]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_borrowck/src/type_check/mod.rs
Added docs to internal_macro const
[rust.git] / compiler / rustc_borrowck / src / type_check / mod.rs
1 //! This pass type-checks the MIR to ensure it is not broken.
2
3 use std::rc::Rc;
4 use std::{fmt, iter, mem};
5
6 use either::Either;
7
8 use rustc_data_structures::frozen::Frozen;
9 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
10 use rustc_data_structures::vec_map::VecMap;
11 use rustc_errors::struct_span_err;
12 use rustc_hir as hir;
13 use rustc_hir::def_id::LocalDefId;
14 use rustc_hir::lang_items::LangItem;
15 use rustc_index::vec::{Idx, IndexVec};
16 use rustc_infer::infer::canonical::QueryRegionConstraints;
17 use rustc_infer::infer::opaque_types::OpaqueTypeDecl;
18 use rustc_infer::infer::outlives::env::RegionBoundPairs;
19 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
20 use rustc_infer::infer::{
21     InferCtxt, InferOk, LateBoundRegionConversionTime, NllRegionVariableOrigin,
22 };
23 use rustc_middle::mir::tcx::PlaceTy;
24 use rustc_middle::mir::visit::{NonMutatingUseContext, PlaceContext, Visitor};
25 use rustc_middle::mir::AssertKind;
26 use rustc_middle::mir::*;
27 use rustc_middle::ty::adjustment::PointerCast;
28 use rustc_middle::ty::cast::CastTy;
29 use rustc_middle::ty::fold::TypeFoldable;
30 use rustc_middle::ty::subst::{GenericArgKind, SubstsRef, UserSubsts};
31 use rustc_middle::ty::{
32     self, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, OpaqueTypeKey, RegionVid,
33     ToPredicate, Ty, TyCtxt, UserType, UserTypeAnnotationIndex, WithConstness,
34 };
35 use rustc_span::def_id::CRATE_DEF_ID;
36 use rustc_span::{Span, DUMMY_SP};
37 use rustc_target::abi::VariantIdx;
38 use rustc_trait_selection::infer::InferCtxtExt as _;
39 use rustc_trait_selection::opaque_types::InferCtxtExt;
40 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
41 use rustc_trait_selection::traits::query::type_op;
42 use rustc_trait_selection::traits::query::type_op::custom::CustomTypeOp;
43 use rustc_trait_selection::traits::query::Fallible;
44 use rustc_trait_selection::traits::{self, ObligationCause, PredicateObligations};
45
46 use rustc_const_eval::transform::{
47     check_consts::ConstCx, promote_consts::is_const_fn_in_array_repeat_expression,
48 };
49 use rustc_mir_dataflow::impls::MaybeInitializedPlaces;
50 use rustc_mir_dataflow::move_paths::MoveData;
51 use rustc_mir_dataflow::ResultsCursor;
52
53 use crate::{
54     borrow_set::BorrowSet,
55     constraints::{OutlivesConstraint, OutlivesConstraintSet},
56     diagnostics::UniverseInfo,
57     facts::AllFacts,
58     location::LocationTable,
59     member_constraints::MemberConstraintSet,
60     nll::ToRegionVid,
61     path_utils,
62     region_infer::values::{
63         LivenessValues, PlaceholderIndex, PlaceholderIndices, RegionValueElements,
64     },
65     region_infer::{ClosureRegionRequirementsExt, TypeTest},
66     type_check::free_region_relations::{CreateResult, UniversalRegionRelations},
67     universal_regions::{DefiningTy, UniversalRegions},
68     Upvar,
69 };
70
71 macro_rules! span_mirbug {
72     ($context:expr, $elem:expr, $($message:tt)*) => ({
73         $crate::type_check::mirbug(
74             $context.tcx(),
75             $context.last_span,
76             &format!(
77                 "broken MIR in {:?} ({:?}): {}",
78                 $context.body.source.def_id(),
79                 $elem,
80                 format_args!($($message)*),
81             ),
82         )
83     })
84 }
85
86 macro_rules! span_mirbug_and_err {
87     ($context:expr, $elem:expr, $($message:tt)*) => ({
88         {
89             span_mirbug!($context, $elem, $($message)*);
90             $context.error()
91         }
92     })
93 }
94
95 mod canonical;
96 mod constraint_conversion;
97 pub mod free_region_relations;
98 mod input_output;
99 crate mod liveness;
100 mod relate_tys;
101
102 /// Type checks the given `mir` in the context of the inference
103 /// context `infcx`. Returns any region constraints that have yet to
104 /// be proven. This result includes liveness constraints that
105 /// ensure that regions appearing in the types of all local variables
106 /// are live at all points where that local variable may later be
107 /// used.
108 ///
109 /// This phase of type-check ought to be infallible -- this is because
110 /// the original, HIR-based type-check succeeded. So if any errors
111 /// occur here, we will get a `bug!` reported.
112 ///
113 /// # Parameters
114 ///
115 /// - `infcx` -- inference context to use
116 /// - `param_env` -- parameter environment to use for trait solving
117 /// - `body` -- MIR body to type-check
118 /// - `promoted` -- map of promoted constants within `body`
119 /// - `universal_regions` -- the universal regions from `body`s function signature
120 /// - `location_table` -- MIR location map of `body`
121 /// - `borrow_set` -- information about borrows occurring in `body`
122 /// - `all_facts` -- when using Polonius, this is the generated set of Polonius facts
123 /// - `flow_inits` -- results of a maybe-init dataflow analysis
124 /// - `move_data` -- move-data constructed when performing the maybe-init dataflow analysis
125 /// - `elements` -- MIR region map
126 pub(crate) fn type_check<'mir, 'tcx>(
127     infcx: &InferCtxt<'_, 'tcx>,
128     param_env: ty::ParamEnv<'tcx>,
129     body: &Body<'tcx>,
130     promoted: &IndexVec<Promoted, Body<'tcx>>,
131     universal_regions: &Rc<UniversalRegions<'tcx>>,
132     location_table: &LocationTable,
133     borrow_set: &BorrowSet<'tcx>,
134     all_facts: &mut Option<AllFacts>,
135     flow_inits: &mut ResultsCursor<'mir, 'tcx, MaybeInitializedPlaces<'mir, 'tcx>>,
136     move_data: &MoveData<'tcx>,
137     elements: &Rc<RegionValueElements>,
138     upvars: &[Upvar<'tcx>],
139 ) -> MirTypeckResults<'tcx> {
140     let implicit_region_bound = infcx.tcx.mk_region(ty::ReVar(universal_regions.fr_fn_body));
141     let mut universe_causes = FxHashMap::default();
142     universe_causes.insert(ty::UniverseIndex::from_u32(0), UniverseInfo::other());
143     let mut constraints = MirTypeckRegionConstraints {
144         placeholder_indices: PlaceholderIndices::default(),
145         placeholder_index_to_region: IndexVec::default(),
146         liveness_constraints: LivenessValues::new(elements.clone()),
147         outlives_constraints: OutlivesConstraintSet::default(),
148         member_constraints: MemberConstraintSet::default(),
149         closure_bounds_mapping: Default::default(),
150         type_tests: Vec::default(),
151         universe_causes,
152     };
153
154     let CreateResult {
155         universal_region_relations,
156         region_bound_pairs,
157         normalized_inputs_and_output,
158     } = free_region_relations::create(
159         infcx,
160         param_env,
161         Some(implicit_region_bound),
162         universal_regions,
163         &mut constraints,
164     );
165
166     for u in ty::UniverseIndex::ROOT..infcx.universe() {
167         let info = UniverseInfo::other();
168         constraints.universe_causes.insert(u, info);
169     }
170
171     let mut borrowck_context = BorrowCheckContext {
172         universal_regions,
173         location_table,
174         borrow_set,
175         all_facts,
176         constraints: &mut constraints,
177         upvars,
178     };
179
180     let opaque_type_values = type_check_internal(
181         infcx,
182         param_env,
183         body,
184         promoted,
185         &region_bound_pairs,
186         implicit_region_bound,
187         &mut borrowck_context,
188         |mut cx| {
189             cx.equate_inputs_and_outputs(&body, universal_regions, &normalized_inputs_and_output);
190             liveness::generate(&mut cx, body, elements, flow_inits, move_data, location_table);
191
192             translate_outlives_facts(&mut cx);
193             let opaque_type_values = mem::take(&mut infcx.inner.borrow_mut().opaque_types);
194
195             opaque_type_values
196                 .into_iter()
197                 .filter_map(|(opaque_type_key, mut decl)| {
198                     decl.concrete_ty = infcx.resolve_vars_if_possible(decl.concrete_ty);
199                     trace!(
200                         "finalized opaque type {:?} to {:#?}",
201                         opaque_type_key,
202                         decl.concrete_ty.kind()
203                     );
204                     if decl.concrete_ty.has_infer_types_or_consts() {
205                         infcx.tcx.sess.delay_span_bug(
206                             body.span,
207                             &format!("could not resolve {:#?}", decl.concrete_ty.kind()),
208                         );
209                         decl.concrete_ty = infcx.tcx.ty_error();
210                     }
211                     let concrete_is_opaque = if let ty::Opaque(def_id, _) = decl.concrete_ty.kind()
212                     {
213                         *def_id == opaque_type_key.def_id
214                     } else {
215                         false
216                     };
217
218                     if concrete_is_opaque {
219                         // We're using an opaque `impl Trait` type without
220                         // 'revealing' it. For example, code like this:
221                         //
222                         // type Foo = impl Debug;
223                         // fn foo1() -> Foo { ... }
224                         // fn foo2() -> Foo { foo1() }
225                         //
226                         // In `foo2`, we're not revealing the type of `Foo` - we're
227                         // just treating it as the opaque type.
228                         //
229                         // When this occurs, we do *not* want to try to equate
230                         // the concrete type with the underlying defining type
231                         // of the opaque type - this will always fail, since
232                         // the defining type of an opaque type is always
233                         // some other type (e.g. not itself)
234                         // Essentially, none of the normal obligations apply here -
235                         // we're just passing around some unknown opaque type,
236                         // without actually looking at the underlying type it
237                         // gets 'revealed' into
238                         debug!(
239                             "eq_opaque_type_and_type: non-defining use of {:?}",
240                             opaque_type_key.def_id,
241                         );
242                         None
243                     } else {
244                         Some((opaque_type_key, decl))
245                     }
246                 })
247                 .collect()
248         },
249     );
250
251     MirTypeckResults { constraints, universal_region_relations, opaque_type_values }
252 }
253
254 #[instrument(
255     skip(infcx, body, promoted, region_bound_pairs, borrowck_context, extra),
256     level = "debug"
257 )]
258 fn type_check_internal<'a, 'tcx, R>(
259     infcx: &'a InferCtxt<'a, 'tcx>,
260     param_env: ty::ParamEnv<'tcx>,
261     body: &'a Body<'tcx>,
262     promoted: &'a IndexVec<Promoted, Body<'tcx>>,
263     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
264     implicit_region_bound: ty::Region<'tcx>,
265     borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
266     extra: impl FnOnce(TypeChecker<'a, 'tcx>) -> R,
267 ) -> R {
268     let mut checker = TypeChecker::new(
269         infcx,
270         body,
271         param_env,
272         region_bound_pairs,
273         implicit_region_bound,
274         borrowck_context,
275     );
276     let errors_reported = {
277         let mut verifier = TypeVerifier::new(&mut checker, body, promoted);
278         verifier.visit_body(&body);
279         verifier.errors_reported
280     };
281
282     if !errors_reported {
283         // if verifier failed, don't do further checks to avoid ICEs
284         checker.typeck_mir(body);
285     }
286
287     extra(checker)
288 }
289
290 fn translate_outlives_facts(typeck: &mut TypeChecker<'_, '_>) {
291     let cx = &mut typeck.borrowck_context;
292     if let Some(facts) = cx.all_facts {
293         let _prof_timer = typeck.infcx.tcx.prof.generic_activity("polonius_fact_generation");
294         let location_table = cx.location_table;
295         facts.subset_base.extend(cx.constraints.outlives_constraints.outlives().iter().flat_map(
296             |constraint: &OutlivesConstraint<'_>| {
297                 if let Some(from_location) = constraint.locations.from_location() {
298                     Either::Left(iter::once((
299                         constraint.sup,
300                         constraint.sub,
301                         location_table.mid_index(from_location),
302                     )))
303                 } else {
304                     Either::Right(
305                         location_table
306                             .all_points()
307                             .map(move |location| (constraint.sup, constraint.sub, location)),
308                     )
309                 }
310             },
311         ));
312     }
313 }
314
315 fn mirbug(tcx: TyCtxt<'_>, span: Span, msg: &str) {
316     // We sometimes see MIR failures (notably predicate failures) due to
317     // the fact that we check rvalue sized predicates here. So use `delay_span_bug`
318     // to avoid reporting bugs in those cases.
319     tcx.sess.diagnostic().delay_span_bug(span, msg);
320 }
321
322 enum FieldAccessError {
323     OutOfRange { field_count: usize },
324 }
325
326 /// Verifies that MIR types are sane to not crash further checks.
