]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_borrowck/src/places_conflict.rs
Auto merge of #95466 - Dylan-DPC:rollup-g7ddr8y, r=Dylan-DPC
[rust.git] / compiler / rustc_borrowck / src / places_conflict.rs
1 use crate::ArtificialField;
2 use crate::Overlap;
3 use crate::{AccessDepth, Deep, Shallow};
4 use rustc_hir as hir;
5 use rustc_middle::mir::{Body, BorrowKind, Local, Place, PlaceElem, PlaceRef, ProjectionElem};
6 use rustc_middle::ty::{self, TyCtxt};
7 use std::cmp::max;
8 use std::iter;
9
10 /// When checking if a place conflicts with another place, this enum is used to influence decisions
11 /// where a place might be equal or disjoint with another place, such as if `a[i] == a[j]`.
12 /// `PlaceConflictBias::Overlap` would bias toward assuming that `i` might equal `j` and that these
13 /// places overlap. `PlaceConflictBias::NoOverlap` assumes that for the purposes of the predicate
14 /// being run in the calling context, the conservative choice is to assume the compared indices
15 /// are disjoint (and therefore, do not overlap).
16 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
17 crate enum PlaceConflictBias {
18     Overlap,
19     NoOverlap,
20 }
21
22 /// Helper function for checking if places conflict with a mutable borrow and deep access depth.
23 /// This is used to check for places conflicting outside of the borrow checking code (such as in
24 /// dataflow).
25 crate fn places_conflict<'tcx>(
26     tcx: TyCtxt<'tcx>,
27     body: &Body<'tcx>,
28     borrow_place: Place<'tcx>,
29     access_place: Place<'tcx>,
30     bias: PlaceConflictBias,
31 ) -> bool {
32     borrow_conflicts_with_place(
33         tcx,
34         body,
35         borrow_place,
36         BorrowKind::Mut { allow_two_phase_borrow: true },
37         access_place.as_ref(),
38         AccessDepth::Deep,
39         bias,
40     )
41 }
42
43 /// Checks whether the `borrow_place` conflicts with the `access_place` given a borrow kind and
44 /// access depth. The `bias` parameter is used to determine how the unknowable (comparing runtime
45 /// array indices, for example) should be interpreted - this depends on what the caller wants in
46 /// order to make the conservative choice and preserve soundness.
47 pub(super) fn borrow_conflicts_with_place<'tcx>(
48     tcx: TyCtxt<'tcx>,
49     body: &Body<'tcx>,
50     borrow_place: Place<'tcx>,
51     borrow_kind: BorrowKind,
52     access_place: PlaceRef<'tcx>,
53     access: AccessDepth,
54     bias: PlaceConflictBias,
55 ) -> bool {
56     debug!(
57         "borrow_conflicts_with_place({:?}, {:?}, {:?}, {:?})",
58         borrow_place, access_place, access, bias,
59     );
60
61     // This Local/Local case is handled by the more general code below, but
62     // it's so common that it's a speed win to check for it first.
63     if let Some(l1) = borrow_place.as_local() && let Some(l2) = access_place.as_local() {
64         return l1 == l2;
65     }
66
67     place_components_conflict(tcx, body, borrow_place, borrow_kind, access_place, access, bias)
68 }
69
70 fn place_components_conflict<'tcx>(
71     tcx: TyCtxt<'tcx>,
72     body: &Body<'tcx>,
73     borrow_place: Place<'tcx>,
74     borrow_kind: BorrowKind,
75     access_place: PlaceRef<'tcx>,
76     access: AccessDepth,
77     bias: PlaceConflictBias,
78 ) -> bool {
79     // The borrowck rules for proving disjointness are applied from the "root" of the
80     // borrow forwards, iterating over "similar" projections in lockstep until
81     // we can prove overlap one way or another. Essentially, we treat `Overlap` as
82     // a monoid and report a conflict if the product ends up not being `Disjoint`.
83     //
84     // At each step, if we didn't run out of borrow or place, we know that our elements
85     // have the same type, and that they only overlap if they are the identical.
86     //
87     // For example, if we are comparing these:
88     // BORROW:  (*x1[2].y).z.a
89     // ACCESS:  (*x1[i].y).w.b
90     //
91     // Then our steps are:
92     //       x1         |   x1          -- places are the same
93     //       x1[2]      |   x1[i]       -- equal or disjoint (disjoint if indexes differ)
94     //       x1[2].y    |   x1[i].y     -- equal or disjoint
95     //      *x1[2].y    |  *x1[i].y     -- equal or disjoint
96     //     (*x1[2].y).z | (*x1[i].y).w  -- we are disjoint and don't need to check more!
