                     self.check_operand(arg, term_location);
1555                 }
1556
1557                 let func_ty = func.ty(body, tcx);
1558                 debug!("check_terminator: call, func_ty={:?}", func_ty);
1559                 let sig = match func_ty.kind() {
1560                     ty::FnDef(..) | ty::FnPtr(_) => func_ty.fn_sig(tcx),
1561                     _ => {
1562                         span_mirbug!(self, term, "call to non-function {:?}", func_ty);
1563                         return;
1564                     }
1565                 };
1566                 let (sig, map) = self.infcx.replace_bound_vars_with_fresh_vars(
1567                     term.source_info.span,
1568                     LateBoundRegionConversionTime::FnCall,
1569                     sig,
1570                 );
1571                 let sig = self.normalize(sig, term_location);
1572                 self.check_call_dest(body, term, &sig, destination, term_location);
1573
1574                 self.prove_predicates(
1575                     sig.inputs_and_output
1576                         .iter()
1577                         .map(|ty| ty::Binder::dummy(ty::PredicateKind::WellFormed(ty.into()))),
1578                     term_location.to_locations(),
1579                     ConstraintCategory::Boring,
1580                 );
1581
1582                 // The ordinary liveness rules will ensure that all
1583                 // regions in the type of the callee are live here. We
1584                 // then further constrain the late-bound regions that
1585                 // were instantiated at the call site to be live as
1586                 // well. The resulting is that all the input (and
1587                 // output) types in the signature must be live, since
1588                 // all the inputs that fed into it were live.
1589                 for &late_bound_region in map.values() {
1590                     let region_vid =
1591                         self.borrowck_context.universal_regions.to_region_vid(late_bound_region);
1592                     self.borrowck_context
1593                         .constraints
1594                         .liveness_constraints
1595                         .add_element(region_vid, term_location);
1596                 }
1597
1598                 self.check_call_inputs(body, term, &sig, args, term_location, from_hir_call);
1599             }
1600             TerminatorKind::Assert { ref cond, ref msg, .. } => {
1601                 self.check_operand(cond, term_location);
1602
1603                 let cond_ty = cond.ty(body, tcx);
1604                 if cond_ty != tcx.types.bool {
1605                     span_mirbug!(self, term, "bad Assert ({:?}, not bool", cond_ty);
1606                 }
1607
1608                 if let AssertKind::BoundsCheck { ref len, ref index } = *msg {
1609                     if len.ty(body, tcx) != tcx.types.usize {
1610                         span_mirbug!(self, len, "bounds-check length non-usize {:?}", len)
1611                     }
1612                     if index.ty(body, tcx) != tcx.types.usize {
1613                         span_mirbug!(self, index, "bounds-check index non-usize {:?}", index)
1614                     }
1615                 }
1616             }
1617             TerminatorKind::Yield { ref value, .. } => {
1618                 self.check_operand(value, term_location);
1619
1620                 let value_ty = value.ty(body, tcx);
1621                 match body.yield_ty() {
1622                     None => span_mirbug!(self, term, "yield in non-generator"),
1623                     Some(ty) => {
1624                         if let Err(terr) = self.sub_types(
1625                             value_ty,
1626                             ty,
1627                             term_location.to_locations(),
1628                             ConstraintCategory::Yield,
1629                         ) {
1630                             span_mirbug!(
1631                                 self,
1632                                 term,
1633                                 "type of yield value is {:?}, but the yield type is {:?}: {:?}",
1634                                 value_ty,
1635                                 ty,
1636                                 terr
1637                             );
1638                         }
1639                     }
1640                 }
1641             }
1642         }
1643     }
1644
1645     fn check_call_dest(
1646         &mut self,
1647         body: &Body<'tcx>,
1648         term: &Terminator<'tcx>,
1649         sig: &ty::FnSig<'tcx>,
1650         destination: &Option<(Place<'tcx>, BasicBlock)>,
1651         term_location: Location,
1652     ) {
1653         let tcx = self.tcx();
1654         match *destination {
1655             Some((ref dest, _target_block)) => {
1656                 let dest_ty = dest.ty(body, tcx).ty;
1657                 let dest_ty = self.normalize(dest_ty, term_location);
1658                 let category = match dest.as_local() {
1659                     Some(RETURN_PLACE) => {
1660                         if let BorrowCheckContext {
1661                             universal_regions:
1662                                 UniversalRegions {
1663                                     defining_ty:
1664                                         DefiningTy::Const(def_id, _)
1665                                         | DefiningTy::InlineConst(def_id, _),
1666                                     ..
1667                                 },
1668                             ..
1669                         } = self.borrowck_context
1670                         {
1671                             if tcx.is_static(*def_id) {
1672                                 ConstraintCategory::UseAsStatic
1673                             } else {
1674                                 ConstraintCategory::UseAsConst
1675                             }
1676                         } else {
1677                             ConstraintCategory::Return(ReturnConstraint::Normal)
1678                         }
1679                     }
1680                     Some(l) if !body.local_decls[l].is_user_variable() => {
1681                         ConstraintCategory::Boring
1682                     }
1683                     _ => ConstraintCategory::Assignment,
1684                 };
1685
1686                 let locations = term_location.to_locations();
1687
1688                 if let Err(terr) = self.sub_types(sig.output(), dest_ty, locations, category) {
1689                     span_mirbug!(
1690                         self,
1691                         term,
1692                         "call dest mismatch ({:?} <- {:?}): {:?}",
1693                         dest_ty,
1694                         sig.output(),
1695                         terr
1696                     );
1697                 }
1698
1699                 // When `unsized_fn_params` and `unsized_locals` are both not enabled,
1700                 // this check is done at `check_local`.