327 ///
328 /// The sanitize_XYZ methods here take an MIR object and compute its
329 /// type, calling `span_mirbug` and returning an error type if there
330 /// is a problem.
331 struct TypeVerifier<'a, 'b, 'tcx> {
332     cx: &'a mut TypeChecker<'b, 'tcx>,
333     body: &'b Body<'tcx>,
334     promoted: &'b IndexVec<Promoted, Body<'tcx>>,
335     last_span: Span,
336     errors_reported: bool,
337 }
338
339 impl<'a, 'b, 'tcx> Visitor<'tcx> for TypeVerifier<'a, 'b, 'tcx> {
340     fn visit_span(&mut self, span: &Span) {
341         if !span.is_dummy() {
342             self.last_span = *span;
343         }
344     }
345
346     fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
347         self.sanitize_place(place, location, context);
348     }
349
350     fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
351         self.super_constant(constant, location);
352         let ty = self.sanitize_type(constant, constant.literal.ty());
353
354         self.cx.infcx.tcx.for_each_free_region(&ty, |live_region| {
355             let live_region_vid =
356                 self.cx.borrowck_context.universal_regions.to_region_vid(live_region);
357             self.cx
358                 .borrowck_context
359                 .constraints
360                 .liveness_constraints
361                 .add_element(live_region_vid, location);
362         });
363
364         if let Some(annotation_index) = constant.user_ty {
365             if let Err(terr) = self.cx.relate_type_and_user_type(
366                 constant.literal.ty(),
367                 ty::Variance::Invariant,
368                 &UserTypeProjection { base: annotation_index, projs: vec![] },
369                 location.to_locations(),
370                 ConstraintCategory::Boring,
371             ) {
372                 let annotation = &self.cx.user_type_annotations[annotation_index];
373                 span_mirbug!(
374                     self,
375                     constant,
376                     "bad constant user type {:?} vs {:?}: {:?}",
377                     annotation,
378                     constant.literal.ty(),
379                     terr,
380                 );
381             }
382         } else {
383             let tcx = self.tcx();
384             let maybe_uneval = match constant.literal {
385                 ConstantKind::Ty(ct) => match ct.val {
386                     ty::ConstKind::Unevaluated(uv) => Some(uv),
387                     _ => None,
388                 },
389                 _ => None,
390             };
391             if let Some(uv) = maybe_uneval {
392                 if let Some(promoted) = uv.promoted {
393                     let check_err = |verifier: &mut TypeVerifier<'a, 'b, 'tcx>,
394                                      promoted: &Body<'tcx>,
395                                      ty,
396                                      san_ty| {
397                         if let Err(terr) = verifier.cx.eq_types(
398                             ty,
399                             san_ty,
400                             location.to_locations(),
401                             ConstraintCategory::Boring,
402                         ) {
403                             span_mirbug!(
404                                 verifier,
405                                 promoted,
406                                 "bad promoted type ({:?}: {:?}): {:?}",
407                                 ty,
408                                 san_ty,
409                                 terr
410                             );
411                         };
412                     };
413
414                     if !self.errors_reported {
415                         let promoted_body = &self.promoted[promoted];
416                         self.sanitize_promoted(promoted_body, location);
417
418                         let promoted_ty = promoted_body.return_ty();
419                         check_err(self, promoted_body, ty, promoted_ty);
420                     }
421                 } else {
422                     if let Err(terr) = self.cx.fully_perform_op(
423                         location.to_locations(),
424                         ConstraintCategory::Boring,
425                         self.cx.param_env.and(type_op::ascribe_user_type::AscribeUserType::new(
426                             constant.literal.ty(),
427                             uv.def.did,
428                             UserSubsts { substs: uv.substs(self.tcx()), user_self_ty: None },
429                         )),
430                     ) {
431                         span_mirbug!(
432                             self,
433                             constant,
434                             "bad constant type {:?} ({:?})",
435                             constant,
436                             terr
437                         );
438                     }
439                 }
440             } else if let Some(static_def_id) = constant.check_static_ptr(tcx) {
441                 let unnormalized_ty = tcx.type_of(static_def_id);
442                 let locations = location.to_locations();
443                 let normalized_ty = self.cx.normalize(unnormalized_ty, locations);
444                 let literal_ty = constant.literal.ty().builtin_deref(true).unwrap().ty;
445
446                 if let Err(terr) = self.cx.eq_types(
447                     literal_ty,
448                     normalized_ty,
449                     locations,
450                     ConstraintCategory::Boring,
451                 ) {
452                     span_mirbug!(self, constant, "bad static type {:?} ({:?})", constant, terr);
453                 }
454             }
455
456             if let ty::FnDef(def_id, substs) = *constant.literal.ty().kind() {
457                 let instantiated_predicates = tcx.predicates_of(def_id).instantiate(tcx, substs);
458                 self.cx.normalize_and_prove_instantiated_predicates(
459                     def_id,
460                     instantiated_predicates,
461                     location.to_locations(),
462                 );
463             }
464         }
465     }
466
467     fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
468         self.super_rvalue(rvalue, location);
469         let rval_ty = rvalue.ty(self.body, self.tcx());
470         self.sanitize_type(rvalue, rval_ty);
471     }
472
473     fn visit_local_decl(&mut self, local: Local, local_decl: &LocalDecl<'tcx>) {
474         self.super_local_decl(local, local_decl);
475         self.sanitize_type(local_decl, local_decl.ty);
476
477         if let Some(user_ty) = &local_decl.user_ty {
478             for (user_ty, span) in user_ty.projections_and_spans() {
479                 let ty = if !local_decl.is_nonref_binding() {
480                     // If we have a binding of the form `let ref x: T = ..`
481                     // then remove the outermost reference so we can check the
482                     // type annotation for the remaining type.
483                     if let ty::Ref(_, rty, _) = local_decl.ty.kind() {
484                         rty
485                     } else {
486                         bug!("{:?} with ref binding has wrong type {}", local, local_decl.ty);
487                     }
488                 } else {
489                     local_decl.ty
490                 };
491
492                 if let Err(terr) = self.cx.relate_type_and_user_type(
493                     ty,
494                     ty::Variance::Invariant,
495                     user_ty,
496                     Locations::All(*span),
497                     ConstraintCategory::TypeAnnotation,
498                 ) {
499                     span_mirbug!(
500                         self,
501                         local,
502                         "bad user type on variable {:?}: {:?} != {:?} ({:?})",
503                         local,
504                         local_decl.ty,
505                         local_decl.user_ty,
506                         terr,
507                     );
508                 }
509             }
510         }
511     }
512
513     fn visit_body(&mut self, body: &Body<'tcx>) {
514         self.sanitize_type(&"return type", body.return_ty());
515         for local_decl in &body.local_decls {
516             self.sanitize_type(local_decl, local_decl.ty);
517         }
518         if self.errors_reported {
519             return;
520         }
521         self.super_body(body);
522     }
523 }
524
525 impl<'a, 'b, 'tcx> TypeVerifier<'a, 'b, 'tcx> {
526     fn new(
527         cx: &'a mut TypeChecker<'b, 'tcx>,
528         body: &'b Body<'tcx>,
529         promoted: &'b IndexVec<Promoted, Body<'tcx>>,
530     ) -> Self {
531         TypeVerifier { body, promoted, cx, last_span: body.span, errors_reported: false }
532     }
533
534     fn tcx(&self) -> TyCtxt<'tcx> {
535         self.cx.infcx.tcx
536     }
537
538     fn sanitize_type(&mut self, parent: &dyn fmt::Debug, ty: Ty<'tcx>) -> Ty<'tcx> {
539         if ty.has_escaping_bound_vars() || ty.references_error() {
540             span_mirbug_and_err!(self, parent, "bad type {:?}", ty)
541         } else {
542             ty
543         }
544     }
545
546     /// Checks that the types internal to the `place` match up with
547     /// what would be expected.
548     fn sanitize_place(
549         &mut self,
550         place: &Place<'tcx>,
551         location: Location,
552         context: PlaceContext,
553     ) -> PlaceTy<'tcx> {
554         debug!("sanitize_place: {:?}", place);
555
556         let mut place_ty = PlaceTy::from_ty(self.body.local_decls[place.local].ty);
557
558         for elem in place.projection.iter() {
559             if place_ty.variant_index.is_none() {
560                 if place_ty.ty.references_error() {
561                     assert!(self.errors_reported);
562                     return PlaceTy::from_ty(self.tcx().ty_error());
563                 }
564             }
565             place_ty = self.sanitize_projection(place_ty, elem, place, location);
566         }
567
568         if let PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy) = context {
569             let tcx = self.tcx();
570             let trait_ref = ty::TraitRef {
571                 def_id: tcx.require_lang_item(LangItem::Copy, Some(self.last_span)),
572                 substs: tcx.mk_substs_trait(place_ty.ty, &[]),
573             };
574
575             // To have a `Copy` operand, the type `T` of the
576             // value must be `Copy`. Note that we prove that `T: Copy`,
577             // rather than using the `is_copy_modulo_regions`
578             // test. This is important because
579             // `is_copy_modulo_regions` ignores the resulting region
580             // obligations and assumes they pass. This can result in
581             // bounds from `Copy` impls being unsoundly ignored (e.g.,
582             // #29149). Note that we decide to use `Copy` before knowing
583             // whether the bounds fully apply: in effect, the rule is
584             // that if a value of some type could implement `Copy`, then
585             // it must.
586             self.cx.prove_trait_ref(
587                 trait_ref,
588                 location.to_locations(),
589                 ConstraintCategory::CopyBound,
590             );
591         }
592
593         place_ty
594     }
595
596     fn sanitize_promoted(&mut self, promoted_body: &'b Body<'tcx>, location: Location) {
597         // Determine the constraints from the promoted MIR by running the type
598         // checker on the promoted MIR, then transfer the constraints back to
599         // the main MIR, changing the locations to the provided location.
600
601         let parent_body = mem::replace(&mut self.body, promoted_body);
602
603         // Use new sets of constraints and closure bounds so that we can
604         // modify their locations.
605         let all_facts = &mut None;
606         let mut constraints = Default::default();
607         let mut closure_bounds = Default::default();
608         let mut liveness_constraints =
609             LivenessValues::new(Rc::new(RegionValueElements::new(&promoted_body)));
610         // Don't try to add borrow_region facts for the promoted MIR
611
612         let mut swap_constraints = |this: &mut Self| {
613             mem::swap(this.cx.borrowck_context.all_facts, all_facts);
614             mem::swap(
615                 &mut this.cx.borrowck_context.constraints.outlives_constraints,
616                 &mut constraints,
617             );
618             mem::swap(
619                 &mut this.cx.borrowck_context.constraints.closure_bounds_mapping,
620                 &mut closure_bounds,
621             );
622             mem::swap(
623                 &mut this.cx.borrowck_context.constraints.liveness_constraints,
624                 &mut liveness_constraints,
625             );
626         };
627
628         swap_constraints(self);
629
630         self.visit_body(&promoted_body);
631
632         if !self.errors_reported {
633             // if verifier failed, don't do further checks to avoid ICEs
634             self.cx.typeck_mir(promoted_body);
635         }
636
637         self.body = parent_body;
638         // Merge the outlives constraints back in, at the given location.
639         swap_constraints(self);
640
641         let locations = location.to_locations();
642         for constraint in constraints.outlives().iter() {
643             let mut constraint = constraint.clone();
644             constraint.locations = locations;
645             if let ConstraintCategory::Return(_)
646             | ConstraintCategory::UseAsConst
647             | ConstraintCategory::UseAsStatic = constraint.category
648             {
649                 // "Returning" from a promoted is an assignment to a
650                 // temporary from the user's point of view.
