]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_ast_lowering/src/expr.rs
Lower closure binders to hir & properly check them
[rust.git] / compiler / rustc_ast_lowering / src / expr.rs
1 use super::ResolverAstLoweringExt;
2 use super::{ImplTraitContext, LoweringContext, ParamMode, ParenthesizedGenericArgs};
3 use crate::{FnDeclKind, ImplTraitPosition};
4
5 use rustc_ast::attr;
6 use rustc_ast::ptr::P as AstP;
7 use rustc_ast::*;
8 use rustc_data_structures::stack::ensure_sufficient_stack;
9 use rustc_data_structures::thin_vec::ThinVec;
10 use rustc_errors::struct_span_err;
11 use rustc_hir as hir;
12 use rustc_hir::def::Res;
13 use rustc_hir::definitions::DefPathData;
14 use rustc_span::source_map::{respan, DesugaringKind, Span, Spanned};
15 use rustc_span::symbol::{sym, Ident};
16 use rustc_span::DUMMY_SP;
17
18 impl<'hir> LoweringContext<'_, 'hir> {
19     fn lower_exprs(&mut self, exprs: &[AstP<Expr>]) -> &'hir [hir::Expr<'hir>] {
20         self.arena.alloc_from_iter(exprs.iter().map(|x| self.lower_expr_mut(x)))
21     }
22
23     pub(super) fn lower_expr(&mut self, e: &Expr) -> &'hir hir::Expr<'hir> {
24         self.arena.alloc(self.lower_expr_mut(e))
25     }
26
27     pub(super) fn lower_expr_mut(&mut self, e: &Expr) -> hir::Expr<'hir> {
28         ensure_sufficient_stack(|| {
29             let kind = match e.kind {
30                 ExprKind::Box(ref inner) => hir::ExprKind::Box(self.lower_expr(inner)),
31                 ExprKind::Array(ref exprs) => hir::ExprKind::Array(self.lower_exprs(exprs)),
32                 ExprKind::ConstBlock(ref anon_const) => {
33                     let anon_const = self.lower_anon_const(anon_const);
34                     hir::ExprKind::ConstBlock(anon_const)
35                 }
36                 ExprKind::Repeat(ref expr, ref count) => {
37                     let expr = self.lower_expr(expr);
38                     let count = self.lower_array_length(count);
39                     hir::ExprKind::Repeat(expr, count)
40                 }
41                 ExprKind::Tup(ref elts) => hir::ExprKind::Tup(self.lower_exprs(elts)),
42                 ExprKind::Call(ref f, ref args) => {
43                     if e.attrs.get(0).map_or(false, |a| a.has_name(sym::rustc_box)) {
44                         if let [inner] = &args[..] && e.attrs.len() == 1 {
45                             let kind = hir::ExprKind::Box(self.lower_expr(&inner));
46                             let hir_id = self.lower_node_id(e.id);
47                             return hir::Expr { hir_id, kind, span: self.lower_span(e.span) };
48                         } else {
49                             self.tcx.sess
50                                 .struct_span_err(
51                                     e.span,
52                                     "#[rustc_box] requires precisely one argument \
53                                     and no other attributes are allowed",
54                                 )
55                                 .emit();
56                             hir::ExprKind::Err
57                         }
58                     } else if let Some(legacy_args) = self.resolver.legacy_const_generic_args(f) {
59                         self.lower_legacy_const_generics((**f).clone(), args.clone(), &legacy_args)
60                     } else {
61                         let f = self.lower_expr(f);
62                         hir::ExprKind::Call(f, self.lower_exprs(args))
63                     }
64                 }
65                 ExprKind::MethodCall(ref seg, ref args, span) => {
66                     let hir_seg = self.arena.alloc(self.lower_path_segment(
67                         e.span,
68                         seg,
69                         ParamMode::Optional,
70                         ParenthesizedGenericArgs::Err,
71                         ImplTraitContext::Disallowed(ImplTraitPosition::Path),
72                     ));
73                     let args = self.lower_exprs(args);
74                     hir::ExprKind::MethodCall(hir_seg, args, self.lower_span(span))
75                 }
76                 ExprKind::Binary(binop, ref lhs, ref rhs) => {
77                     let binop = self.lower_binop(binop);
78                     let lhs = self.lower_expr(lhs);
79                     let rhs = self.lower_expr(rhs);
80                     hir::ExprKind::Binary(binop, lhs, rhs)
81                 }
82                 ExprKind::Unary(op, ref ohs) => {
83                     let op = self.lower_unop(op);
84                     let ohs = self.lower_expr(ohs);
85                     hir::ExprKind::Unary(op, ohs)
86                 }
87                 ExprKind::Lit(ref l) => {
88                     hir::ExprKind::Lit(respan(self.lower_span(l.span), l.kind.clone()))
89                 }
90                 ExprKind::Cast(ref expr, ref ty) => {
91                     let expr = self.lower_expr(expr);
92                     let ty =
93                         self.lower_ty(ty, ImplTraitContext::Disallowed(ImplTraitPosition::Type));
94                     hir::ExprKind::Cast(expr, ty)
95                 }
96                 ExprKind::Type(ref expr, ref ty) => {