1701                 if self.unsized_feature_enabled() {
1702                     let span = term.source_info.span;
1703                     self.ensure_place_sized(dest_ty, span);
1704                 }
1705             }
1706             None => {
1707                 if !self
1708                     .tcx()
1709                     .conservative_is_privately_uninhabited(self.param_env.and(sig.output()))
1710                 {
1711                     span_mirbug!(self, term, "call to converging function {:?} w/o dest", sig);
1712                 }
1713             }
1714         }
1715     }
1716
1717     fn check_call_inputs(
1718         &mut self,
1719         body: &Body<'tcx>,
1720         term: &Terminator<'tcx>,
1721         sig: &ty::FnSig<'tcx>,
1722         args: &[Operand<'tcx>],
1723         term_location: Location,
1724         from_hir_call: bool,
1725     ) {
1726         debug!("check_call_inputs({:?}, {:?})", sig, args);
1727         if args.len() < sig.inputs().len() || (args.len() > sig.inputs().len() && !sig.c_variadic) {
1728             span_mirbug!(self, term, "call to {:?} with wrong # of args", sig);
1729         }
1730         for (n, (fn_arg, op_arg)) in iter::zip(sig.inputs(), args).enumerate() {
1731             let op_arg_ty = op_arg.ty(body, self.tcx());
1732             let op_arg_ty = self.normalize(op_arg_ty, term_location);
1733             let category = if from_hir_call {
1734                 ConstraintCategory::CallArgument
1735             } else {
1736                 ConstraintCategory::Boring
1737             };
1738             if let Err(terr) =
1739                 self.sub_types(op_arg_ty, fn_arg, term_location.to_locations(), category)
1740             {
1741                 span_mirbug!(
1742                     self,
1743                     term,
1744                     "bad arg #{:?} ({:?} <- {:?}): {:?}",
1745                     n,
1746                     fn_arg,
1747                     op_arg_ty,
1748                     terr
1749                 );
1750             }
1751         }
1752     }
1753
1754     fn check_iscleanup(&mut self, body: &Body<'tcx>, block_data: &BasicBlockData<'tcx>) {
1755         let is_cleanup = block_data.is_cleanup;
1756         self.last_span = block_data.terminator().source_info.span;
1757         match block_data.terminator().kind {
1758             TerminatorKind::Goto { target } => {
1759                 self.assert_iscleanup(body, block_data, target, is_cleanup)
1760             }
1761             TerminatorKind::SwitchInt { ref targets, .. } => {
1762                 for target in targets.all_targets() {
1763                     self.assert_iscleanup(body, block_data, *target, is_cleanup);
1764                 }
1765             }
1766             TerminatorKind::Resume => {
1767                 if !is_cleanup {
1768                     span_mirbug!(self, block_data, "resume on non-cleanup block!")
1769                 }
1770             }
1771             TerminatorKind::Abort => {
1772                 if !is_cleanup {
1773                     span_mirbug!(self, block_data, "abort on non-cleanup block!")
1774                 }
1775             }
1776             TerminatorKind::Return => {
1777                 if is_cleanup {
1778                     span_mirbug!(self, block_data, "return on cleanup block")
1779                 }
1780             }
1781             TerminatorKind::GeneratorDrop { .. } => {
1782                 if is_cleanup {
1783                     span_mirbug!(self, block_data, "generator_drop in cleanup block")
1784                 }
1785             }
1786             TerminatorKind::Yield { resume, drop, .. } => {
1787                 if is_cleanup {
1788                     span_mirbug!(self, block_data, "yield in cleanup block")
1789                 }
1790                 self.assert_iscleanup(body, block_data, resume, is_cleanup);
1791                 if let Some(drop) = drop {
1792                     self.assert_iscleanup(body, block_data, drop, is_cleanup);
1793                 }
1794             }
1795             TerminatorKind::Unreachable => {}
1796             TerminatorKind::Drop { target, unwind, .. }
1797             | TerminatorKind::DropAndReplace { target, unwind, .. }
1798             | TerminatorKind::Assert { target, cleanup: unwind, .. } => {
1799                 self.assert_iscleanup(body, block_data, target, is_cleanup);
1800                 if let Some(unwind) = unwind {
1801                     if is_cleanup {
1802                         span_mirbug!(self, block_data, "unwind on cleanup block")
1803                     }
1804                     self.assert_iscleanup(body, block_data, unwind, true);
1805                 }
1806             }
1807             TerminatorKind::Call { ref destination, cleanup, .. } => {
1808                 if let &Some((_, target)) = destination {
1809                     self.assert_iscleanup(body, block_data, target, is_cleanup);
1810                 }
1811                 if let Some(cleanup) = cleanup {
1812                     if is_cleanup {
1813                         span_mirbug!(self, block_data, "cleanup on cleanup block")
1814                     }
1815                     self.assert_iscleanup(body, block_data, cleanup, true);
1816                 }
1817             }
1818             TerminatorKind::FalseEdge { real_target, imaginary_target } => {
1819                 self.assert_iscleanup(body, block_data, real_target, is_cleanup);
1820                 self.assert_iscleanup(body, block_data, imaginary_target, is_cleanup);
1821             }
1822             TerminatorKind::FalseUnwind { real_target, unwind } => {
1823                 self.assert_iscleanup(body, block_data, real_target, is_cleanup);
1824                 if let Some(unwind) = unwind {
1825                     if is_cleanup {
1826                         span_mirbug!(self, block_data, "cleanup in cleanup block via false unwind");
1827                     }
1828                     self.assert_iscleanup(body, block_data, unwind, true);
1829                 }
1830             }
1831             TerminatorKind::InlineAsm { destination, cleanup, .. } => {
1832                 if let Some(target) = destination {
1833                     self.assert_iscleanup(body, block_data, target, is_cleanup);
1834                 }
1835                 if let Some(cleanup) = cleanup {
1836                     if is_cleanup {
1837                         span_mirbug!(self, block_data, "cleanup on cleanup block")
1838                     }
1839                     self.assert_iscleanup(body, block_data, cleanup, true);
1840                 }
1841             }
1842         }
1843     }
1844
1845     fn assert_iscleanup(
1846         &mut self,
1847         body: &Body<'tcx>,
1848         ctxt: &dyn fmt::Debug,
1849         bb: BasicBlock,
1850         iscleanuppad: bool,
1851     ) {
1852         if body[bb].is_cleanup != iscleanuppad {
1853             span_mirbug!(self, ctxt, "cleanuppad mismatch: {:?} should be {:?}", bb, iscleanuppad);
1854         }
1855     }
1856
1857     fn check_local(&mut self, body: &Body<'tcx>, local: Local, local_decl: &LocalDecl<'tcx>) {
1858         match body.local_kind(local) {
1859             LocalKind::ReturnPointer | LocalKind::Arg => {
1860                 // return values of normal functions are required to be
1861                 // sized by typeck, but return values of ADT constructors are
1862                 // not because we don't include a `Self: Sized` bounds on them.