651                 constraint.category = ConstraintCategory::Boring;
652             }
653             self.cx.borrowck_context.constraints.outlives_constraints.push(constraint)
654         }
655         for region in liveness_constraints.rows() {
656             // If the region is live at at least one location in the promoted MIR,
657             // then add a liveness constraint to the main MIR for this region
658             // at the location provided as an argument to this method
659             if let Some(_) = liveness_constraints.get_elements(region).next() {
660                 self.cx
661                     .borrowck_context
662                     .constraints
663                     .liveness_constraints
664                     .add_element(region, location);
665             }
666         }
667
668         if !closure_bounds.is_empty() {
669             let combined_bounds_mapping =
670                 closure_bounds.into_iter().flat_map(|(_, value)| value).collect();
671             let existing = self
672                 .cx
673                 .borrowck_context
674                 .constraints
675                 .closure_bounds_mapping
676                 .insert(location, combined_bounds_mapping);
677             assert!(existing.is_none(), "Multiple promoteds/closures at the same location.");
678         }
679     }
680
681     fn sanitize_projection(
682         &mut self,
683         base: PlaceTy<'tcx>,
684         pi: PlaceElem<'tcx>,
685         place: &Place<'tcx>,
686         location: Location,
687     ) -> PlaceTy<'tcx> {
688         debug!("sanitize_projection: {:?} {:?} {:?}", base, pi, place);
689         let tcx = self.tcx();
690         let base_ty = base.ty;
691         match pi {
692             ProjectionElem::Deref => {
693                 let deref_ty = base_ty.builtin_deref(true);
694                 PlaceTy::from_ty(deref_ty.map(|t| t.ty).unwrap_or_else(|| {
695                     span_mirbug_and_err!(self, place, "deref of non-pointer {:?}", base_ty)
696                 }))
697             }
698             ProjectionElem::Index(i) => {
699                 let index_ty = Place::from(i).ty(self.body, tcx).ty;
700                 if index_ty != tcx.types.usize {
701                     PlaceTy::from_ty(span_mirbug_and_err!(self, i, "index by non-usize {:?}", i))
702                 } else {
703                     PlaceTy::from_ty(base_ty.builtin_index().unwrap_or_else(|| {
704                         span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
705                     }))
706                 }
707             }
708             ProjectionElem::ConstantIndex { .. } => {
709                 // consider verifying in-bounds
710                 PlaceTy::from_ty(base_ty.builtin_index().unwrap_or_else(|| {
711                     span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
712                 }))
713             }
714             ProjectionElem::Subslice { from, to, from_end } => {
715                 PlaceTy::from_ty(match base_ty.kind() {
716                     ty::Array(inner, _) => {
717                         assert!(!from_end, "array subslices should not use from_end");
718                         tcx.mk_array(inner, to - from)
719                     }
720                     ty::Slice(..) => {
721                         assert!(from_end, "slice subslices should use from_end");
722                         base_ty
723                     }
724                     _ => span_mirbug_and_err!(self, place, "slice of non-array {:?}", base_ty),
725                 })
726             }
727             ProjectionElem::Downcast(maybe_name, index) => match base_ty.kind() {
728                 ty::Adt(adt_def, _substs) if adt_def.is_enum() => {
729                     if index.as_usize() >= adt_def.variants.len() {
730                         PlaceTy::from_ty(span_mirbug_and_err!(
731                             self,
732                             place,
733                             "cast to variant #{:?} but enum only has {:?}",
734                             index,
735                             adt_def.variants.len()
736                         ))
737                     } else {
738                         PlaceTy { ty: base_ty, variant_index: Some(index) }
739                     }
740                 }
741                 // We do not need to handle generators here, because this runs
742                 // before the generator transform stage.
743                 _ => {
744                     let ty = if let Some(name) = maybe_name {
745                         span_mirbug_and_err!(
746                             self,
747                             place,
748                             "can't downcast {:?} as {:?}",
749                             base_ty,
750                             name
751                         )
752                     } else {
753                         span_mirbug_and_err!(self, place, "can't downcast {:?}", base_ty)
754                     };
755                     PlaceTy::from_ty(ty)
756                 }
757             },
758             ProjectionElem::Field(field, fty) => {
759                 let fty = self.sanitize_type(place, fty);
760                 match self.field_ty(place, base, field, location) {
761                     Ok(ty) => {
762                         let ty = self.cx.normalize(ty, location);
763                         if let Err(terr) = self.cx.eq_types(
764                             ty,
765                             fty,
766                             location.to_locations(),
767                             ConstraintCategory::Boring,
768                         ) {
769                             span_mirbug!(
770                                 self,
771                                 place,
772                                 "bad field access ({:?}: {:?}): {:?}",
773                                 ty,
774                                 fty,
775                                 terr
776                             );
777                         }
778                     }
779                     Err(FieldAccessError::OutOfRange { field_count }) => span_mirbug!(
780                         self,
781                         place,
782                         "accessed field #{} but variant only has {}",
783                         field.index(),
784                         field_count
785                     ),
786                 }
787                 PlaceTy::from_ty(fty)
788             }
789         }
790     }
791
792     fn error(&mut self) -> Ty<'tcx> {
793         self.errors_reported = true;
794         self.tcx().ty_error()
795     }
796
797     fn field_ty(
798         &mut self,
799         parent: &dyn fmt::Debug,
800         base_ty: PlaceTy<'tcx>,
801         field: Field,
802         location: Location,
803     ) -> Result<Ty<'tcx>, FieldAccessError> {
804         let tcx = self.tcx();
805
806         let (variant, substs) = match base_ty {
807             PlaceTy { ty, variant_index: Some(variant_index) } => match *ty.kind() {
808                 ty::Adt(adt_def, substs) => (&adt_def.variants[variant_index], substs),
809                 ty::Generator(def_id, substs, _) => {
810                     let mut variants = substs.as_generator().state_tys(def_id, tcx);
811                     let mut variant = match variants.nth(variant_index.into()) {
812                         Some(v) => v,
813                         None => bug!(
814                             "variant_index of generator out of range: {:?}/{:?}",
815                             variant_index,
816                             substs.as_generator().state_tys(def_id, tcx).count()
817                         ),
818                     };
819                     return match variant.nth(field.index()) {
820                         Some(ty) => Ok(ty),
821                         None => Err(FieldAccessError::OutOfRange { field_count: variant.count() }),
822                     };
823                 }
824                 _ => bug!("can't have downcast of non-adt non-generator type"),
825             },
826             PlaceTy { ty, variant_index: None } => match *ty.kind() {
827                 ty::Adt(adt_def, substs) if !adt_def.is_enum() => {
828                     (&adt_def.variants[VariantIdx::new(0)], substs)
829                 }
830                 ty::Closure(_, substs) => {
831                     return match substs
832                         .as_closure()
833                         .tupled_upvars_ty()
834                         .tuple_element_ty(field.index())
835                     {
836                         Some(ty) => Ok(ty),
837                         None => Err(FieldAccessError::OutOfRange {
838                             field_count: substs.as_closure().upvar_tys().count(),
839                         }),
840                     };
841                 }
842                 ty::Generator(_, substs, _) => {
843                     // Only prefix fields (upvars and current state) are
844                     // accessible without a variant index.
845                     return match substs.as_generator().prefix_tys().nth(field.index()) {
846                         Some(ty) => Ok(ty),
847                         None => Err(FieldAccessError::OutOfRange {
848                             field_count: substs.as_generator().prefix_tys().count(),
849                         }),
850                     };
851                 }
852                 ty::Tuple(tys) => {
853                     return match tys.get(field.index()) {
854                         Some(&ty) => Ok(ty.expect_ty()),
855                         None => Err(FieldAccessError::OutOfRange { field_count: tys.len() }),
856                     };
857                 }
858                 _ => {
859                     return Ok(span_mirbug_and_err!(
860                         self,
861                         parent,
862                         "can't project out of {:?}",
863                         base_ty
864                     ));
865                 }
866             },
867         };
868
869         if let Some(field) = variant.fields.get(field.index()) {
870             Ok(self.cx.normalize(field.ty(tcx, substs), location))
871         } else {
872             Err(FieldAccessError::OutOfRange { field_count: variant.fields.len() })
873         }
874     }
875 }
876
877 /// The MIR type checker. Visits the MIR and enforces all the
878 /// constraints needed for it to be valid and well-typed. Along the
879 /// way, it accrues region constraints -- these can later be used by
880 /// NLL region checking.
881 struct TypeChecker<'a, 'tcx> {
882     infcx: &'a InferCtxt<'a, 'tcx>,
883     param_env: ty::ParamEnv<'tcx>,
884     last_span: Span,
885     body: &'a Body<'tcx>,
886     /// User type annotations are shared between the main MIR and the MIR of
887     /// all of the promoted items.
888     user_type_annotations: &'a CanonicalUserTypeAnnotations<'tcx>,
889     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
890     implicit_region_bound: ty::Region<'tcx>,
891     reported_errors: FxHashSet<(Ty<'tcx>, Span)>,
892     borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
893 }
894
895 struct BorrowCheckContext<'a, 'tcx> {
896     universal_regions: &'a UniversalRegions<'tcx>,
897     location_table: &'a LocationTable,
898     all_facts: &'a mut Option<AllFacts>,
899     borrow_set: &'a BorrowSet<'tcx>,
900     constraints: &'a mut MirTypeckRegionConstraints<'tcx>,
901     upvars: &'a [Upvar<'tcx>],
902 }
903
904 crate struct MirTypeckResults<'tcx> {
905     crate constraints: MirTypeckRegionConstraints<'tcx>,
906     crate universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
907     crate opaque_type_values: VecMap<OpaqueTypeKey<'tcx>, OpaqueTypeDecl<'tcx>>,
908 }
909
910 /// A collection of region constraints that must be satisfied for the
911 /// program to be considered well-typed.
912 crate struct MirTypeckRegionConstraints<'tcx> {
913     /// Maps from a `ty::Placeholder` to the corresponding
914     /// `PlaceholderIndex` bit that we will use for it.
915     ///
916     /// To keep everything in sync, do not insert this set
917     /// directly. Instead, use the `placeholder_region` helper.
918     crate placeholder_indices: PlaceholderIndices,
919
920     /// Each time we add a placeholder to `placeholder_indices`, we
921     /// also create a corresponding "representative" region vid for
922     /// that wraps it. This vector tracks those. This way, when we
923     /// convert the same `ty::RePlaceholder(p)` twice, we can map to
924     /// the same underlying `RegionVid`.
925     crate placeholder_index_to_region: IndexVec<PlaceholderIndex, ty::Region<'tcx>>,
926
927     /// In general, the type-checker is not responsible for enforcing
928     /// liveness constraints; this job falls to the region inferencer,
929     /// which performs a liveness analysis. However, in some limited
930     /// cases, the MIR type-checker creates temporary regions that do
931     /// not otherwise appear in the MIR -- in particular, the
932     /// late-bound regions that it instantiates at call-sites -- and
933     /// hence it must report on their liveness constraints.
934     crate liveness_constraints: LivenessValues<RegionVid>,
935
936     crate outlives_constraints: OutlivesConstraintSet<'tcx>,
937
938     crate member_constraints: MemberConstraintSet<'tcx, RegionVid>,
939
940     crate closure_bounds_mapping:
941         FxHashMap<Location, FxHashMap<(RegionVid, RegionVid), (ConstraintCategory, Span)>>,
942
943     crate universe_causes: FxHashMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
944
945     crate type_tests: Vec<TypeTest<'tcx>>,
946 }
947
948 impl MirTypeckRegionConstraints<'tcx> {
949     fn placeholder_region(
950         &mut self,
951         infcx: &InferCtxt<'_, 'tcx>,
952         placeholder: ty::PlaceholderRegion,
953     ) -> ty::Region<'tcx> {
954         let placeholder_index = self.placeholder_indices.insert(placeholder);
955         match self.placeholder_index_to_region.get(placeholder_index) {
956             Some(&v) => v,
957             None => {
958                 let origin = NllRegionVariableOrigin::Placeholder(placeholder);
959                 let region = infcx.next_nll_region_var_in_universe(origin, placeholder.universe);
960                 self.placeholder_index_to_region.push(region);
961                 region
962             }
963         }
964     }
965 }
966
967 /// The `Locations` type summarizes *where* region constraints are
968 /// required to hold. Normally, this is at a particular point which
969 /// created the obligation, but for constraints that the user gave, we
970 /// want the constraint to hold at all points.
971 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
972 pub enum Locations {
973     /// Indicates that a type constraint should always be true. This
974     /// is particularly important in the new borrowck analysis for
975     /// things like the type of the return slot. Consider this
976     /// example:
977     ///
978     /// ```
979     /// fn foo<'a>(x: &'a u32) -> &'a u32 {
980     ///     let y = 22;
981     ///     return &y; // error
982     /// }
983     /// ```
984     ///
985     /// Here, we wind up with the signature from the return type being
986     /// something like `&'1 u32` where `'1` is a universal region. But
987     /// the type of the return slot `_0` is something like `&'2 u32`
988     /// where `'2` is an existential region variable. The type checker
989     /// requires that `&'2 u32 = &'1 u32` -- but at what point? In the
990     /// older NLL analysis, we required this only at the entry point
991     /// to the function. By the nature of the constraints, this wound
992     /// up propagating to all points reachable from start (because
993     /// `'1` -- as a universal region -- is live everywhere). In the
994     /// newer analysis, though, this doesn't work: `_0` is considered
995     /// dead at the start (it has no usable value) and hence this type
996     /// equality is basically a no-op. Then, later on, when we do `_0
997     /// = &'3 y`, that region `'3` never winds up related to the
998     /// universal region `'1` and hence no error occurs. Therefore, we
999     /// use Locations::All instead, which ensures that the `'1` and
1000     /// `'2` are equal everything. We also use this for other
1001     /// user-given type annotations; e.g., if the user wrote `let mut
1002     /// x: &'static u32 = ...`, we would ensure that all values
1003     /// assigned to `x` are of `'static` lifetime.
1004     ///
1005     /// The span points to the place the constraint arose. For example,
1006     /// it points to the type in a user-given type annotation. If
1007     /// there's no sensible span then it's DUMMY_SP.