97     //
98     // Because `zip` does potentially bad things to the iterator inside, this loop
99     // also handles the case where the access might be a *prefix* of the borrow, e.g.
100     //
101     // BORROW:  (*x1[2].y).z.a
102     // ACCESS:  x1[i].y
103     //
104     // Then our steps are:
105     //       x1         |   x1          -- places are the same
106     //       x1[2]      |   x1[i]       -- equal or disjoint (disjoint if indexes differ)
107     //       x1[2].y    |   x1[i].y     -- equal or disjoint
108     //
109     // -- here we run out of access - the borrow can access a part of it. If this
110     // is a full deep access, then we *know* the borrow conflicts with it. However,
111     // if the access is shallow, then we can proceed:
112     //
113     //       x1[2].y    | (*x1[i].y)    -- a deref! the access can't get past this, so we
114     //                                     are disjoint
115     //
116     // Our invariant is, that at each step of the iteration:
117     //  - If we didn't run out of access to match, our borrow and access are comparable
118     //    and either equal or disjoint.
119     //  - If we did run out of access, the borrow can access a part of it.
120
121     let borrow_local = borrow_place.local;
122     let access_local = access_place.local;
123
124     match place_base_conflict(borrow_local, access_local) {
125         Overlap::Arbitrary => {
126             bug!("Two base can't return Arbitrary");
127         }
128         Overlap::EqualOrDisjoint => {
129             // This is the recursive case - proceed to the next element.
130         }
131         Overlap::Disjoint => {
132             // We have proven the borrow disjoint - further
133             // projections will remain disjoint.
134             debug!("borrow_conflicts_with_place: disjoint");
135             return false;
136         }
137     }
138
139     // loop invariant: borrow_c is always either equal to access_c or disjoint from it.
140     for (i, (borrow_c, &access_c)) in
141         iter::zip(borrow_place.projection, access_place.projection).enumerate()
142     {
143         debug!("borrow_conflicts_with_place: borrow_c = {:?}", borrow_c);
144         let borrow_proj_base = &borrow_place.projection[..i];
145
146         debug!("borrow_conflicts_with_place: access_c = {:?}", access_c);
147
148         // Borrow and access path both have more components.
149         //
150         // Examples:
151         //
152         // - borrow of `a.(...)`, access to `a.(...)`
153         // - borrow of `a.(...)`, access to `b.(...)`
154         //
155         // Here we only see the components we have checked so
156         // far (in our examples, just the first component). We
157         // check whether the components being borrowed vs
158         // accessed are disjoint (as in the second example,
159         // but not the first).
160         match place_projection_conflict(
161             tcx,
162             body,
163             borrow_local,
164             borrow_proj_base,
165             borrow_c,
166             access_c,
167             bias,
168         ) {
169             Overlap::Arbitrary => {
170                 // We have encountered different fields of potentially
171                 // the same union - the borrow now partially overlaps.
172                 //
173                 // There is no *easy* way of comparing the fields
174                 // further on, because they might have different types
175                 // (e.g., borrows of `u.a.0` and `u.b.y` where `.0` and
176                 // `.y` come from different structs).
177                 //
178                 // We could try to do some things here - e.g., count
179                 // dereferences - but that's probably not a good
180                 // idea, at least for now, so just give up and
181                 // report a conflict. This is unsafe code anyway so
182                 // the user could always use raw pointers.
183                 debug!("borrow_conflicts_with_place: arbitrary -> conflict");
184                 return true;
185             }
186             Overlap::EqualOrDisjoint => {
187                 // This is the recursive case - proceed to the next element.
188             }
189             Overlap::Disjoint => {
190                 // We have proven the borrow disjoint - further
191                 // projections will remain disjoint.
192                 debug!("borrow_conflicts_with_place: disjoint");
193                 return false;
194             }
195         }
196     }
197
198     if borrow_place.projection.len() > access_place.projection.len() {
199         for (i, elem) in borrow_place.projection[access_place.projection.len()..].iter().enumerate()
200         {
201             // Borrow path is longer than the access path. Examples:
202             //
203             // - borrow of `a.b.c`, access to `a.b`
204             //
205             // Here, we know that the borrow can access a part of
206             // our place. This is a conflict if that is a part our
207             // access cares about.