1863                 //
1864                 // Unbound parts of arguments were never required to be Sized
1865                 // - maybe we should make that a warning.
1866                 return;
1867             }
1868             LocalKind::Var | LocalKind::Temp => {}
1869         }
1870
1871         // When `unsized_fn_params` or `unsized_locals` is enabled, only function calls
1872         // and nullary ops are checked in `check_call_dest`.
1873         if !self.unsized_feature_enabled() {
1874             let span = local_decl.source_info.span;
1875             let ty = local_decl.ty;
1876             self.ensure_place_sized(ty, span);
1877         }
1878     }
1879
1880     fn ensure_place_sized(&mut self, ty: Ty<'tcx>, span: Span) {
1881         let tcx = self.tcx();
1882
1883         // Erase the regions from `ty` to get a global type.  The
1884         // `Sized` bound in no way depends on precise regions, so this
1885         // shouldn't affect `is_sized`.
1886         let erased_ty = tcx.erase_regions(ty);
1887         if !erased_ty.is_sized(tcx.at(span), self.param_env) {
1888             // in current MIR construction, all non-control-flow rvalue
1889             // expressions evaluate through `as_temp` or `into` a return
1890             // slot or local, so to find all unsized rvalues it is enough
1891             // to check all temps, return slots and locals.
1892             if self.reported_errors.replace((ty, span)).is_none() {
1893                 let mut diag = struct_span_err!(
1894                     self.tcx().sess,
1895                     span,
1896                     E0161,
1897                     "cannot move a value of type {0}: the size of {0} \
1898                      cannot be statically determined",
1899                     ty
1900                 );
1901
1902                 // While this is located in `nll::typeck` this error is not
1903                 // an NLL error, it's a required check to prevent creation
1904                 // of unsized rvalues in a call expression.
1905                 diag.emit();
1906             }
1907         }
1908     }
1909
1910     fn aggregate_field_ty(
1911         &mut self,
1912         ak: &AggregateKind<'tcx>,
1913         field_index: usize,
1914         location: Location,
1915     ) -> Result<Ty<'tcx>, FieldAccessError> {
1916         let tcx = self.tcx();
1917
1918         match *ak {
1919             AggregateKind::Adt(def, variant_index, substs, _, active_field_index) => {
1920                 let variant = &def.variants[variant_index];
1921                 let adj_field_index = active_field_index.unwrap_or(field_index);
1922                 if let Some(field) = variant.fields.get(adj_field_index) {
1923                     Ok(self.normalize(field.ty(tcx, substs), location))
1924                 } else {
1925                     Err(FieldAccessError::OutOfRange { field_count: variant.fields.len() })
1926                 }
1927             }
1928             AggregateKind::Closure(_, substs) => {
1929                 match substs.as_closure().upvar_tys().nth(field_index) {
1930                     Some(ty) => Ok(ty),
1931                     None => Err(FieldAccessError::OutOfRange {
1932                         field_count: substs.as_closure().upvar_tys().count(),
1933                     }),
1934                 }
1935             }
1936             AggregateKind::Generator(_, substs, _) => {
1937                 // It doesn't make sense to look at a field beyond the prefix;
1938                 // these require a variant index, and are not initialized in
1939                 // aggregate rvalues.
1940                 match substs.as_generator().prefix_tys().nth(field_index) {
1941                     Some(ty) => Ok(ty),
1942                     None => Err(FieldAccessError::OutOfRange {
1943                         field_count: substs.as_generator().prefix_tys().count(),
1944                     }),
1945                 }
1946             }
1947             AggregateKind::Array(ty) => Ok(ty),
1948             AggregateKind::Tuple => {
1949                 unreachable!("This should have been covered in check_rvalues");
1950             }
1951         }
1952     }
1953
1954     fn check_operand(&mut self, op: &Operand<'tcx>, location: Location) {
1955         if let Operand::Constant(constant) = op {
1956             let maybe_uneval = match constant.literal {
1957                 ConstantKind::Ty(ct) => match ct.val {
1958                     ty::ConstKind::Unevaluated(uv) => Some(uv),
1959                     _ => None,
1960                 },
1961                 _ => None,
1962             };
1963             if let Some(uv) = maybe_uneval {
1964                 if uv.promoted.is_none() {
1965                     let tcx = self.tcx();
1966                     let def_id = uv.def.def_id_for_type_of();
1967                     if tcx.def_kind(def_id) == DefKind::InlineConst {
1968                         let predicates = self.prove_closure_bounds(
1969                             tcx,
1970                             def_id.expect_local(),
1971                             uv.substs(tcx),
1972                             location,
1973                         );
1974                         self.normalize_and_prove_instantiated_predicates(
1975                             def_id,
1976                             predicates,
1977                             location.to_locations(),
1978                         );
1979                     }
1980                 }
1981             }
1982         }
1983     }
1984
1985     fn check_rvalue(&mut self, body: &Body<'tcx>, rvalue: &Rvalue<'tcx>, location: Location) {
1986         let tcx = self.tcx();
1987
1988         match rvalue {
1989             Rvalue::Aggregate(ak, ops) => {
1990                 for op in ops {
1991                     self.check_operand(op, location);
1992                 }
1993                 self.check_aggregate_rvalue(&body, rvalue, ak, ops, location)
1994             }
1995
1996             Rvalue::Repeat(operand, len) => {
1997                 self.check_operand(operand, location);
1998
1999                 // If the length cannot be evaluated we must assume that the length can be larger
2000                 // than 1.