1008     All(Span),
1009
1010     /// An outlives constraint that only has to hold at a single location,
1011     /// usually it represents a point where references flow from one spot to
1012     /// another (e.g., `x = y`)
1013     Single(Location),
1014 }
1015
1016 impl Locations {
1017     pub fn from_location(&self) -> Option<Location> {
1018         match self {
1019             Locations::All(_) => None,
1020             Locations::Single(from_location) => Some(*from_location),
1021         }
1022     }
1023
1024     /// Gets a span representing the location.
1025     pub fn span(&self, body: &Body<'_>) -> Span {
1026         match self {
1027             Locations::All(span) => *span,
1028             Locations::Single(l) => body.source_info(*l).span,
1029         }
1030     }
1031 }
1032
1033 impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
1034     fn new(
1035         infcx: &'a InferCtxt<'a, 'tcx>,
1036         body: &'a Body<'tcx>,
1037         param_env: ty::ParamEnv<'tcx>,
1038         region_bound_pairs: &'a RegionBoundPairs<'tcx>,
1039         implicit_region_bound: ty::Region<'tcx>,
1040         borrowck_context: &'a mut BorrowCheckContext<'a, 'tcx>,
1041     ) -> Self {
1042         let mut checker = Self {
1043             infcx,
1044             last_span: DUMMY_SP,
1045             body,
1046             user_type_annotations: &body.user_type_annotations,
1047             param_env,
1048             region_bound_pairs,
1049             implicit_region_bound,
1050             borrowck_context,
1051             reported_errors: Default::default(),
1052         };
1053         checker.check_user_type_annotations();
1054         checker
1055     }
1056
1057     fn unsized_feature_enabled(&self) -> bool {
1058         let features = self.tcx().features();
1059         features.unsized_locals || features.unsized_fn_params
1060     }
1061
1062     /// Equate the inferred type and the annotated type for user type annotations
1063     fn check_user_type_annotations(&mut self) {
1064         debug!(
1065             "check_user_type_annotations: user_type_annotations={:?}",
1066             self.user_type_annotations
1067         );
1068         for user_annotation in self.user_type_annotations {
1069             let CanonicalUserTypeAnnotation { span, ref user_ty, inferred_ty } = *user_annotation;
1070             let inferred_ty = self.normalize(inferred_ty, Locations::All(span));
1071             let annotation = self.instantiate_canonical_with_fresh_inference_vars(span, user_ty);
1072             match annotation {
1073                 UserType::Ty(mut ty) => {
1074                     ty = self.normalize(ty, Locations::All(span));
1075
1076                     if let Err(terr) = self.eq_types(
1077                         ty,
1078                         inferred_ty,
1079                         Locations::All(span),
1080                         ConstraintCategory::BoringNoLocation,
1081                     ) {
1082                         span_mirbug!(
1083                             self,
1084                             user_annotation,
1085                             "bad user type ({:?} = {:?}): {:?}",
1086                             ty,
1087                             inferred_ty,
1088                             terr
1089                         );
1090                     }
1091
1092                     self.prove_predicate(
1093                         ty::Binder::dummy(ty::PredicateKind::WellFormed(inferred_ty.into()))
1094                             .to_predicate(self.tcx()),
1095                         Locations::All(span),
1096                         ConstraintCategory::TypeAnnotation,
1097                     );
1098                 }
1099                 UserType::TypeOf(def_id, user_substs) => {
1100                     if let Err(terr) = self.fully_perform_op(
1101                         Locations::All(span),
1102                         ConstraintCategory::BoringNoLocation,
1103                         self.param_env.and(type_op::ascribe_user_type::AscribeUserType::new(
1104                             inferred_ty,
1105                             def_id,
1106                             user_substs,
1107                         )),
1108                     ) {
1109                         span_mirbug!(
1110                             self,
1111                             user_annotation,
1112                             "bad user type AscribeUserType({:?}, {:?} {:?}, type_of={:?}): {:?}",
1113                             inferred_ty,
1114                             def_id,
1115                             user_substs,
1116                             self.tcx().type_of(def_id),
1117                             terr,
1118                         );
1119                     }
1120                 }
1121             }
1122         }
1123     }
1124
1125     #[instrument(skip(self, data), level = "debug")]
1126     fn push_region_constraints(
1127         &mut self,
1128         locations: Locations,
1129         category: ConstraintCategory,
1130         data: &QueryRegionConstraints<'tcx>,
1131     ) {
1132         debug!("constraints generated: {:#?}", data);
1133
1134         constraint_conversion::ConstraintConversion::new(
1135             self.infcx,
1136             self.borrowck_context.universal_regions,
1137             self.region_bound_pairs,
1138             Some(self.implicit_region_bound),
1139             self.param_env,
1140             locations,
1141             category,
1142             &mut self.borrowck_context.constraints,
1143         )
1144         .convert_all(data);
1145     }
1146
1147     /// Try to relate `sub <: sup`
1148     fn sub_types(
1149         &mut self,
1150         sub: Ty<'tcx>,
1151         sup: Ty<'tcx>,
1152         locations: Locations,
1153         category: ConstraintCategory,
1154     ) -> Fallible<()> {
1155         // Use this order of parameters because the sup type is usually the
1156         // "expected" type in diagnostics.
1157         self.relate_types(sup, ty::Variance::Contravariant, sub, locations, category)
1158     }
1159
1160     fn eq_types(
1161         &mut self,
1162         expected: Ty<'tcx>,
1163         found: Ty<'tcx>,
1164         locations: Locations,
1165         category: ConstraintCategory,
1166     ) -> Fallible<()> {
1167         self.relate_types(expected, ty::Variance::Invariant, found, locations, category)
1168     }
1169
1170     #[instrument(skip(self), level = "debug")]
1171     fn relate_type_and_user_type(
1172         &mut self,
1173         a: Ty<'tcx>,
1174         v: ty::Variance,
1175         user_ty: &UserTypeProjection,
1176         locations: Locations,
1177         category: ConstraintCategory,
1178     ) -> Fallible<()> {
1179         let annotated_type = self.user_type_annotations[user_ty.base].inferred_ty;
1180         let mut curr_projected_ty = PlaceTy::from_ty(annotated_type);
1181
1182         let tcx = self.infcx.tcx;
1183
1184         for proj in &user_ty.projs {
1185             let projected_ty = curr_projected_ty.projection_ty_core(
1186                 tcx,
1187                 self.param_env,
1188                 proj,
1189                 |this, field, &()| {
1190                     let ty = this.field_ty(tcx, field);
1191                     self.normalize(ty, locations)
1192                 },
1193             );
1194             curr_projected_ty = projected_ty;
1195         }
1196         debug!(
1197             "user_ty base: {:?} freshened: {:?} projs: {:?} yields: {:?}",
1198             user_ty.base, annotated_type, user_ty.projs, curr_projected_ty
1199         );
1200
1201         let ty = curr_projected_ty.ty;
1202         self.relate_types(ty, v.xform(ty::Variance::Contravariant), a, locations, category)?;
1203
1204         Ok(())
1205     }
1206
1207     /// Equates a type `anon_ty` that may contain opaque types whose
1208     /// values are to be inferred by the MIR.
1209     ///
1210     /// The type `revealed_ty` contains the same type as `anon_ty`, but with the
1211     /// hidden types for impl traits revealed.
1212     ///
1213     /// # Example
1214     ///
1215     /// Consider a piece of code like
1216     ///
1217     /// ```rust
1218     /// type Foo<U> = impl Debug;
1219     ///
1220     /// fn foo<T: Debug>(t: T) -> Box<Foo<T>> {
1221     ///      Box::new((t, 22_u32))
1222     /// }
1223     /// ```
1224     ///
1225     /// Here, the function signature would be something like
1226     /// `fn(T) -> Box<impl Debug>`. The MIR return slot would have
1227     /// the type with the opaque type revealed, so `Box<(T, u32)>`.
1228     ///
1229     /// In terms of our function parameters:
1230     ///
1231     /// * `anon_ty` would be `Box<Foo<T>>` where `Foo<T>` is an opaque type
1232     ///   scoped to this function (note that it is parameterized by the
1233     ///   generics of `foo`). Note that `anon_ty` is not just the opaque type,
1234     ///   but the entire return type (which may contain opaque types within it).
1235     /// * `revealed_ty` would be `Box<(T, u32)>`
1236     #[instrument(skip(self), level = "debug")]
1237     fn eq_opaque_type_and_type(
1238         &mut self,
1239         revealed_ty: Ty<'tcx>,
1240         anon_ty: Ty<'tcx>,
1241         locations: Locations,
1242         category: ConstraintCategory,
1243     ) -> Fallible<()> {
1244         // Fast path for the common case.
1245         if !anon_ty.has_opaque_types() {
1246             if let Err(terr) = self.eq_types(anon_ty, revealed_ty, locations, category) {
1247                 span_mirbug!(
1248                     self,
1249                     locations,
1250                     "eq_opaque_type_and_type: `{:?}=={:?}` failed with `{:?}`",
1251                     revealed_ty,
1252                     anon_ty,
1253                     terr
1254                 );
1255             }
1256             return Ok(());
1257         }
1258
1259         let param_env = self.param_env;
1260         let body = self.body;
1261         let mir_def_id = body.source.def_id().expect_local();
1262
1263         debug!(?mir_def_id);
1264         self.fully_perform_op(
1265             locations,
1266             category,
1267             CustomTypeOp::new(
1268                 |infcx| {
1269                     let mut obligations = ObligationAccumulator::default();
1270
1271                     let dummy_body_id = hir::CRATE_HIR_ID;
1272
1273                     // Replace the opaque types defined by this function with
1274                     // inference variables, creating a map. In our example above,
1275                     // this would transform the type `Box<Foo<T>>` (where `Foo` is an opaque type)
1276                     // to `Box<?T>`, returning an `opaque_type_map` mapping `{Foo<T> -> ?T}`.
1277                     // (Note that the key of the map is both the def-id of `Foo` along with
1278                     // any generic parameters.)
1279                     let output_ty = obligations.add(infcx.instantiate_opaque_types(
1280                         dummy_body_id,
1281                         param_env,
1282                         anon_ty,
1283                         locations.span(body),
1284                     ));
1285                     debug!(?output_ty, ?revealed_ty);
1286
1287                     // Make sure that the inferred types are well-formed. I'm
1288                     // not entirely sure this is needed (the HIR type check
1289                     // didn't do this) but it seems sensible to prevent opaque
1290                     // types hiding ill-formed types.
1291                     obligations.obligations.push(traits::Obligation::new(
1292                         ObligationCause::dummy(),
1293                         param_env,
1294                         ty::Binder::dummy(ty::PredicateKind::WellFormed(revealed_ty.into()))
1295                             .to_predicate(infcx.tcx),
1296                     ));
1297                     obligations.add(
1298                         infcx
1299                             .at(&ObligationCause::dummy(), param_env)
1300                             .eq(output_ty, revealed_ty)?,
1301                     );
1302
1303                     debug!("equated");
1304
1305                     Ok(InferOk { value: (), obligations: obligations.into_vec() })
1306                 },
1307                 || "input_output".to_string(),
1308             ),
1309         )?;
1310
1311         // Finally, if we instantiated the anon types successfully, we
1312         // have to solve any bounds (e.g., `-> impl Iterator` needs to
1313         // prove that `T: Iterator` where `T` is the type we
1314         // instantiated it with).
1315         let opaque_type_map = self.infcx.inner.borrow().opaque_types.clone();
1316         for (opaque_type_key, opaque_decl) in opaque_type_map {
1317             self.fully_perform_op(
1318                 locations,
1319                 ConstraintCategory::OpaqueType,
1320                 CustomTypeOp::new(
1321                     |infcx| {
1322                         infcx.constrain_opaque_type(opaque_type_key, &opaque_decl);
1323                         Ok(InferOk { value: (), obligations: vec![] })
1324                     },
1325                     || "opaque_type_map".to_string(),
1326                 ),
1327             )?;
1328         }
1329         Ok(())
1330     }
1331
1332     fn tcx(&self) -> TyCtxt<'tcx> {
1333         self.infcx.tcx
1334     }
1335
1336     #[instrument(skip(self, body, location), level = "debug")]
1337     fn check_stmt(&mut self, body: &Body<'tcx>, stmt: &Statement<'tcx>, location: Location) {
1338         let tcx = self.tcx();
1339         match stmt.kind {
1340             StatementKind::Assign(box (ref place, ref rv)) => {
1341                 // Assignments to temporaries are not "interesting";
1342                 // they are not caused by the user, but rather artifacts
1343                 // of lowering. Assignments to other sorts of places *are* interesting
1344                 // though.
1345                 let category = match place.as_local() {
1346                     Some(RETURN_PLACE) => {
1347                         if let BorrowCheckContext {
1348                             universal_regions:
1349                                 UniversalRegions { defining_ty: DefiningTy::Const(def_id, _), .. },
1350                             ..