208
209             let proj_base = &borrow_place.projection[..access_place.projection.len() + i];
210             let base_ty = Place::ty_from(borrow_local, proj_base, body, tcx).ty;
211
212             match (elem, &base_ty.kind(), access) {
213                 (_, _, Shallow(Some(ArtificialField::ArrayLength)))
214                 | (_, _, Shallow(Some(ArtificialField::ShallowBorrow))) => {
215                     // The array length is like  additional fields on the
216                     // type; it does not overlap any existing data there.
217                     // Furthermore, if cannot actually be a prefix of any
218                     // borrowed place (at least in MIR as it is currently.)
219                     //
220                     // e.g., a (mutable) borrow of `a[5]` while we read the
221                     // array length of `a`.
222                     debug!("borrow_conflicts_with_place: implicit field");
223                     return false;
224                 }
225
226                 (ProjectionElem::Deref, _, Shallow(None)) => {
227                     // e.g., a borrow of `*x.y` while we shallowly access `x.y` or some
228                     // prefix thereof - the shallow access can't touch anything behind
229                     // the pointer.
230                     debug!("borrow_conflicts_with_place: shallow access behind ptr");
231                     return false;
232                 }
233                 (ProjectionElem::Deref, ty::Ref(_, _, hir::Mutability::Not), _) => {
234                     // Shouldn't be tracked
235                     bug!("Tracking borrow behind shared reference.");
236                 }
237                 (ProjectionElem::Deref, ty::Ref(_, _, hir::Mutability::Mut), AccessDepth::Drop) => {
238                     // Values behind a mutable reference are not access either by dropping a
239                     // value, or by StorageDead
240                     debug!("borrow_conflicts_with_place: drop access behind ptr");
241                     return false;
242                 }
243
244                 (ProjectionElem::Field { .. }, ty::Adt(def, _), AccessDepth::Drop) => {
245                     // Drop can read/write arbitrary projections, so places
246                     // conflict regardless of further projections.
247                     if def.has_dtor(tcx) {
248                         return true;
249                     }
250                 }
251
252                 (ProjectionElem::Deref, _, Deep)
253                 | (ProjectionElem::Deref, _, AccessDepth::Drop)
254                 | (ProjectionElem::Field { .. }, _, _)
255                 | (ProjectionElem::Index { .. }, _, _)
256                 | (ProjectionElem::ConstantIndex { .. }, _, _)
257                 | (ProjectionElem::Subslice { .. }, _, _)
258                 | (ProjectionElem::Downcast { .. }, _, _) => {
259                     // Recursive case. This can still be disjoint on a
260                     // further iteration if this a shallow access and
261                     // there's a deref later on, e.g., a borrow
262                     // of `*x.y` while accessing `x`.
263                 }
264             }
265         }
266     }
267
268     // Borrow path ran out but access path may not
269     // have. Examples:
270     //
271     // - borrow of `a.b`, access to `a.b.c`
272     // - borrow of `a.b`, access to `a.b`
273     //
274     // In the first example, where we didn't run out of
275     // access, the borrow can access all of our place, so we
276     // have a conflict.
277     //
278     // If the second example, where we did, then we still know
279     // that the borrow can access a *part* of our place that
280     // our access cares about, so we still have a conflict.
281     if borrow_kind == BorrowKind::Shallow
282         && borrow_place.projection.len() < access_place.projection.len()
283     {
284         debug!("borrow_conflicts_with_place: shallow borrow");
285         false
286     } else {
287         debug!("borrow_conflicts_with_place: full borrow, CONFLICT");
288         true
289     }
290 }
291
292 // Given that the bases of `elem1` and `elem2` are always either equal
293 // or disjoint (and have the same type!), return the overlap situation
294 // between `elem1` and `elem2`.
295 fn place_base_conflict(l1: Local, l2: Local) -> Overlap {
296     if l1 == l2 {
297         // the same local - base case, equal
298         debug!("place_element_conflict: DISJOINT-OR-EQ-LOCAL");
299         Overlap::EqualOrDisjoint
300     } else {
301         // different locals - base case, disjoint
302         debug!("place_element_conflict: DISJOINT-LOCAL");
303         Overlap::Disjoint
304     }
305 }
306
307 // Given that the bases of `elem1` and `elem2` are always either equal
308 // or disjoint (and have the same type!), return the overlap situation
309 // between `elem1` and `elem2`.