2001                 // If the length is larger than 1, the repeat expression will need to copy the
2002                 // element, so we require the `Copy` trait.
2003                 if len.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
2004                     match operand {
2005                         Operand::Copy(..) | Operand::Constant(..) => {
2006                             // These are always okay: direct use of a const, or a value that can evidently be copied.
2007                         }
2008                         Operand::Move(place) => {
2009                             // Make sure that repeated elements implement `Copy`.
2010                             let span = body.source_info(location).span;
2011                             let ty = operand.ty(body, tcx);
2012                             if !self.infcx.type_is_copy_modulo_regions(self.param_env, ty, span) {
2013                                 let ccx = ConstCx::new_with_param_env(tcx, body, self.param_env);
2014                                 let is_const_fn =
2015                                     is_const_fn_in_array_repeat_expression(&ccx, &place, &body);
2016
2017                                 debug!("check_rvalue: is_const_fn={:?}", is_const_fn);
2018
2019                                 let def_id = body.source.def_id().expect_local();
2020                                 let obligation = traits::Obligation::new(
2021                                     ObligationCause::new(
2022                                         span,
2023                                         self.tcx().hir().local_def_id_to_hir_id(def_id),
2024                                         traits::ObligationCauseCode::RepeatVec(is_const_fn),
2025                                     ),
2026                                     self.param_env,
2027                                     ty::Binder::dummy(ty::TraitRef::new(
2028                                         self.tcx().require_lang_item(
2029                                             LangItem::Copy,
2030                                             Some(self.last_span),
2031                                         ),
2032                                         tcx.mk_substs_trait(ty, &[]),
2033                                     ))
2034                                     .without_const()
2035                                     .to_predicate(self.tcx()),
2036                                 );
2037                                 self.infcx.report_selection_error(
2038                                     obligation.clone(),
2039                                     &obligation,
2040                                     &traits::SelectionError::Unimplemented,
2041                                     false,
2042                                 );
2043                             }
2044                         }
2045                     }
2046                 }
2047             }
2048
2049             Rvalue::NullaryOp(_, ty) => {
2050                 let trait_ref = ty::TraitRef {
2051                     def_id: tcx.require_lang_item(LangItem::Sized, Some(self.last_span)),
2052                     substs: tcx.mk_substs_trait(ty, &[]),
2053                 };
2054
2055                 self.prove_trait_ref(
2056                     trait_ref,
2057                     location.to_locations(),
2058                     ConstraintCategory::SizedBound,
2059                 );
2060             }
2061
2062             Rvalue::ShallowInitBox(operand, ty) => {
2063                 self.check_operand(operand, location);
2064
2065                 let trait_ref = ty::TraitRef {
2066                     def_id: tcx.require_lang_item(LangItem::Sized, Some(self.last_span)),
2067                     substs: tcx.mk_substs_trait(ty, &[]),
2068                 };
2069
2070                 self.prove_trait_ref(
2071                     trait_ref,
2072                     location.to_locations(),
2073                     ConstraintCategory::SizedBound,
2074                 );
2075             }
2076
2077             Rvalue::Cast(cast_kind, op, ty) => {
2078                 self.check_operand(op, location);
2079
2080                 match cast_kind {
2081                     CastKind::Pointer(PointerCast::ReifyFnPointer) => {
2082                         let fn_sig = op.ty(body, tcx).fn_sig(tcx);
2083
2084                         // The type that we see in the fcx is like
2085                         // `foo::<'a, 'b>`, where `foo` is the path to a
2086                         // function definition. When we extract the
2087                         // signature, it comes from the `fn_sig` query,
2088                         // and hence may contain unnormalized results.
2089                         let fn_sig = self.normalize(fn_sig, location);
2090
2091                         let ty_fn_ptr_from = tcx.mk_fn_ptr(fn_sig);
2092
2093                         if let Err(terr) = self.eq_types(
2094                             ty,
2095                             ty_fn_ptr_from,
2096                             location.to_locations(),
2097                             ConstraintCategory::Cast,
2098                         ) {
2099                             span_mirbug!(
2100                                 self,
2101                                 rvalue,
2102                                 "equating {:?} with {:?} yields {:?}",
2103                                 ty_fn_ptr_from,
2104                                 ty,
2105                                 terr
2106                             );
2107                         }
2108                     }
2109
2110                     CastKind::Pointer(PointerCast::ClosureFnPointer(unsafety)) => {
2111                         let sig = match op.ty(body, tcx).kind() {
2112                             ty::Closure(_, substs) => substs.as_closure().sig(),
2113                             _ => bug!(),
2114                         };
2115                         let ty_fn_ptr_from = tcx.mk_fn_ptr(tcx.signature_unclosure(sig, *unsafety));
2116
2117                         if let Err(terr) = self.eq_types(
2118                             ty,
2119                             ty_fn_ptr_from,
2120                             location.to_locations(),
2121                             ConstraintCategory::Cast,
2122                         ) {
2123                             span_mirbug!(
2124                                 self,
2125                                 rvalue,
2126                                 "equating {:?} with {:?} yields {:?}",
2127                                 ty_fn_ptr_from,
2128                                 ty,
2129                                 terr
2130                             );
2131                         }
2132                     }
2133
2134                     CastKind::Pointer(PointerCast::UnsafeFnPointer) => {
2135                         let fn_sig = op.ty(body, tcx).fn_sig(tcx);
2136
2137                         // The type that we see in the fcx is like
2138                         // `foo::<'a, 'b>`, where `foo` is the path to a
2139                         // function definition. When we extract the
2140                         // signature, it comes from the `fn_sig` query,
2141                         // and hence may contain unnormalized results.