1351                         } = self.borrowck_context
1352                         {
1353                             if tcx.is_static(*def_id) {
1354                                 ConstraintCategory::UseAsStatic
1355                             } else {
1356                                 ConstraintCategory::UseAsConst
1357                             }
1358                         } else {
1359                             ConstraintCategory::Return(ReturnConstraint::Normal)
1360                         }
1361                     }
1362                     Some(l)
1363                         if matches!(
1364                             body.local_decls[l].local_info,
1365                             Some(box LocalInfo::AggregateTemp)
1366                         ) =>
1367                     {
1368                         ConstraintCategory::Usage
1369                     }
1370                     Some(l) if !body.local_decls[l].is_user_variable() => {
1371                         ConstraintCategory::Boring
1372                     }
1373                     _ => ConstraintCategory::Assignment,
1374                 };
1375                 debug!(
1376                     "assignment category: {:?} {:?}",
1377                     category,
1378                     place.as_local().map(|l| &body.local_decls[l])
1379                 );
1380
1381                 let place_ty = place.ty(body, tcx).ty;
1382                 let place_ty = self.normalize(place_ty, location);
1383                 let rv_ty = rv.ty(body, tcx);
1384                 let rv_ty = self.normalize(rv_ty, location);
1385                 if let Err(terr) =
1386                     self.sub_types(rv_ty, place_ty, location.to_locations(), category)
1387                 {
1388                     span_mirbug!(
1389                         self,
1390                         stmt,
1391                         "bad assignment ({:?} = {:?}): {:?}",
1392                         place_ty,
1393                         rv_ty,
1394                         terr
1395                     );
1396                 }
1397
1398                 if let Some(annotation_index) = self.rvalue_user_ty(rv) {
1399                     if let Err(terr) = self.relate_type_and_user_type(
1400                         rv_ty,
1401                         ty::Variance::Invariant,
1402                         &UserTypeProjection { base: annotation_index, projs: vec![] },
1403                         location.to_locations(),
1404                         ConstraintCategory::Boring,
1405                     ) {
1406                         let annotation = &self.user_type_annotations[annotation_index];
1407                         span_mirbug!(
1408                             self,
1409                             stmt,
1410                             "bad user type on rvalue ({:?} = {:?}): {:?}",
1411                             annotation,
1412                             rv_ty,
1413                             terr
1414                         );
1415                     }
1416                 }
1417
1418                 self.check_rvalue(body, rv, location);
1419                 if !self.unsized_feature_enabled() {
1420                     let trait_ref = ty::TraitRef {
1421                         def_id: tcx.require_lang_item(LangItem::Sized, Some(self.last_span)),
1422                         substs: tcx.mk_substs_trait(place_ty, &[]),
1423                     };
1424                     self.prove_trait_ref(
1425                         trait_ref,
1426                         location.to_locations(),
1427                         ConstraintCategory::SizedBound,
1428                     );
1429                 }
1430             }
1431             StatementKind::SetDiscriminant { ref place, variant_index } => {
1432                 let place_type = place.ty(body, tcx).ty;
1433                 let adt = match place_type.kind() {
1434                     ty::Adt(adt, _) if adt.is_enum() => adt,
1435                     _ => {
1436                         span_bug!(
1437                             stmt.source_info.span,
1438                             "bad set discriminant ({:?} = {:?}): lhs is not an enum",
1439                             place,
1440                             variant_index
1441                         );
1442                     }
1443                 };
1444                 if variant_index.as_usize() >= adt.variants.len() {
1445                     span_bug!(
1446                         stmt.source_info.span,
1447                         "bad set discriminant ({:?} = {:?}): value of of range",
1448                         place,
1449                         variant_index
1450                     );
1451                 };
1452             }
1453             StatementKind::AscribeUserType(box (ref place, ref projection), variance) => {
1454                 let place_ty = place.ty(body, tcx).ty;
1455                 if let Err(terr) = self.relate_type_and_user_type(
1456                     place_ty,
1457                     variance,
1458                     projection,
1459                     Locations::All(stmt.source_info.span),
1460                     ConstraintCategory::TypeAnnotation,
1461                 ) {
1462                     let annotation = &self.user_type_annotations[projection.base];
1463                     span_mirbug!(
1464                         self,
1465                         stmt,
1466                         "bad type assert ({:?} <: {:?} with projections {:?}): {:?}",
1467                         place_ty,
1468                         annotation,
1469                         projection.projs,
1470                         terr
1471                     );
1472                 }
1473             }
1474             StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping {
1475                 ..
1476             }) => span_bug!(
1477                 stmt.source_info.span,
1478                 "Unexpected StatementKind::CopyNonOverlapping, should only appear after lowering_intrinsics",
1479             ),
1480             StatementKind::FakeRead(..)
1481             | StatementKind::StorageLive(..)
1482             | StatementKind::StorageDead(..)
1483             | StatementKind::LlvmInlineAsm { .. }
1484             | StatementKind::Retag { .. }
1485             | StatementKind::Coverage(..)
1486             | StatementKind::Nop => {}
1487         }
1488     }
1489
1490     #[instrument(skip(self, body, term_location), level = "debug")]
1491     fn check_terminator(
1492         &mut self,
1493         body: &Body<'tcx>,
1494         term: &Terminator<'tcx>,
1495         term_location: Location,
1496     ) {
1497         let tcx = self.tcx();
1498         match term.kind {
1499             TerminatorKind::Goto { .. }
1500             | TerminatorKind::Resume
1501             | TerminatorKind::Abort
1502             | TerminatorKind::Return
1503             | TerminatorKind::GeneratorDrop
1504             | TerminatorKind::Unreachable
1505             | TerminatorKind::Drop { .. }
1506             | TerminatorKind::FalseEdge { .. }
1507             | TerminatorKind::FalseUnwind { .. }
1508             | TerminatorKind::InlineAsm { .. } => {
1509                 // no checks needed for these
1510             }
1511
1512             TerminatorKind::DropAndReplace { ref place, ref value, target: _, unwind: _ } => {
1513                 let place_ty = place.ty(body, tcx).ty;
1514                 let rv_ty = value.ty(body, tcx);
1515
1516                 let locations = term_location.to_locations();
1517                 if let Err(terr) =
1518                     self.sub_types(rv_ty, place_ty, locations, ConstraintCategory::Assignment)
1519                 {
1520                     span_mirbug!(
1521                         self,
1522                         term,
1523                         "bad DropAndReplace ({:?} = {:?}): {:?}",
1524                         place_ty,
1525                         rv_ty,
1526                         terr
1527                     );
1528                 }
1529             }
1530             TerminatorKind::SwitchInt { ref discr, switch_ty, .. } => {
1531                 let discr_ty = discr.ty(body, tcx);
1532                 if let Err(terr) = self.sub_types(
1533                     discr_ty,
1534                     switch_ty,
1535                     term_location.to_locations(),
1536                     ConstraintCategory::Assignment,
1537                 ) {
1538                     span_mirbug!(
1539                         self,
1540                         term,
1541                         "bad SwitchInt ({:?} on {:?}): {:?}",
1542                         switch_ty,
1543                         discr_ty,
1544                         terr
1545                     );
1546                 }
1547                 if !switch_ty.is_integral() && !switch_ty.is_char() && !switch_ty.is_bool() {
1548                     span_mirbug!(self, term, "bad SwitchInt discr ty {:?}", switch_ty);
1549                 }
1550                 // FIXME: check the values
1551             }
1552             TerminatorKind::Call { ref func, ref args, ref destination, from_hir_call, .. } => {
1553                 let func_ty = func.ty(body, tcx);
1554                 debug!("check_terminator: call, func_ty={:?}", func_ty);
1555                 let sig = match func_ty.kind() {
1556                     ty::FnDef(..) | ty::FnPtr(_) => func_ty.fn_sig(tcx),
1557                     _ => {
1558                         span_mirbug!(self, term, "call to non-function {:?}", func_ty);
1559                         return;
1560                     }
1561                 };
1562                 let (sig, map) = self.infcx.replace_bound_vars_with_fresh_vars(
1563                     term.source_info.span,
1564                     LateBoundRegionConversionTime::FnCall,
1565                     sig,
1566                 );
1567                 let sig = self.normalize(sig, term_location);
1568                 self.check_call_dest(body, term, &sig, destination, term_location);
1569
1570                 self.prove_predicates(
1571                     sig.inputs_and_output
1572                         .iter()
1573                         .map(|ty| ty::Binder::dummy(ty::PredicateKind::WellFormed(ty.into()))),
1574                     term_location.to_locations(),
1575                     ConstraintCategory::Boring,
1576                 );
1577
1578                 // The ordinary liveness rules will ensure that all
1579                 // regions in the type of the callee are live here. We
1580                 // then further constrain the late-bound regions that
1581                 // were instantiated at the call site to be live as
1582                 // well. The resulting is that all the input (and
1583                 // output) types in the signature must be live, since
1584                 // all the inputs that fed into it were live.
1585                 for &late_bound_region in map.values() {
1586                     let region_vid =
1587                         self.borrowck_context.universal_regions.to_region_vid(late_bound_region);
1588                     self.borrowck_context
1589                         .constraints
1590                         .liveness_constraints
1591                         .add_element(region_vid, term_location);
1592                 }
1593
1594                 self.check_call_inputs(body, term, &sig, args, term_location, from_hir_call);
1595             }
1596             TerminatorKind::Assert { ref cond, ref msg, .. } => {
1597                 let cond_ty = cond.ty(body, tcx);
1598                 if cond_ty != tcx.types.bool {
1599                     span_mirbug!(self, term, "bad Assert ({:?}, not bool", cond_ty);
1600                 }
1601
1602                 if let AssertKind::BoundsCheck { ref len, ref index } = *msg {
1603                     if len.ty(body, tcx) != tcx.types.usize {
1604                         span_mirbug!(self, len, "bounds-check length non-usize {:?}", len)
1605                     }
1606                     if index.ty(body, tcx) != tcx.types.usize {
1607                         span_mirbug!(self, index, "bounds-check index non-usize {:?}", index)
1608                     }
1609                 }
1610             }
1611             TerminatorKind::Yield { ref value, .. } => {
1612                 let value_ty = value.ty(body, tcx);
1613                 match body.yield_ty() {
1614                     None => span_mirbug!(self, term, "yield in non-generator"),
1615                     Some(ty) => {
1616                         if let Err(terr) = self.sub_types(
1617                             value_ty,
1618                             ty,
1619                             term_location.to_locations(),
1620                             ConstraintCategory::Yield,
1621                         ) {
1622                             span_mirbug!(
1623                                 self,
1624                                 term,
1625                                 "type of yield value is {:?}, but the yield type is {:?}: {:?}",
1626                                 value_ty,
1627                                 ty,
1628                                 terr
1629                             );
1630                         }
1631                     }
1632                 }
1633             }
1634         }
1635     }
1636
1637     fn check_call_dest(
1638         &mut self,
1639         body: &Body<'tcx>,
1640         term: &Terminator<'tcx>,
1641         sig: &ty::FnSig<'tcx>,
1642         destination: &Option<(Place<'tcx>, BasicBlock)>,
1643         term_location: Location,
1644     ) {
1645         let tcx = self.tcx();
1646         match *destination {
1647             Some((ref dest, _target_block)) => {
1648                 let dest_ty = dest.ty(body, tcx).ty;
1649                 let dest_ty = self.normalize(dest_ty, term_location);
1650                 let category = match dest.as_local() {
1651                     Some(RETURN_PLACE) => {
1652                         if let BorrowCheckContext {
1653                             universal_regions:
1654                                 UniversalRegions { defining_ty: DefiningTy::Const(def_id, _), .. },
1655                             ..
1656                         } = self.borrowck_context
1657                         {
1658                             if tcx.is_static(*def_id) {
1659                                 ConstraintCategory::UseAsStatic
1660                             } else {
1661                                 ConstraintCategory::UseAsConst
1662                             }
1663                         } else {
1664                             ConstraintCategory::Return(ReturnConstraint::Normal)
1665                         }
1666                     }
1667                     Some(l) if !body.local_decls[l].is_user_variable() => {
1668                         ConstraintCategory::Boring
1669                     }
1670                     _ => ConstraintCategory::Assignment,
1671                 };
1672
1673                 let locations = term_location.to_locations();
1674
1675                 if let Err(terr) = self.sub_types(sig.output(), dest_ty, locations, category) {
1676                     span_mirbug!(
1677                         self,
1678                         term,
1679                         "call dest mismatch ({:?} <- {:?}): {:?}",
1680                         dest_ty,
1681                         sig.output(),
1682                         terr
1683                     );
1684                 }
1685
1686                 // When `unsized_fn_params` and `unsized_locals` are both not enabled,
1687                 // this check is done at `check_local`.