97                     let expr = self.lower_expr(expr);
98                     let ty =
99                         self.lower_ty(ty, ImplTraitContext::Disallowed(ImplTraitPosition::Type));
100                     hir::ExprKind::Type(expr, ty)
101                 }
102                 ExprKind::AddrOf(k, m, ref ohs) => {
103                     let ohs = self.lower_expr(ohs);
104                     hir::ExprKind::AddrOf(k, m, ohs)
105                 }
106                 ExprKind::Let(ref pat, ref scrutinee, span) => {
107                     hir::ExprKind::Let(self.arena.alloc(hir::Let {
108                         hir_id: self.next_id(),
109                         span: self.lower_span(span),
110                         pat: self.lower_pat(pat),
111                         ty: None,
112                         init: self.lower_expr(scrutinee),
113                     }))
114                 }
115                 ExprKind::If(ref cond, ref then, ref else_opt) => {
116                     self.lower_expr_if(cond, then, else_opt.as_deref())
117                 }
118                 ExprKind::While(ref cond, ref body, opt_label) => {
119                     self.with_loop_scope(e.id, |this| {
120                         let span =
121                             this.mark_span_with_reason(DesugaringKind::WhileLoop, e.span, None);
122                         this.lower_expr_while_in_loop_scope(span, cond, body, opt_label)
123                     })
124                 }
125                 ExprKind::Loop(ref body, opt_label) => self.with_loop_scope(e.id, |this| {
126                     hir::ExprKind::Loop(
127                         this.lower_block(body, false),
128                         this.lower_label(opt_label),
129                         hir::LoopSource::Loop,
130                         DUMMY_SP,
131                     )
132                 }),
133                 ExprKind::TryBlock(ref body) => self.lower_expr_try_block(body),
134                 ExprKind::Match(ref expr, ref arms) => hir::ExprKind::Match(
135                     self.lower_expr(expr),
136                     self.arena.alloc_from_iter(arms.iter().map(|x| self.lower_arm(x))),
137                     hir::MatchSource::Normal,
138                 ),
139                 ExprKind::Async(capture_clause, closure_node_id, ref block) => self
140                     .make_async_expr(
141                         capture_clause,
142                         closure_node_id,
143                         None,
144                         block.span,
145                         hir::AsyncGeneratorKind::Block,
146                         |this| this.with_new_scopes(|this| this.lower_block_expr(block)),
147                     ),
148                 ExprKind::Await(ref expr) => {
149                     let span = if expr.span.hi() < e.span.hi() {
150                         expr.span.shrink_to_hi().with_hi(e.span.hi())
151                     } else {
152                         // this is a recovered `await expr`
153                         e.span
154                     };
155                     self.lower_expr_await(span, expr)
156                 }
157                 ExprKind::Closure(
158                     ref binder,
159                     capture_clause,
160                     asyncness,
161                     movability,
162                     ref decl,
163                     ref body,
164                     fn_decl_span,
165                 ) => {
166                     if let Async::Yes { closure_id, .. } = asyncness {
167                         self.lower_expr_async_closure(
168                             binder,
169                             capture_clause,
170                             e.id,
171                             closure_id,
172                             decl,
173                             body,
174                             fn_decl_span,
175                         )
176                     } else {
177                         self.lower_expr_closure(
178                             binder,
179                             capture_clause,
180                             e.id,
181                             movability,
182                             decl,
183                             body,
184                             fn_decl_span,
185                         )
186                     }
187                 }
188                 ExprKind::Block(ref blk, opt_label) => {
189                     let opt_label = self.lower_label(opt_label);
190                     hir::ExprKind::Block(self.lower_block(blk, opt_label.is_some()), opt_label)
191                 }
192                 ExprKind::Assign(ref el, ref er, span) => {
193                     self.lower_expr_assign(el, er, span, e.span)
194                 }
195                 ExprKind::AssignOp(op, ref el, ref er) => hir::ExprKind::AssignOp(
196                     self.lower_binop(op),
197                     self.lower_expr(el),
198                     self.lower_expr(er),
199                 ),
200                 ExprKind::Field(ref el, ident) => {
201                     hir::ExprKind::Field(self.lower_expr(el), self.lower_ident(ident))