2142                         let fn_sig = self.normalize(fn_sig, location);
2143
2144                         let ty_fn_ptr_from = tcx.safe_to_unsafe_fn_ty(fn_sig);
2145
2146                         if let Err(terr) = self.eq_types(
2147                             ty,
2148                             ty_fn_ptr_from,
2149                             location.to_locations(),
2150                             ConstraintCategory::Cast,
2151                         ) {
2152                             span_mirbug!(
2153                                 self,
2154                                 rvalue,
2155                                 "equating {:?} with {:?} yields {:?}",
2156                                 ty_fn_ptr_from,
2157                                 ty,
2158                                 terr
2159                             );
2160                         }
2161                     }
2162
2163                     CastKind::Pointer(PointerCast::Unsize) => {
2164                         let &ty = ty;
2165                         let trait_ref = ty::TraitRef {
2166                             def_id: tcx
2167                                 .require_lang_item(LangItem::CoerceUnsized, Some(self.last_span)),
2168                             substs: tcx.mk_substs_trait(op.ty(body, tcx), &[ty.into()]),
2169                         };
2170
2171                         self.prove_trait_ref(
2172                             trait_ref,
2173                             location.to_locations(),
2174                             ConstraintCategory::Cast,
2175                         );
2176                     }
2177
2178                     CastKind::Pointer(PointerCast::MutToConstPointer) => {
2179                         let ty_from = match op.ty(body, tcx).kind() {
2180                             ty::RawPtr(ty::TypeAndMut {
2181                                 ty: ty_from,
2182                                 mutbl: hir::Mutability::Mut,
2183                             }) => ty_from,
2184                             _ => {
2185                                 span_mirbug!(
2186                                     self,
2187                                     rvalue,
2188                                     "unexpected base type for cast {:?}",
2189                                     ty,
2190                                 );
2191                                 return;
2192                             }
2193                         };
2194                         let ty_to = match ty.kind() {
2195                             ty::RawPtr(ty::TypeAndMut {
2196                                 ty: ty_to,
2197                                 mutbl: hir::Mutability::Not,
2198                             }) => ty_to,
2199                             _ => {
2200                                 span_mirbug!(
2201                                     self,
2202                                     rvalue,
2203                                     "unexpected target type for cast {:?}",
2204                                     ty,
2205                                 );
2206                                 return;
2207                             }
2208                         };
2209                         if let Err(terr) = self.sub_types(
2210                             ty_from,
2211                             ty_to,
2212                             location.to_locations(),
2213                             ConstraintCategory::Cast,
2214                         ) {
2215                             span_mirbug!(
2216                                 self,
2217                                 rvalue,
2218                                 "relating {:?} with {:?} yields {:?}",
2219                                 ty_from,
2220                                 ty_to,
2221                                 terr
2222                             );
2223                         }
2224                     }
2225
2226                     CastKind::Pointer(PointerCast::ArrayToPointer) => {
2227                         let ty_from = op.ty(body, tcx);
2228
2229                         let opt_ty_elem_mut = match ty_from.kind() {
2230                             ty::RawPtr(ty::TypeAndMut { mutbl: array_mut, ty: array_ty }) => {
2231                                 match array_ty.kind() {
2232                                     ty::Array(ty_elem, _) => Some((ty_elem, *array_mut)),
2233                                     _ => None,
2234                                 }
2235                             }
2236                             _ => None,
2237                         };
2238
2239                         let (ty_elem, ty_mut) = match opt_ty_elem_mut {
2240                             Some(ty_elem_mut) => ty_elem_mut,
2241                             None => {
2242                                 span_mirbug!(
2243                                     self,
2244                                     rvalue,
2245                                     "ArrayToPointer cast from unexpected type {:?}",
2246                                     ty_from,
2247                                 );
2248                                 return;
2249                             }
2250                         };
2251
2252                         let (ty_to, ty_to_mut) = match ty.kind() {
2253                             ty::RawPtr(ty::TypeAndMut { mutbl: ty_to_mut, ty: ty_to }) => {
2254                                 (ty_to, *ty_to_mut)
2255                             }
2256                             _ => {
2257                                 span_mirbug!(
2258                                     self,
2259                                     rvalue,
2260                                     "ArrayToPointer cast to unexpected type {:?}",
2261                                     ty,
2262                                 );
2263                                 return;
2264                             }
2265                         };
2266
2267                         if ty_to_mut == Mutability::Mut && ty_mut == Mutability::Not {
2268                             span_mirbug!(
2269                                 self,
2270                                 rvalue,
2271                                 "ArrayToPointer cast from const {:?} to mut {:?}",
2272                                 ty,
2273                                 ty_to
2274                             );
2275                             return;
2276                         }
2277
2278                         if let Err(terr) = self.sub_types(
2279                             ty_elem,
2280                             ty_to,
2281                             location.to_locations(),
2282                             ConstraintCategory::Cast,
2283                         ) {
2284                             span_mirbug!(
2285                                 self,
2286                                 rvalue,
2287                                 "relating {:?} with {:?} yields {:?}",
2288                                 ty_elem,
2289                                 ty_to,
2290                                 terr
2291                             )
2292                         }
2293                     }
2294
2295                     CastKind::Misc => {
2296                         let ty_from = op.ty(body, tcx);
2297                         let cast_ty_from = CastTy::from_ty(ty_from);
2298                         let cast_ty_to = CastTy::from_ty(ty);
2299                         match (cast_ty_from, cast_ty_to) {
2300                             (None, _)
2301                             | (_, None | Some(CastTy::FnPtr))
2302                             | (Some(CastTy::Float), Some(CastTy::Ptr(_)))
2303                             | (Some(CastTy::Ptr(_) | CastTy::FnPtr), Some(CastTy::Float)) => {
2304                                 span_mirbug!(self, rvalue, "Invalid cast {:?} -> {:?}", ty_from, ty,)
2305                             }
2306                             (
2307                                 Some(CastTy::Int(_)),
2308                                 Some(CastTy::Int(_) | CastTy::Float | CastTy::Ptr(_)),
2309                             )
2310                             | (Some(CastTy::Float), Some(CastTy::Int(_) | CastTy::Float))
2311                             | (Some(CastTy::Ptr(_)), Some(CastTy::Int(_) | CastTy::Ptr(_)))
2312                             | (Some(CastTy::FnPtr), Some(CastTy::Int(_) | CastTy::Ptr(_))) => (),
2313                         }
2314                     }
2315                 }
2316             }
2317
2318             Rvalue::Ref(region, _borrow_kind, borrowed_place) => {
2319                 self.add_reborrow_constraint(&body, location, region, borrowed_place);
2320             }
2321
2322             Rvalue::BinaryOp(
2323                 BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge,
2324                 box (left, right),
2325             ) => {
2326                 self.check_operand(left, location);
2327                 self.check_operand(right, location);
2328
2329                 let ty_left = left.ty(body, tcx);
2330                 match ty_left.kind() {
2331                     // Types with regions are comparable if they have a common super-type.