1688                 if self.unsized_feature_enabled() {
1689                     let span = term.source_info.span;
1690                     self.ensure_place_sized(dest_ty, span);
1691                 }
1692             }
1693             None => {
1694                 if !self
1695                     .tcx()
1696                     .conservative_is_privately_uninhabited(self.param_env.and(sig.output()))
1697                 {
1698                     span_mirbug!(self, term, "call to converging function {:?} w/o dest", sig);
1699                 }
1700             }
1701         }
1702     }
1703
1704     fn check_call_inputs(
1705         &mut self,
1706         body: &Body<'tcx>,
1707         term: &Terminator<'tcx>,
1708         sig: &ty::FnSig<'tcx>,
1709         args: &[Operand<'tcx>],
1710         term_location: Location,
1711         from_hir_call: bool,
1712     ) {
1713         debug!("check_call_inputs({:?}, {:?})", sig, args);
1714         if args.len() < sig.inputs().len() || (args.len() > sig.inputs().len() && !sig.c_variadic) {
1715             span_mirbug!(self, term, "call to {:?} with wrong # of args", sig);
1716         }
1717         for (n, (fn_arg, op_arg)) in iter::zip(sig.inputs(), args).enumerate() {
1718             let op_arg_ty = op_arg.ty(body, self.tcx());
1719             let op_arg_ty = self.normalize(op_arg_ty, term_location);
1720             let category = if from_hir_call {
1721                 ConstraintCategory::CallArgument
1722             } else {
1723                 ConstraintCategory::Boring
1724             };
1725             if let Err(terr) =
1726                 self.sub_types(op_arg_ty, fn_arg, term_location.to_locations(), category)
1727             {
1728                 span_mirbug!(
1729                     self,
1730                     term,
1731                     "bad arg #{:?} ({:?} <- {:?}): {:?}",
1732                     n,
1733                     fn_arg,
1734                     op_arg_ty,
1735                     terr
1736                 );
1737             }
1738         }
1739     }
1740
1741     fn check_iscleanup(&mut self, body: &Body<'tcx>, block_data: &BasicBlockData<'tcx>) {
1742         let is_cleanup = block_data.is_cleanup;
1743         self.last_span = block_data.terminator().source_info.span;
1744         match block_data.terminator().kind {
1745             TerminatorKind::Goto { target } => {
1746                 self.assert_iscleanup(body, block_data, target, is_cleanup)
1747             }
1748             TerminatorKind::SwitchInt { ref targets, .. } => {
1749                 for target in targets.all_targets() {
1750                     self.assert_iscleanup(body, block_data, *target, is_cleanup);
1751                 }
1752             }
1753             TerminatorKind::Resume => {
1754                 if !is_cleanup {
1755                     span_mirbug!(self, block_data, "resume on non-cleanup block!")
1756                 }
1757             }
1758             TerminatorKind::Abort => {
1759                 if !is_cleanup {
1760                     span_mirbug!(self, block_data, "abort on non-cleanup block!")
1761                 }
1762             }
1763             TerminatorKind::Return => {
1764                 if is_cleanup {
1765                     span_mirbug!(self, block_data, "return on cleanup block")
1766                 }
1767             }
1768             TerminatorKind::GeneratorDrop { .. } => {
1769                 if is_cleanup {
1770                     span_mirbug!(self, block_data, "generator_drop in cleanup block")
1771                 }
1772             }
1773             TerminatorKind::Yield { resume, drop, .. } => {
1774                 if is_cleanup {
1775                     span_mirbug!(self, block_data, "yield in cleanup block")
1776                 }
1777                 self.assert_iscleanup(body, block_data, resume, is_cleanup);
1778                 if let Some(drop) = drop {
1779                     self.assert_iscleanup(body, block_data, drop, is_cleanup);
1780                 }
1781             }
1782             TerminatorKind::Unreachable => {}
1783             TerminatorKind::Drop { target, unwind, .. }
1784             | TerminatorKind::DropAndReplace { target, unwind, .. }
1785             | TerminatorKind::Assert { target, cleanup: unwind, .. } => {
1786                 self.assert_iscleanup(body, block_data, target, is_cleanup);
1787                 if let Some(unwind) = unwind {
1788                     if is_cleanup {
1789                         span_mirbug!(self, block_data, "unwind on cleanup block")
1790                     }
1791                     self.assert_iscleanup(body, block_data, unwind, true);
1792                 }
1793             }
1794             TerminatorKind::Call { ref destination, cleanup, .. } => {
1795                 if let &Some((_, target)) = destination {
1796                     self.assert_iscleanup(body, block_data, target, is_cleanup);
1797                 }
1798                 if let Some(cleanup) = cleanup {
1799                     if is_cleanup {
1800                         span_mirbug!(self, block_data, "cleanup on cleanup block")
1801                     }
1802                     self.assert_iscleanup(body, block_data, cleanup, true);
1803                 }
1804             }
1805             TerminatorKind::FalseEdge { real_target, imaginary_target } => {
1806                 self.assert_iscleanup(body, block_data, real_target, is_cleanup);
1807                 self.assert_iscleanup(body, block_data, imaginary_target, is_cleanup);
1808             }
1809             TerminatorKind::FalseUnwind { real_target, unwind } => {
1810                 self.assert_iscleanup(body, block_data, real_target, is_cleanup);
1811                 if let Some(unwind) = unwind {
1812                     if is_cleanup {
1813                         span_mirbug!(self, block_data, "cleanup in cleanup block via false unwind");
1814                     }
1815                     self.assert_iscleanup(body, block_data, unwind, true);
1816                 }
1817             }
1818             TerminatorKind::InlineAsm { destination, .. } => {
1819                 if let Some(target) = destination {
1820                     self.assert_iscleanup(body, block_data, target, is_cleanup);
1821                 }
1822             }
1823         }
1824     }
1825
1826     fn assert_iscleanup(
1827         &mut self,
1828         body: &Body<'tcx>,
1829         ctxt: &dyn fmt::Debug,
1830         bb: BasicBlock,
1831         iscleanuppad: bool,
1832     ) {
1833         if body[bb].is_cleanup != iscleanuppad {
1834             span_mirbug!(self, ctxt, "cleanuppad mismatch: {:?} should be {:?}", bb, iscleanuppad);
1835         }
1836     }
1837
1838     fn check_local(&mut self, body: &Body<'tcx>, local: Local, local_decl: &LocalDecl<'tcx>) {
1839         match body.local_kind(local) {
1840             LocalKind::ReturnPointer | LocalKind::Arg => {
1841                 // return values of normal functions are required to be
1842                 // sized by typeck, but return values of ADT constructors are
1843                 // not because we don't include a `Self: Sized` bounds on them.
1844                 //
1845                 // Unbound parts of arguments were never required to be Sized
1846                 // - maybe we should make that a warning.
1847                 return;
1848             }
1849             LocalKind::Var | LocalKind::Temp => {}
1850         }
1851
1852         // When `unsized_fn_params` or `unsized_locals` is enabled, only function calls
1853         // and nullary ops are checked in `check_call_dest`.
1854         if !self.unsized_feature_enabled() {
1855             let span = local_decl.source_info.span;
1856             let ty = local_decl.ty;
1857             self.ensure_place_sized(ty, span);
1858         }
1859     }
1860
1861     fn ensure_place_sized(&mut self, ty: Ty<'tcx>, span: Span) {
1862         let tcx = self.tcx();
1863
1864         // Erase the regions from `ty` to get a global type.  The
1865         // `Sized` bound in no way depends on precise regions, so this
1866         // shouldn't affect `is_sized`.
1867         let erased_ty = tcx.erase_regions(ty);
1868         if !erased_ty.is_sized(tcx.at(span), self.param_env) {
1869             // in current MIR construction, all non-control-flow rvalue
1870             // expressions evaluate through `as_temp` or `into` a return
1871             // slot or local, so to find all unsized rvalues it is enough
1872             // to check all temps, return slots and locals.
1873             if self.reported_errors.replace((ty, span)).is_none() {
1874                 let mut diag = struct_span_err!(
1875                     self.tcx().sess,
1876                     span,
1877                     E0161,
1878                     "cannot move a value of type {0}: the size of {0} \
1879                      cannot be statically determined",
1880                     ty
1881                 );
1882
1883                 // While this is located in `nll::typeck` this error is not
1884                 // an NLL error, it's a required check to prevent creation
1885                 // of unsized rvalues in a call expression.
1886                 diag.emit();
1887             }
1888         }
1889     }
1890
1891     fn aggregate_field_ty(
1892         &mut self,
1893         ak: &AggregateKind<'tcx>,
1894         field_index: usize,
1895         location: Location,
1896     ) -> Result<Ty<'tcx>, FieldAccessError> {
1897         let tcx = self.tcx();
1898
1899         match *ak {
1900             AggregateKind::Adt(def, variant_index, substs, _, active_field_index) => {
1901                 let variant = &def.variants[variant_index];
1902                 let adj_field_index = active_field_index.unwrap_or(field_index);
1903                 if let Some(field) = variant.fields.get(adj_field_index) {
1904                     Ok(self.normalize(field.ty(tcx, substs), location))
1905                 } else {
1906                     Err(FieldAccessError::OutOfRange { field_count: variant.fields.len() })
1907                 }
1908             }
1909             AggregateKind::Closure(_, substs) => {
1910                 match substs.as_closure().upvar_tys().nth(field_index) {
1911                     Some(ty) => Ok(ty),
1912                     None => Err(FieldAccessError::OutOfRange {
1913                         field_count: substs.as_closure().upvar_tys().count(),
1914                     }),
1915                 }
1916             }
1917             AggregateKind::Generator(_, substs, _) => {
1918                 // It doesn't make sense to look at a field beyond the prefix;
1919                 // these require a variant index, and are not initialized in
1920                 // aggregate rvalues.
1921                 match substs.as_generator().prefix_tys().nth(field_index) {
1922                     Some(ty) => Ok(ty),
1923                     None => Err(FieldAccessError::OutOfRange {
1924                         field_count: substs.as_generator().prefix_tys().count(),
1925                     }),
1926                 }
1927             }
1928             AggregateKind::Array(ty) => Ok(ty),
1929             AggregateKind::Tuple => {
1930                 unreachable!("This should have been covered in check_rvalues");
1931             }
1932         }
1933     }
1934
1935     fn check_rvalue(&mut self, body: &Body<'tcx>, rvalue: &Rvalue<'tcx>, location: Location) {
1936         let tcx = self.tcx();
1937
1938         match rvalue {
1939             Rvalue::Aggregate(ak, ops) => {
1940                 self.check_aggregate_rvalue(&body, rvalue, ak, ops, location)
1941             }
1942
1943             Rvalue::Repeat(operand, len) => {
1944                 // If the length cannot be evaluated we must assume that the length can be larger
1945                 // than 1.
1946                 // If the length is larger than 1, the repeat expression will need to copy the
1947                 // element, so we require the `Copy` trait.
1948                 if len.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
1949                     match operand {
1950                         Operand::Copy(..) | Operand::Constant(..) => {
1951                             // These are always okay: direct use of a const, or a value that can evidently be copied.
1952                         }
1953                         Operand::Move(place) => {
1954                             // Make sure that repeated elements implement `Copy`.
1955                             let span = body.source_info(location).span;
1956                             let ty = operand.ty(body, tcx);
1957                             if !self.infcx.type_is_copy_modulo_regions(self.param_env, ty, span) {
1958                                 let ccx = ConstCx::new_with_param_env(tcx, body, self.param_env);
1959                                 let is_const_fn =
1960                                     is_const_fn_in_array_repeat_expression(&ccx, &place, &body);
1961
1962                                 debug!("check_rvalue: is_const_fn={:?}", is_const_fn);
1963
1964                                 let def_id = body.source.def_id().expect_local();
1965                                 let obligation = traits::Obligation::new(
1966                                     ObligationCause::new(
1967                                         span,
1968                                         self.tcx().hir().local_def_id_to_hir_id(def_id),
1969                                         traits::ObligationCauseCode::RepeatVec(is_const_fn),
1970                                     ),
1971                                     self.param_env,
1972                                     ty::Binder::dummy(ty::TraitRef::new(
1973                                         self.tcx().require_lang_item(
1974                                             LangItem::Copy,
1975                                             Some(self.last_span),
1976                                         ),
1977                                         tcx.mk_substs_trait(ty, &[]),
1978                                     ))
1979                                     .without_const()
1980                                     .to_predicate(self.tcx()),
1981                                 );
1982                                 self.infcx.report_selection_error(
1983                                     obligation.clone(),
1984                                     &obligation,
1985                                     &traits::SelectionError::Unimplemented,
1986                                     false,
1987                                 );
1988                             }
1989                         }
1990                     }
1991                 }
1992             }
1993
1994             Rvalue::NullaryOp(_, ty) | Rvalue::ShallowInitBox(_, ty) => {
1995                 let trait_ref = ty::TraitRef {
1996                     def_id: tcx.require_lang_item(LangItem::Sized, Some(self.last_span)),
1997                     substs: tcx.mk_substs_trait(ty, &[]),
1998                 };
1999
2000                 self.prove_trait_ref(
2001                     trait_ref,
2002                     location.to_locations(),
2003                     ConstraintCategory::SizedBound,
2004                 );
2005             }
2006
2007             Rvalue::Cast(cast_kind, op, ty) => {
2008                 match cast_kind {
2009                     CastKind::Pointer(PointerCast::ReifyFnPointer) => {
2010                         let fn_sig = op.ty(body, tcx).fn_sig(tcx);
2011
2012                         // The type that we see in the fcx is like
2013                         // `foo::<'a, 'b>`, where `foo` is the path to a
2014                         // function definition. When we extract the
2015                         // signature, it comes from the `fn_sig` query,
2016                         // and hence may contain unnormalized results.