310 fn place_projection_conflict<'tcx>(
311     tcx: TyCtxt<'tcx>,
312     body: &Body<'tcx>,
313     pi1_local: Local,
314     pi1_proj_base: &[PlaceElem<'tcx>],
315     pi1_elem: PlaceElem<'tcx>,
316     pi2_elem: PlaceElem<'tcx>,
317     bias: PlaceConflictBias,
318 ) -> Overlap {
319     match (pi1_elem, pi2_elem) {
320         (ProjectionElem::Deref, ProjectionElem::Deref) => {
321             // derefs (e.g., `*x` vs. `*x`) - recur.
322             debug!("place_element_conflict: DISJOINT-OR-EQ-DEREF");
323             Overlap::EqualOrDisjoint
324         }
325         (ProjectionElem::Field(f1, _), ProjectionElem::Field(f2, _)) => {
326             if f1 == f2 {
327                 // same field (e.g., `a.y` vs. `a.y`) - recur.
328                 debug!("place_element_conflict: DISJOINT-OR-EQ-FIELD");
329                 Overlap::EqualOrDisjoint
330             } else {
331                 let ty = Place::ty_from(pi1_local, pi1_proj_base, body, tcx).ty;
332                 if ty.is_union() {
333                     // Different fields of a union, we are basically stuck.
334                     debug!("place_element_conflict: STUCK-UNION");
335                     Overlap::Arbitrary
336                 } else {
337                     // Different fields of a struct (`a.x` vs. `a.y`). Disjoint!
338                     debug!("place_element_conflict: DISJOINT-FIELD");
339                     Overlap::Disjoint
340                 }
341             }
342         }
343         (ProjectionElem::Downcast(_, v1), ProjectionElem::Downcast(_, v2)) => {
344             // different variants are treated as having disjoint fields,
345             // even if they occupy the same "space", because it's
346             // impossible for 2 variants of the same enum to exist
347             // (and therefore, to be borrowed) at the same time.
348             //
349             // Note that this is different from unions - we *do* allow
350             // this code to compile:
351             //
352             // ```
353             // fn foo(x: &mut Result<i32, i32>) {
354             //     let mut v = None;
355             //     if let Ok(ref mut a) = *x {
356             //         v = Some(a);
357             //     }
358             //     // here, you would *think* that the
359             //     // *entirety* of `x` would be borrowed,
360             //     // but in fact only the `Ok` variant is,
361             //     // so the `Err` variant is *entirely free*:
362             //     if let Err(ref mut a) = *x {
363             //         v = Some(a);
364             //     }
365             //     drop(v);
366             // }
367             // ```
368             if v1 == v2 {
369                 debug!("place_element_conflict: DISJOINT-OR-EQ-FIELD");
370                 Overlap::EqualOrDisjoint
371             } else {
372                 debug!("place_element_conflict: DISJOINT-FIELD");
373                 Overlap::Disjoint
374             }
375         }
376         (
377             ProjectionElem::Index(..),
378             ProjectionElem::Index(..)
379             | ProjectionElem::ConstantIndex { .. }
380             | ProjectionElem::Subslice { .. },
381         )
382         | (
383             ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. },
384             ProjectionElem::Index(..),
385         ) => {
386             // Array indexes (`a[0]` vs. `a[i]`). These can either be disjoint
387             // (if the indexes differ) or equal (if they are the same).
388             match bias {
389                 PlaceConflictBias::Overlap => {
390                     // If we are biased towards overlapping, then this is the recursive
391                     // case that gives "equal *or* disjoint" its meaning.
392                     debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-INDEX");
393                     Overlap::EqualOrDisjoint
394                 }
395                 PlaceConflictBias::NoOverlap => {
396                     // If we are biased towards no overlapping, then this is disjoint.