2332                     ty::RawPtr(_) | ty::FnPtr(_) => {
2333                         let ty_right = right.ty(body, tcx);
2334                         let common_ty = self.infcx.next_ty_var(TypeVariableOrigin {
2335                             kind: TypeVariableOriginKind::MiscVariable,
2336                             span: body.source_info(location).span,
2337                         });
2338                         self.sub_types(
2339                             ty_left,
2340                             common_ty,
2341                             location.to_locations(),
2342                             ConstraintCategory::Boring,
2343                         )
2344                         .unwrap_or_else(|err| {
2345                             bug!("Could not equate type variable with {:?}: {:?}", ty_left, err)
2346                         });
2347                         if let Err(terr) = self.sub_types(
2348                             ty_right,
2349                             common_ty,
2350                             location.to_locations(),
2351                             ConstraintCategory::Boring,
2352                         ) {
2353                             span_mirbug!(
2354                                 self,
2355                                 rvalue,
2356                                 "unexpected comparison types {:?} and {:?} yields {:?}",
2357                                 ty_left,
2358                                 ty_right,
2359                                 terr
2360                             )
2361                         }
2362                     }
2363                     // For types with no regions we can just check that the
2364                     // both operands have the same type.
2365                     ty::Int(_) | ty::Uint(_) | ty::Bool | ty::Char | ty::Float(_)
2366                         if ty_left == right.ty(body, tcx) => {}
2367                     // Other types are compared by trait methods, not by
2368                     // `Rvalue::BinaryOp`.
2369                     _ => span_mirbug!(
2370                         self,
2371                         rvalue,
2372                         "unexpected comparison types {:?} and {:?}",
2373                         ty_left,
2374                         right.ty(body, tcx)
2375                     ),
2376                 }
2377             }
2378
2379             Rvalue::Use(operand) | Rvalue::UnaryOp(_, operand) => {
2380                 self.check_operand(operand, location);
2381             }
2382
2383             Rvalue::BinaryOp(_, box (left, right))
2384             | Rvalue::CheckedBinaryOp(_, box (left, right)) => {
2385                 self.check_operand(left, location);
2386                 self.check_operand(right, location);
2387             }
2388
2389             Rvalue::AddressOf(..)
2390             | Rvalue::ThreadLocalRef(..)
2391             | Rvalue::Len(..)
2392             | Rvalue::Discriminant(..) => {}
2393         }
2394     }
2395
2396     /// If this rvalue supports a user-given type annotation, then
2397     /// extract and return it. This represents the final type of the
2398     /// rvalue and will be unified with the inferred type.
2399     fn rvalue_user_ty(&self, rvalue: &Rvalue<'tcx>) -> Option<UserTypeAnnotationIndex> {
2400         match rvalue {
2401             Rvalue::Use(_)
2402             | Rvalue::ThreadLocalRef(_)
2403             | Rvalue::Repeat(..)
2404             | Rvalue::Ref(..)
2405             | Rvalue::AddressOf(..)
2406             | Rvalue::Len(..)
2407             | Rvalue::Cast(..)
2408             | Rvalue::ShallowInitBox(..)
2409             | Rvalue::BinaryOp(..)
2410             | Rvalue::CheckedBinaryOp(..)
2411             | Rvalue::NullaryOp(..)
2412             | Rvalue::UnaryOp(..)
2413             | Rvalue::Discriminant(..) => None,
2414
2415             Rvalue::Aggregate(aggregate, _) => match **aggregate {
2416                 AggregateKind::Adt(_, _, _, user_ty, _) => user_ty,
2417                 AggregateKind::Array(_) => None,
2418                 AggregateKind::Tuple => None,
2419                 AggregateKind::Closure(_, _) => None,
2420                 AggregateKind::Generator(_, _, _) => None,
2421             },
2422         }
2423     }
2424
2425     fn check_aggregate_rvalue(
2426         &mut self,
2427         body: &Body<'tcx>,
2428         rvalue: &Rvalue<'tcx>,
2429         aggregate_kind: &AggregateKind<'tcx>,
2430         operands: &[Operand<'tcx>],
2431         location: Location,
2432     ) {
2433         let tcx = self.tcx();
2434
2435         self.prove_aggregate_predicates(aggregate_kind, location);
2436
2437         if *aggregate_kind == AggregateKind::Tuple {
2438             // tuple rvalue field type is always the type of the op. Nothing to check here.
2439             return;
2440         }
2441
2442         for (i, operand) in operands.iter().enumerate() {
2443             let field_ty = match self.aggregate_field_ty(aggregate_kind, i, location) {
2444                 Ok(field_ty) => field_ty,
2445                 Err(FieldAccessError::OutOfRange { field_count }) => {
2446                     span_mirbug!(
2447                         self,
2448                         rvalue,
2449                         "accessed field #{} but variant only has {}",
2450                         i,
2451                         field_count
2452                     );
2453                     continue;
2454                 }
2455             };
2456             let operand_ty = operand.ty(body, tcx);
2457             let operand_ty = self.normalize(operand_ty, location);
2458
2459             if let Err(terr) = self.sub_types(
2460                 operand_ty,
2461                 field_ty,
2462                 location.to_locations(),
2463                 ConstraintCategory::Boring,
2464             ) {
2465                 span_mirbug!(
2466                     self,
2467                     rvalue,
2468                     "{:?} is not a subtype of {:?}: {:?}",
2469                     operand_ty,
2470                     field_ty,
2471                     terr
2472                 );
2473             }
2474         }
2475     }
2476
2477     /// Adds the constraints that arise from a borrow expression `&'a P` at the location `L`.