2017                         let fn_sig = self.normalize(fn_sig, location);
2018
2019                         let ty_fn_ptr_from = tcx.mk_fn_ptr(fn_sig);
2020
2021                         if let Err(terr) = self.eq_types(
2022                             ty,
2023                             ty_fn_ptr_from,
2024                             location.to_locations(),
2025                             ConstraintCategory::Cast,
2026                         ) {
2027                             span_mirbug!(
2028                                 self,
2029                                 rvalue,
2030                                 "equating {:?} with {:?} yields {:?}",
2031                                 ty_fn_ptr_from,
2032                                 ty,
2033                                 terr
2034                             );
2035                         }
2036                     }
2037
2038                     CastKind::Pointer(PointerCast::ClosureFnPointer(unsafety)) => {
2039                         let sig = match op.ty(body, tcx).kind() {
2040                             ty::Closure(_, substs) => substs.as_closure().sig(),
2041                             _ => bug!(),
2042                         };
2043                         let ty_fn_ptr_from = tcx.mk_fn_ptr(tcx.signature_unclosure(sig, *unsafety));
2044
2045                         if let Err(terr) = self.eq_types(
2046                             ty,
2047                             ty_fn_ptr_from,
2048                             location.to_locations(),
2049                             ConstraintCategory::Cast,
2050                         ) {
2051                             span_mirbug!(
2052                                 self,
2053                                 rvalue,
2054                                 "equating {:?} with {:?} yields {:?}",
2055                                 ty_fn_ptr_from,
2056                                 ty,
2057                                 terr
2058                             );
2059                         }
2060                     }
2061
2062                     CastKind::Pointer(PointerCast::UnsafeFnPointer) => {
2063                         let fn_sig = op.ty(body, tcx).fn_sig(tcx);
2064
2065                         // The type that we see in the fcx is like
2066                         // `foo::<'a, 'b>`, where `foo` is the path to a
2067                         // function definition. When we extract the
2068                         // signature, it comes from the `fn_sig` query,
2069                         // and hence may contain unnormalized results.
2070                         let fn_sig = self.normalize(fn_sig, location);
2071
2072                         let ty_fn_ptr_from = tcx.safe_to_unsafe_fn_ty(fn_sig);
2073
2074                         if let Err(terr) = self.eq_types(
2075                             ty,
2076                             ty_fn_ptr_from,
2077                             location.to_locations(),
2078                             ConstraintCategory::Cast,
2079                         ) {
2080                             span_mirbug!(
2081                                 self,
2082                                 rvalue,
2083                                 "equating {:?} with {:?} yields {:?}",
2084                                 ty_fn_ptr_from,
2085                                 ty,
2086                                 terr
2087                             );
2088                         }
2089                     }
2090
2091                     CastKind::Pointer(PointerCast::Unsize) => {
2092                         let &ty = ty;
2093                         let trait_ref = ty::TraitRef {
2094                             def_id: tcx
2095                                 .require_lang_item(LangItem::CoerceUnsized, Some(self.last_span)),
2096                             substs: tcx.mk_substs_trait(op.ty(body, tcx), &[ty.into()]),
2097                         };
2098
2099                         self.prove_trait_ref(
2100                             trait_ref,
2101                             location.to_locations(),
2102                             ConstraintCategory::Cast,
2103                         );
2104                     }
2105
2106                     CastKind::Pointer(PointerCast::MutToConstPointer) => {
2107                         let ty_from = match op.ty(body, tcx).kind() {
2108                             ty::RawPtr(ty::TypeAndMut {
2109                                 ty: ty_from,
2110                                 mutbl: hir::Mutability::Mut,
2111                             }) => ty_from,
2112                             _ => {
2113                                 span_mirbug!(
2114                                     self,
2115                                     rvalue,
2116                                     "unexpected base type for cast {:?}",
2117                                     ty,
2118                                 );
2119                                 return;
2120                             }
2121                         };
2122                         let ty_to = match ty.kind() {
2123                             ty::RawPtr(ty::TypeAndMut {
2124                                 ty: ty_to,
2125                                 mutbl: hir::Mutability::Not,
2126                             }) => ty_to,
2127                             _ => {
2128                                 span_mirbug!(
2129                                     self,
2130                                     rvalue,
2131                                     "unexpected target type for cast {:?}",
2132                                     ty,
2133                                 );
2134                                 return;
2135                             }
2136                         };
2137                         if let Err(terr) = self.sub_types(
2138                             ty_from,
2139                             ty_to,
2140                             location.to_locations(),
2141                             ConstraintCategory::Cast,
2142                         ) {
2143                             span_mirbug!(
2144                                 self,
2145                                 rvalue,
2146                                 "relating {:?} with {:?} yields {:?}",
2147                                 ty_from,
2148                                 ty_to,
2149                                 terr
2150                             );
2151                         }
2152                     }
2153
2154                     CastKind::Pointer(PointerCast::ArrayToPointer) => {
2155                         let ty_from = op.ty(body, tcx);
2156
2157                         let opt_ty_elem_mut = match ty_from.kind() {
2158                             ty::RawPtr(ty::TypeAndMut { mutbl: array_mut, ty: array_ty }) => {
2159                                 match array_ty.kind() {
2160                                     ty::Array(ty_elem, _) => Some((ty_elem, *array_mut)),
2161                                     _ => None,
2162                                 }
2163                             }
2164                             _ => None,
2165                         };
2166
2167                         let (ty_elem, ty_mut) = match opt_ty_elem_mut {
2168                             Some(ty_elem_mut) => ty_elem_mut,
2169                             None => {
2170                                 span_mirbug!(
2171                                     self,
2172                                     rvalue,
2173                                     "ArrayToPointer cast from unexpected type {:?}",
2174                                     ty_from,
2175                                 );
2176                                 return;
2177                             }
2178                         };
2179
2180                         let (ty_to, ty_to_mut) = match ty.kind() {
2181                             ty::RawPtr(ty::TypeAndMut { mutbl: ty_to_mut, ty: ty_to }) => {
2182                                 (ty_to, *ty_to_mut)
2183                             }
2184                             _ => {
2185                                 span_mirbug!(
2186                                     self,
2187                                     rvalue,
2188                                     "ArrayToPointer cast to unexpected type {:?}",
2189                                     ty,
2190                                 );
2191                                 return;
2192                             }
2193                         };
2194
2195                         if ty_to_mut == Mutability::Mut && ty_mut == Mutability::Not {
2196                             span_mirbug!(
2197                                 self,
2198                                 rvalue,
2199                                 "ArrayToPointer cast from const {:?} to mut {:?}",
2200                                 ty,
2201                                 ty_to
2202                             );
2203                             return;
2204                         }
2205
2206                         if let Err(terr) = self.sub_types(
2207                             ty_elem,
2208                             ty_to,
2209                             location.to_locations(),
2210                             ConstraintCategory::Cast,
2211                         ) {
2212                             span_mirbug!(
2213                                 self,
2214                                 rvalue,
2215                                 "relating {:?} with {:?} yields {:?}",
2216                                 ty_elem,
2217                                 ty_to,
2218                                 terr
2219                             )
2220                         }
2221                     }
2222
2223                     CastKind::Misc => {
2224                         let ty_from = op.ty(body, tcx);
2225                         let cast_ty_from = CastTy::from_ty(ty_from);
2226                         let cast_ty_to = CastTy::from_ty(ty);
2227                         match (cast_ty_from, cast_ty_to) {
2228                             (None, _)
2229                             | (_, None | Some(CastTy::FnPtr))
2230                             | (Some(CastTy::Float), Some(CastTy::Ptr(_)))
2231                             | (Some(CastTy::Ptr(_) | CastTy::FnPtr), Some(CastTy::Float)) => {
2232                                 span_mirbug!(self, rvalue, "Invalid cast {:?} -> {:?}", ty_from, ty,)
2233                             }
2234                             (
2235                                 Some(CastTy::Int(_)),
2236                                 Some(CastTy::Int(_) | CastTy::Float | CastTy::Ptr(_)),
2237                             )
2238                             | (Some(CastTy::Float), Some(CastTy::Int(_) | CastTy::Float))
2239                             | (Some(CastTy::Ptr(_)), Some(CastTy::Int(_) | CastTy::Ptr(_)))
2240                             | (Some(CastTy::FnPtr), Some(CastTy::Int(_) | CastTy::Ptr(_))) => (),
2241                         }
2242                     }
2243                 }
2244             }
2245
2246             Rvalue::Ref(region, _borrow_kind, borrowed_place) => {
2247                 self.add_reborrow_constraint(&body, location, region, borrowed_place);
2248             }
2249
2250             Rvalue::BinaryOp(
2251                 BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge,
2252                 box (left, right),
2253             ) => {
2254                 let ty_left = left.ty(body, tcx);
2255                 match ty_left.kind() {
2256                     // Types with regions are comparable if they have a common super-type.
2257                     ty::RawPtr(_) | ty::FnPtr(_) => {
2258                         let ty_right = right.ty(body, tcx);
2259                         let common_ty = self.infcx.next_ty_var(TypeVariableOrigin {
2260                             kind: TypeVariableOriginKind::MiscVariable,
2261                             span: body.source_info(location).span,
2262                         });
2263                         self.sub_types(
2264                             ty_left,
2265                             common_ty,
2266                             location.to_locations(),
2267                             ConstraintCategory::Boring,
2268                         )
2269                         .unwrap_or_else(|err| {
2270                             bug!("Could not equate type variable with {:?}: {:?}", ty_left, err)
2271                         });
2272                         if let Err(terr) = self.sub_types(
2273                             ty_right,
2274                             common_ty,
2275                             location.to_locations(),
2276                             ConstraintCategory::Boring,
2277                         ) {
2278                             span_mirbug!(
2279                                 self,
2280                                 rvalue,
2281                                 "unexpected comparison types {:?} and {:?} yields {:?}",
2282                                 ty_left,
2283                                 ty_right,
2284                                 terr
2285                             )
2286                         }
2287                     }
2288                     // For types with no regions we can just check that the
2289                     // both operands have the same type.
2290                     ty::Int(_) | ty::Uint(_) | ty::Bool | ty::Char | ty::Float(_)
2291                         if ty_left == right.ty(body, tcx) => {}
2292                     // Other types are compared by trait methods, not by
2293                     // `Rvalue::BinaryOp`.
2294                     _ => span_mirbug!(
2295                         self,
2296                         rvalue,
2297                         "unexpected comparison types {:?} and {:?}",
2298                         ty_left,
2299                         right.ty(body, tcx)
2300                     ),
2301                 }
2302             }
2303
2304             Rvalue::AddressOf(..)
2305             | Rvalue::ThreadLocalRef(..)
2306             | Rvalue::Use(..)
2307             | Rvalue::Len(..)
2308             | Rvalue::BinaryOp(..)
2309             | Rvalue::CheckedBinaryOp(..)
2310             | Rvalue::UnaryOp(..)
2311             | Rvalue::Discriminant(..) => {}
2312         }
2313     }
2314
2315     /// If this rvalue supports a user-given type annotation, then
2316     /// extract and return it. This represents the final type of the
2317     /// rvalue and will be unified with the inferred type.
2318     fn rvalue_user_ty(&self, rvalue: &Rvalue<'tcx>) -> Option<UserTypeAnnotationIndex> {
2319         match rvalue {
2320             Rvalue::Use(_)
2321             | Rvalue::ThreadLocalRef(_)
2322             | Rvalue::Repeat(..)
2323             | Rvalue::Ref(..)
2324             | Rvalue::AddressOf(..)
2325             | Rvalue::Len(..)
2326             | Rvalue::Cast(..)
2327             | Rvalue::ShallowInitBox(..)
2328             | Rvalue::BinaryOp(..)
2329             | Rvalue::CheckedBinaryOp(..)
2330             | Rvalue::NullaryOp(..)
2331             | Rvalue::UnaryOp(..)
2332             | Rvalue::Discriminant(..) => None,
2333
2334             Rvalue::Aggregate(aggregate, _) => match **aggregate {
2335                 AggregateKind::Adt(_, _, _, user_ty, _) => user_ty,
2336                 AggregateKind::Array(_) => None,
2337                 AggregateKind::Tuple => None,
2338                 AggregateKind::Closure(_, _) => None,
2339                 AggregateKind::Generator(_, _, _) => None,
2340             },
2341         }
2342     }
2343
2344     fn check_aggregate_rvalue(
2345         &mut self,
2346         body: &Body<'tcx>,
2347         rvalue: &Rvalue<'tcx>,
2348         aggregate_kind: &AggregateKind<'tcx>,
2349         operands: &[Operand<'tcx>],
2350         location: Location,
2351     ) {
2352         let tcx = self.tcx();
2353
2354         self.prove_aggregate_predicates(aggregate_kind, location);
2355
2356         if *aggregate_kind == AggregateKind::Tuple {
2357             // tuple rvalue field type is always the type of the op. Nothing to check here.