397                     debug!("place_element_conflict: DISJOINT-ARRAY-INDEX");
398                     Overlap::Disjoint
399                 }
400             }
401         }
402         (
403             ProjectionElem::ConstantIndex { offset: o1, min_length: _, from_end: false },
404             ProjectionElem::ConstantIndex { offset: o2, min_length: _, from_end: false },
405         )
406         | (
407             ProjectionElem::ConstantIndex { offset: o1, min_length: _, from_end: true },
408             ProjectionElem::ConstantIndex { offset: o2, min_length: _, from_end: true },
409         ) => {
410             if o1 == o2 {
411                 debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX");
412                 Overlap::EqualOrDisjoint
413             } else {
414                 debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX");
415                 Overlap::Disjoint
416             }
417         }
418         (
419             ProjectionElem::ConstantIndex {
420                 offset: offset_from_begin,
421                 min_length: min_length1,
422                 from_end: false,
423             },
424             ProjectionElem::ConstantIndex {
425                 offset: offset_from_end,
426                 min_length: min_length2,
427                 from_end: true,
428             },
429         )
430         | (
431             ProjectionElem::ConstantIndex {
432                 offset: offset_from_end,
433                 min_length: min_length1,
434                 from_end: true,
435             },
436             ProjectionElem::ConstantIndex {
437                 offset: offset_from_begin,
438                 min_length: min_length2,
439                 from_end: false,
440             },
441         ) => {
442             // both patterns matched so it must be at least the greater of the two
443             let min_length = max(min_length1, min_length2);
444             // `offset_from_end` can be in range `[1..min_length]`, 1 indicates the last
445             // element (like -1 in Python) and `min_length` the first.
446             // Therefore, `min_length - offset_from_end` gives the minimal possible
447             // offset from the beginning
448             if offset_from_begin >= min_length - offset_from_end {
449                 debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX-FE");
450                 Overlap::EqualOrDisjoint
451             } else {
452                 debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX-FE");
453                 Overlap::Disjoint
454             }
455         }
456         (
457             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
458             ProjectionElem::Subslice { from, to, from_end: false },
459         )
460         | (
461             ProjectionElem::Subslice { from, to, from_end: false },
462             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
463         ) => {
464             if (from..to).contains(&offset) {
465                 debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-CONSTANT-INDEX-SUBSLICE");
466                 Overlap::EqualOrDisjoint
467             } else {
468                 debug!("place_element_conflict: DISJOINT-ARRAY-CONSTANT-INDEX-SUBSLICE");
469                 Overlap::Disjoint
470             }
471         }
472         (
473             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
474             ProjectionElem::Subslice { from, .. },
475         )
476         | (
477             ProjectionElem::Subslice { from, .. },
478             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false },
479         ) => {
480             if offset >= from {
481                 debug!("place_element_conflict: DISJOINT-OR-EQ-SLICE-CONSTANT-INDEX-SUBSLICE");
482                 Overlap::EqualOrDisjoint
483             } else {
484                 debug!("place_element_conflict: DISJOINT-SLICE-CONSTANT-INDEX-SUBSLICE");
485                 Overlap::Disjoint
486             }
487         }
488         (
489             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true },
490             ProjectionElem::Subslice { to, from_end: true, .. },
491         )
492         | (
493             ProjectionElem::Subslice { to, from_end: true, .. },
494             ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true },
495         ) => {
496             if offset > to {
497                 debug!(
498                     "place_element_conflict: \
499                        DISJOINT-OR-EQ-SLICE-CONSTANT-INDEX-SUBSLICE-FE"
500                 );
501                 Overlap::EqualOrDisjoint
502             } else {
503                 debug!("place_element_conflict: DISJOINT-SLICE-CONSTANT-INDEX-SUBSLICE-FE");
504                 Overlap::Disjoint
505             }
506         }
507         (
508             ProjectionElem::Subslice { from: f1, to: t1, from_end: false },
509             ProjectionElem::Subslice { from: f2, to: t2, from_end: false },
510         ) => {
511             if f2 >= t1 || f1 >= t2 {
512                 debug!("place_element_conflict: DISJOINT-ARRAY-SUBSLICES");
513                 Overlap::Disjoint
514             } else {
515                 debug!("place_element_conflict: DISJOINT-OR-EQ-ARRAY-SUBSLICES");
516                 Overlap::EqualOrDisjoint
517             }
518         }
519         (ProjectionElem::Subslice { .. }, ProjectionElem::Subslice { .. }) => {
520             debug!("place_element_conflict: DISJOINT-OR-EQ-SLICE-SUBSLICES");
521             Overlap::EqualOrDisjoint
522         }
523         (
524             ProjectionElem::Deref
525             | ProjectionElem::Field(..)
526             | ProjectionElem::Index(..)
527             | ProjectionElem::ConstantIndex { .. }
528             | ProjectionElem::Subslice { .. }
529             | ProjectionElem::Downcast(..),
530             _,
531         ) => bug!(
532             "mismatched projections in place_element_conflict: {:?} and {:?}",
533             pi1_elem,
534             pi2_elem
535         ),
536     }
537 }