2478     ///
2479     /// # Parameters
2480     ///
2481     /// - `location`: the location `L` where the borrow expression occurs
2482     /// - `borrow_region`: the region `'a` associated with the borrow
2483     /// - `borrowed_place`: the place `P` being borrowed
2484     fn add_reborrow_constraint(
2485         &mut self,
2486         body: &Body<'tcx>,
2487         location: Location,
2488         borrow_region: ty::Region<'tcx>,
2489         borrowed_place: &Place<'tcx>,
2490     ) {
2491         // These constraints are only meaningful during borrowck:
2492         let BorrowCheckContext { borrow_set, location_table, all_facts, constraints, .. } =
2493             self.borrowck_context;
2494
2495         // In Polonius mode, we also push a `loan_issued_at` fact
2496         // linking the loan to the region (in some cases, though,
2497         // there is no loan associated with this borrow expression --
2498         // that occurs when we are borrowing an unsafe place, for
2499         // example).
2500         if let Some(all_facts) = all_facts {
2501             let _prof_timer = self.infcx.tcx.prof.generic_activity("polonius_fact_generation");
2502             if let Some(borrow_index) = borrow_set.get_index_of(&location) {
2503                 let region_vid = borrow_region.to_region_vid();
2504                 all_facts.loan_issued_at.push((
2505                     region_vid,
2506                     borrow_index,
2507                     location_table.mid_index(location),
2508                 ));
2509             }
2510         }
2511
2512         // If we are reborrowing the referent of another reference, we
2513         // need to add outlives relationships. In a case like `&mut
2514         // *p`, where the `p` has type `&'b mut Foo`, for example, we
2515         // need to ensure that `'b: 'a`.
2516
2517         debug!(
2518             "add_reborrow_constraint({:?}, {:?}, {:?})",
2519             location, borrow_region, borrowed_place
2520         );
2521
2522         let mut cursor = borrowed_place.projection.as_ref();
2523         let tcx = self.infcx.tcx;
2524         let field = path_utils::is_upvar_field_projection(
2525             tcx,
2526             &self.borrowck_context.upvars,
2527             borrowed_place.as_ref(),
2528             body,
2529         );
2530         let category = if let Some(field) = field {
2531             let var_hir_id = self.borrowck_context.upvars[field.index()].place.get_root_variable();
2532             // FIXME(project-rfc-2229#8): Use Place for better diagnostics
2533             ConstraintCategory::ClosureUpvar(var_hir_id)
2534         } else {
2535             ConstraintCategory::Boring
2536         };
2537
2538         while let [proj_base @ .., elem] = cursor {
2539             cursor = proj_base;
2540
2541             debug!("add_reborrow_constraint - iteration {:?}", elem);
2542
2543             match elem {
2544                 ProjectionElem::Deref => {
2545                     let base_ty = Place::ty_from(borrowed_place.local, proj_base, body, tcx).ty;
2546
2547                     debug!("add_reborrow_constraint - base_ty = {:?}", base_ty);
2548                     match base_ty.kind() {
2549                         ty::Ref(ref_region, _, mutbl) => {
2550                             constraints.outlives_constraints.push(OutlivesConstraint {
2551                                 sup: ref_region.to_region_vid(),
2552                                 sub: borrow_region.to_region_vid(),
2553                                 locations: location.to_locations(),
2554                                 category,
2555                                 variance_info: ty::VarianceDiagInfo::default(),
2556                             });
2557
2558                             match mutbl {
2559                                 hir::Mutability::Not => {
2560                                     // Immutable reference. We don't need the base
2561                                     // to be valid for the entire lifetime of
2562                                     // the borrow.
2563                                     break;
2564                                 }
2565                                 hir::Mutability::Mut => {
2566                                     // Mutable reference. We *do* need the base
2567                                     // to be valid, because after the base becomes
2568                                     // invalid, someone else can use our mutable deref.
2569
2570                                     // This is in order to make the following function
2571                                     // illegal:
2572                                     // ```
2573                                     // fn unsafe_deref<'a, 'b>(x: &'a &'b mut T) -> &'b mut T {
2574                                     //     &mut *x
2575                                     // }
2576                                     // ```
2577                                     //
2578                                     // As otherwise you could clone `&mut T` using the
2579                                     // following function:
2580                                     // ```
2581                                     // fn bad(x: &mut T) -> (&mut T, &mut T) {
2582                                     //     let my_clone = unsafe_deref(&'a x);
2583                                     //     ENDREGION 'a;
2584                                     //     (my_clone, x)
2585                                     // }
2586                                     // ```
2587                                 }
2588                             }
2589                         }
2590                         ty::RawPtr(..) => {
2591                             // deref of raw pointer, guaranteed to be valid
2592                             break;
2593                         }
2594                         ty::Adt(def, _) if def.is_box() => {
2595                             // deref of `Box`, need the base to be valid - propagate
2596                         }
2597                         _ => bug!("unexpected deref ty {:?} in {:?}", base_ty, borrowed_place),
2598                     }
2599                 }
2600                 ProjectionElem::Field(..)
2601                 | ProjectionElem::Downcast(..)
2602                 | ProjectionElem::Index(..)
2603                 | ProjectionElem::ConstantIndex { .. }
2604                 | ProjectionElem::Subslice { .. } => {
2605                     // other field access
2606                 }
2607             }
2608         }
2609     }
2610
2611     fn prove_aggregate_predicates(
2612         &mut self,
2613         aggregate_kind: &AggregateKind<'tcx>,
2614         location: Location,
2615     ) {
2616         let tcx = self.tcx();
2617
2618         debug!(
2619             "prove_aggregate_predicates(aggregate_kind={:?}, location={:?})",
2620             aggregate_kind, location
2621         );
2622
2623         let (def_id, instantiated_predicates) = match aggregate_kind {
2624             AggregateKind::Adt(def, _, substs, _, _) => {
2625                 (def.did, tcx.predicates_of(def.did).instantiate(tcx, substs))
2626             }
2627
2628             // For closures, we have some **extra requirements** we
2629             //
2630             // have to check. In particular, in their upvars and
2631             // signatures, closures often reference various regions
2632             // from the surrounding function -- we call those the
2633             // closure's free regions. When we borrow-check (and hence
2634             // region-check) closures, we may find that the closure
2635             // requires certain relationships between those free
2636             // regions. However, because those free regions refer to
2637             // portions of the CFG of their caller, the closure is not
2638             // in a position to verify those relationships. In that
2639             // case, the requirements get "propagated" to us, and so
2640             // we have to solve them here where we instantiate the
2641             // closure.