2358             return;
2359         }
2360
2361         for (i, operand) in operands.iter().enumerate() {
2362             let field_ty = match self.aggregate_field_ty(aggregate_kind, i, location) {
2363                 Ok(field_ty) => field_ty,
2364                 Err(FieldAccessError::OutOfRange { field_count }) => {
2365                     span_mirbug!(
2366                         self,
2367                         rvalue,
2368                         "accessed field #{} but variant only has {}",
2369                         i,
2370                         field_count
2371                     );
2372                     continue;
2373                 }
2374             };
2375             let operand_ty = operand.ty(body, tcx);
2376             let operand_ty = self.normalize(operand_ty, location);
2377
2378             if let Err(terr) = self.sub_types(
2379                 operand_ty,
2380                 field_ty,
2381                 location.to_locations(),
2382                 ConstraintCategory::Boring,
2383             ) {
2384                 span_mirbug!(
2385                     self,
2386                     rvalue,
2387                     "{:?} is not a subtype of {:?}: {:?}",
2388                     operand_ty,
2389                     field_ty,
2390                     terr
2391                 );
2392             }
2393         }
2394     }
2395
2396     /// Adds the constraints that arise from a borrow expression `&'a P` at the location `L`.
2397     ///
2398     /// # Parameters
2399     ///
2400     /// - `location`: the location `L` where the borrow expression occurs
2401     /// - `borrow_region`: the region `'a` associated with the borrow
2402     /// - `borrowed_place`: the place `P` being borrowed
2403     fn add_reborrow_constraint(
2404         &mut self,
2405         body: &Body<'tcx>,
2406         location: Location,
2407         borrow_region: ty::Region<'tcx>,
2408         borrowed_place: &Place<'tcx>,
2409     ) {
2410         // These constraints are only meaningful during borrowck:
2411         let BorrowCheckContext { borrow_set, location_table, all_facts, constraints, .. } =
2412             self.borrowck_context;
2413
2414         // In Polonius mode, we also push a `loan_issued_at` fact
2415         // linking the loan to the region (in some cases, though,
2416         // there is no loan associated with this borrow expression --
2417         // that occurs when we are borrowing an unsafe place, for
2418         // example).
2419         if let Some(all_facts) = all_facts {
2420             let _prof_timer = self.infcx.tcx.prof.generic_activity("polonius_fact_generation");
2421             if let Some(borrow_index) = borrow_set.get_index_of(&location) {
2422                 let region_vid = borrow_region.to_region_vid();
2423                 all_facts.loan_issued_at.push((
2424                     region_vid,
2425                     borrow_index,
2426                     location_table.mid_index(location),
2427                 ));
2428             }
2429         }
2430
2431         // If we are reborrowing the referent of another reference, we
2432         // need to add outlives relationships. In a case like `&mut
2433         // *p`, where the `p` has type `&'b mut Foo`, for example, we
2434         // need to ensure that `'b: 'a`.
2435
2436         debug!(
2437             "add_reborrow_constraint({:?}, {:?}, {:?})",
2438             location, borrow_region, borrowed_place
2439         );
2440
2441         let mut cursor = borrowed_place.projection.as_ref();
2442         let tcx = self.infcx.tcx;
2443         let field = path_utils::is_upvar_field_projection(
2444             tcx,
2445             &self.borrowck_context.upvars,
2446             borrowed_place.as_ref(),
2447             body,
2448         );
2449         let category = if let Some(field) = field {
2450             let var_hir_id = self.borrowck_context.upvars[field.index()].place.get_root_variable();
2451             // FIXME(project-rfc-2229#8): Use Place for better diagnostics
2452             ConstraintCategory::ClosureUpvar(var_hir_id)
2453         } else {
2454             ConstraintCategory::Boring
2455         };
2456
2457         while let [proj_base @ .., elem] = cursor {
2458             cursor = proj_base;
2459
2460             debug!("add_reborrow_constraint - iteration {:?}", elem);
2461
2462             match elem {
2463                 ProjectionElem::Deref => {
2464                     let base_ty = Place::ty_from(borrowed_place.local, proj_base, body, tcx).ty;
2465
2466                     debug!("add_reborrow_constraint - base_ty = {:?}", base_ty);
2467                     match base_ty.kind() {
2468                         ty::Ref(ref_region, _, mutbl) => {
2469                             constraints.outlives_constraints.push(OutlivesConstraint {
2470                                 sup: ref_region.to_region_vid(),
2471                                 sub: borrow_region.to_region_vid(),
2472                                 locations: location.to_locations(),
2473                                 category,
2474                                 variance_info: ty::VarianceDiagInfo::default(),
2475                             });
2476
2477                             match mutbl {
2478                                 hir::Mutability::Not => {
2479                                     // Immutable reference. We don't need the base
2480                                     // to be valid for the entire lifetime of
2481                                     // the borrow.
2482                                     break;
2483                                 }
2484                                 hir::Mutability::Mut => {
2485                                     // Mutable reference. We *do* need the base
2486                                     // to be valid, because after the base becomes
2487                                     // invalid, someone else can use our mutable deref.
2488
2489                                     // This is in order to make the following function
2490                                     // illegal:
2491                                     // ```
2492                                     // fn unsafe_deref<'a, 'b>(x: &'a &'b mut T) -> &'b mut T {
2493                                     //     &mut *x
2494                                     // }
2495                                     // ```
2496                                     //
2497                                     // As otherwise you could clone `&mut T` using the
2498                                     // following function:
2499                                     // ```
2500                                     // fn bad(x: &mut T) -> (&mut T, &mut T) {
2501                                     //     let my_clone = unsafe_deref(&'a x);
2502                                     //     ENDREGION 'a;
2503                                     //     (my_clone, x)
2504                                     // }
2505                                     // ```
2506                                 }
2507                             }
2508                         }
2509                         ty::RawPtr(..) => {
2510                             // deref of raw pointer, guaranteed to be valid
2511                             break;
2512                         }
2513                         ty::Adt(def, _) if def.is_box() => {
2514                             // deref of `Box`, need the base to be valid - propagate
2515                         }
2516                         _ => bug!("unexpected deref ty {:?} in {:?}", base_ty, borrowed_place),
2517                     }
2518                 }
2519                 ProjectionElem::Field(..)
2520                 | ProjectionElem::Downcast(..)
2521                 | ProjectionElem::Index(..)
2522                 | ProjectionElem::ConstantIndex { .. }
2523                 | ProjectionElem::Subslice { .. } => {
2524                     // other field access
2525                 }
2526             }
2527         }
2528     }
2529
2530     fn prove_aggregate_predicates(
2531         &mut self,
2532         aggregate_kind: &AggregateKind<'tcx>,
2533         location: Location,
2534     ) {
2535         let tcx = self.tcx();
2536
2537         debug!(
2538             "prove_aggregate_predicates(aggregate_kind={:?}, location={:?})",
2539             aggregate_kind, location
2540         );
2541
2542         let (def_id, instantiated_predicates) = match aggregate_kind {
2543             AggregateKind::Adt(def, _, substs, _, _) => {
2544                 (def.did, tcx.predicates_of(def.did).instantiate(tcx, substs))
2545             }
2546
2547             // For closures, we have some **extra requirements** we
2548             //
2549             // have to check. In particular, in their upvars and
2550             // signatures, closures often reference various regions
2551             // from the surrounding function -- we call those the
2552             // closure's free regions. When we borrow-check (and hence
2553             // region-check) closures, we may find that the closure
2554             // requires certain relationships between those free
2555             // regions. However, because those free regions refer to
2556             // portions of the CFG of their caller, the closure is not
2557             // in a position to verify those relationships. In that
2558             // case, the requirements get "propagated" to us, and so
2559             // we have to solve them here where we instantiate the
2560             // closure.
2561             //
2562             // Despite the opacity of the previous parapgrah, this is
2563             // actually relatively easy to understand in terms of the
2564             // desugaring. A closure gets desugared to a struct, and
2565             // these extra requirements are basically like where
2566             // clauses on the struct.
2567             AggregateKind::Closure(def_id, substs)
2568             | AggregateKind::Generator(def_id, substs, _) => {
2569                 (*def_id, self.prove_closure_bounds(tcx, def_id.expect_local(), substs, location))
2570             }
2571
2572             AggregateKind::Array(_) | AggregateKind::Tuple => {
2573                 (CRATE_DEF_ID.to_def_id(), ty::InstantiatedPredicates::empty())
2574             }
2575         };
2576
2577         self.normalize_and_prove_instantiated_predicates(
2578             def_id,
2579             instantiated_predicates,
2580             location.to_locations(),
2581         );
2582     }
2583
2584     fn prove_closure_bounds(
2585         &mut self,
2586         tcx: TyCtxt<'tcx>,
2587         def_id: LocalDefId,
2588         substs: SubstsRef<'tcx>,
2589         location: Location,
2590     ) -> ty::InstantiatedPredicates<'tcx> {
2591         if let Some(ref closure_region_requirements) = tcx.mir_borrowck(def_id).closure_requirements
2592         {
2593             let closure_constraints = QueryRegionConstraints {
2594                 outlives: closure_region_requirements.apply_requirements(
2595                     tcx,
2596                     def_id.to_def_id(),
2597                     substs,
2598                 ),
2599
2600                 // Presently, closures never propagate member
2601                 // constraints to their parents -- they are enforced
2602                 // locally.  This is largely a non-issue as member
2603                 // constraints only come from `-> impl Trait` and
2604                 // friends which don't appear (thus far...) in
2605                 // closures.
2606                 member_constraints: vec![],
2607             };
2608
2609             let bounds_mapping = closure_constraints
2610                 .outlives
2611                 .iter()
2612                 .enumerate()
2613                 .filter_map(|(idx, constraint)| {
2614                     let ty::OutlivesPredicate(k1, r2) =
2615                         constraint.no_bound_vars().unwrap_or_else(|| {
2616                             bug!("query_constraint {:?} contained bound vars", constraint,);
2617                         });
2618
2619                     match k1.unpack() {
2620                         GenericArgKind::Lifetime(r1) => {
2621                             // constraint is r1: r2
2622                             let r1_vid = self.borrowck_context.universal_regions.to_region_vid(r1);
2623                             let r2_vid = self.borrowck_context.universal_regions.to_region_vid(r2);
2624                             let outlives_requirements =
2625                                 &closure_region_requirements.outlives_requirements[idx];
2626                             Some((
2627                                 (r1_vid, r2_vid),
2628                                 (outlives_requirements.category, outlives_requirements.blame_span),
2629                             ))
2630                         }
2631                         GenericArgKind::Type(_) | GenericArgKind::Const(_) => None,
2632                     }
2633                 })
2634                 .collect();
2635
2636             let existing = self
2637                 .borrowck_context
2638                 .constraints
2639                 .closure_bounds_mapping
2640                 .insert(location, bounds_mapping);
2641             assert!(existing.is_none(), "Multiple closures at the same location.");
2642
2643             self.push_region_constraints(
2644                 location.to_locations(),
2645                 ConstraintCategory::ClosureBounds,
2646                 &closure_constraints,
2647             );
2648         }
2649
2650         tcx.predicates_of(def_id).instantiate(tcx, substs)
2651     }
2652
2653     #[instrument(skip(self, body), level = "debug")]
2654     fn typeck_mir(&mut self, body: &Body<'tcx>) {
2655         self.last_span = body.span;
2656         debug!(?body.span);
2657
2658         for (local, local_decl) in body.local_decls.iter_enumerated() {
2659             self.check_local(&body, local, local_decl);
2660         }
2661
2662         for (block, block_data) in body.basic_blocks().iter_enumerated() {
2663             let mut location = Location { block, statement_index: 0 };
2664             for stmt in &block_data.statements {
2665                 if !stmt.source_info.span.is_dummy() {
2666                     self.last_span = stmt.source_info.span;
2667                 }
2668                 self.check_stmt(body, stmt, location);
2669                 location.statement_index += 1;
2670             }
2671
2672             self.check_terminator(&body, block_data.terminator(), location);
2673             self.check_iscleanup(&body, block_data);
2674         }
2675     }
2676 }
2677
2678 trait NormalizeLocation: fmt::Debug + Copy {
2679     fn to_locations(self) -> Locations;
2680 }
2681
2682 impl NormalizeLocation for Locations {
2683     fn to_locations(self) -> Locations {
2684         self
2685     }
2686 }
2687
2688 impl NormalizeLocation for Location {
2689     fn to_locations(self) -> Locations {
2690         Locations::Single(self)
2691     }
2692 }
2693
2694 #[derive(Debug, Default)]
2695 struct ObligationAccumulator<'tcx> {
2696     obligations: PredicateObligations<'tcx>,
2697 }
2698
2699 impl<'tcx> ObligationAccumulator<'tcx> {
2700     fn add<T>(&mut self, value: InferOk<'tcx, T>) -> T {
2701         let InferOk { value, obligations } = value;
2702         self.obligations.extend(obligations);
2703         value
2704     }
2705
2706     fn into_vec(self) -> PredicateObligations<'tcx> {
2707         self.obligations
2708     }
2709 }