2642             //
2643             // Despite the opacity of the previous parapgrah, this is
2644             // actually relatively easy to understand in terms of the
2645             // desugaring. A closure gets desugared to a struct, and
2646             // these extra requirements are basically like where
2647             // clauses on the struct.
2648             AggregateKind::Closure(def_id, substs)
2649             | AggregateKind::Generator(def_id, substs, _) => {
2650                 (*def_id, self.prove_closure_bounds(tcx, def_id.expect_local(), substs, location))
2651             }
2652
2653             AggregateKind::Array(_) | AggregateKind::Tuple => {
2654                 (CRATE_DEF_ID.to_def_id(), ty::InstantiatedPredicates::empty())
2655             }
2656         };
2657
2658         self.normalize_and_prove_instantiated_predicates(
2659             def_id,
2660             instantiated_predicates,
2661             location.to_locations(),
2662         );
2663     }
2664
2665     fn prove_closure_bounds(
2666         &mut self,
2667         tcx: TyCtxt<'tcx>,
2668         def_id: LocalDefId,
2669         substs: SubstsRef<'tcx>,
2670         location: Location,
2671     ) -> ty::InstantiatedPredicates<'tcx> {
2672         if let Some(ref closure_region_requirements) = tcx.mir_borrowck(def_id).closure_requirements
2673         {
2674             let closure_constraints = QueryRegionConstraints {
2675                 outlives: closure_region_requirements.apply_requirements(
2676                     tcx,
2677                     def_id.to_def_id(),
2678                     substs,
2679                 ),
2680
2681                 // Presently, closures never propagate member
2682                 // constraints to their parents -- they are enforced
2683                 // locally.  This is largely a non-issue as member
2684                 // constraints only come from `-> impl Trait` and
2685                 // friends which don't appear (thus far...) in
2686                 // closures.
2687                 member_constraints: vec![],
2688             };
2689
2690             let bounds_mapping = closure_constraints
2691                 .outlives
2692                 .iter()
2693                 .enumerate()
2694                 .filter_map(|(idx, constraint)| {
2695                     let ty::OutlivesPredicate(k1, r2) =
2696                         constraint.no_bound_vars().unwrap_or_else(|| {
2697                             bug!("query_constraint {:?} contained bound vars", constraint,);
2698                         });
2699
2700                     match k1.unpack() {
2701                         GenericArgKind::Lifetime(r1) => {
2702                             // constraint is r1: r2
2703                             let r1_vid = self.borrowck_context.universal_regions.to_region_vid(r1);
2704                             let r2_vid = self.borrowck_context.universal_regions.to_region_vid(r2);
2705                             let outlives_requirements =
2706                                 &closure_region_requirements.outlives_requirements[idx];
2707                             Some((
2708                                 (r1_vid, r2_vid),
2709                                 (outlives_requirements.category, outlives_requirements.blame_span),
2710                             ))
2711                         }
2712                         GenericArgKind::Type(_) | GenericArgKind::Const(_) => None,
2713                     }
2714                 })
2715                 .collect();
2716
2717             let existing = self
2718                 .borrowck_context
2719                 .constraints
2720                 .closure_bounds_mapping
2721                 .insert(location, bounds_mapping);
2722             assert!(existing.is_none(), "Multiple closures at the same location.");
2723
2724             self.push_region_constraints(
2725                 location.to_locations(),
2726                 ConstraintCategory::ClosureBounds,
2727                 &closure_constraints,
2728             );
2729         }
2730
2731         tcx.predicates_of(def_id).instantiate(tcx, substs)
2732     }
2733
2734     #[instrument(skip(self, body), level = "debug")]
2735     fn typeck_mir(&mut self, body: &Body<'tcx>) {
2736         self.last_span = body.span;
2737         debug!(?body.span);
2738
2739         for (local, local_decl) in body.local_decls.iter_enumerated() {
2740             self.check_local(&body, local, local_decl);
2741         }
2742
2743         for (block, block_data) in body.basic_blocks().iter_enumerated() {
2744             let mut location = Location { block, statement_index: 0 };
2745             for stmt in &block_data.statements {
2746                 if !stmt.source_info.span.is_dummy() {
2747                     self.last_span = stmt.source_info.span;
2748                 }
2749                 self.check_stmt(body, stmt, location);
2750                 location.statement_index += 1;
2751             }
2752
2753             self.check_terminator(&body, block_data.terminator(), location);
2754             self.check_iscleanup(&body, block_data);
2755         }
2756     }
2757 }
2758
2759 trait NormalizeLocation: fmt::Debug + Copy {
2760     fn to_locations(self) -> Locations;
2761 }
2762
2763 impl NormalizeLocation for Locations {
2764     fn to_locations(self) -> Locations {
2765         self
2766     }
2767 }
2768
2769 impl NormalizeLocation for Location {
2770     fn to_locations(self) -> Locations {
2771         Locations::Single(self)
2772     }
2773 }
2774
2775 #[derive(Debug, Default)]
2776 struct ObligationAccumulator<'tcx> {
2777     obligations: PredicateObligations<'tcx>,
2778 }
2779
2780 impl<'tcx> ObligationAccumulator<'tcx> {
2781     fn add<T>(&mut self, value: InferOk<'tcx, T>) -> T {
2782         let InferOk { value, obligations } = value;
2783         self.obligations.extend(obligations);
2784         value
2785     }
2786
2787     fn into_vec(self) -> PredicateObligations<'tcx> {
2788         self.obligations
2789     }
2790 }