202                 }
203                 ExprKind::Index(ref el, ref er) => {
204                     hir::ExprKind::Index(self.lower_expr(el), self.lower_expr(er))
205                 }
206                 ExprKind::Range(Some(ref e1), Some(ref e2), RangeLimits::Closed) => {
207                     self.lower_expr_range_closed(e.span, e1, e2)
208                 }
209                 ExprKind::Range(ref e1, ref e2, lims) => {
210                     self.lower_expr_range(e.span, e1.as_deref(), e2.as_deref(), lims)
211                 }
212                 ExprKind::Underscore => {
213                     self.tcx
214                         .sess.struct_span_err(
215                             e.span,
216                             "in expressions, `_` can only be used on the left-hand side of an assignment",
217                         )
218                         .span_label(e.span, "`_` not allowed here")
219                         .emit();
220                     hir::ExprKind::Err
221                 }
222                 ExprKind::Path(ref qself, ref path) => {
223                     let qpath = self.lower_qpath(
224                         e.id,
225                         qself,
226                         path,
227                         ParamMode::Optional,
228                         ImplTraitContext::Disallowed(ImplTraitPosition::Path),
229                     );
230                     hir::ExprKind::Path(qpath)
231                 }
232                 ExprKind::Break(opt_label, ref opt_expr) => {
233                     let opt_expr = opt_expr.as_ref().map(|x| self.lower_expr(x));
234                     hir::ExprKind::Break(self.lower_jump_destination(e.id, opt_label), opt_expr)
235                 }
236                 ExprKind::Continue(opt_label) => {
237                     hir::ExprKind::Continue(self.lower_jump_destination(e.id, opt_label))
238                 }
239                 ExprKind::Ret(ref e) => {
240                     let e = e.as_ref().map(|x| self.lower_expr(x));
241                     hir::ExprKind::Ret(e)
242                 }
243                 ExprKind::Yeet(ref sub_expr) => self.lower_expr_yeet(e.span, sub_expr.as_deref()),
244                 ExprKind::InlineAsm(ref asm) => {
245                     hir::ExprKind::InlineAsm(self.lower_inline_asm(e.span, asm))
246                 }
247                 ExprKind::Struct(ref se) => {
248                     let rest = match &se.rest {
249                         StructRest::Base(e) => Some(self.lower_expr(e)),
250                         StructRest::Rest(sp) => {
251                             self.tcx
252                                 .sess
253                                 .struct_span_err(*sp, "base expression required after `..`")
254                                 .span_label(*sp, "add a base expression here")
255                                 .emit();
256                             Some(&*self.arena.alloc(self.expr_err(*sp)))
257                         }
258                         StructRest::None => None,
259                     };
260                     hir::ExprKind::Struct(
261                         self.arena.alloc(self.lower_qpath(
262                             e.id,
263                             &se.qself,
264                             &se.path,
265                             ParamMode::Optional,
266                             ImplTraitContext::Disallowed(ImplTraitPosition::Path),
267                         )),
268                         self.arena
269                             .alloc_from_iter(se.fields.iter().map(|x| self.lower_expr_field(x))),
270                         rest,
271                     )
272                 }
273                 ExprKind::Yield(ref opt_expr) => self.lower_expr_yield(e.span, opt_expr.as_deref()),
274                 ExprKind::Err => hir::ExprKind::Err,
275                 ExprKind::Try(ref sub_expr) => self.lower_expr_try(e.span, sub_expr),
276                 ExprKind::Paren(ref ex) => {
277                     let mut ex = self.lower_expr_mut(ex);
278                     // Include parens in span, but only if it is a super-span.
279                     if e.span.contains(ex.span) {
280                         ex.span = self.lower_span(e.span);
281                     }
282                     // Merge attributes into the inner expression.
283                     if !e.attrs.is_empty() {
284                         let old_attrs =
285                             self.attrs.get(&ex.hir_id.local_id).map(|la| *la).unwrap_or(&[]);
286                         self.attrs.insert(
287                             ex.hir_id.local_id,
288                             &*self.arena.alloc_from_iter(
289                                 e.attrs
290                                     .iter()
291                                     .map(|a| self.lower_attr(a))
292                                     .chain(old_attrs.iter().cloned()),
293                             ),
294                         );
295                     }
296                     return ex;
297                 }
298
299                 // Desugar `ExprForLoop`
300                 // from: `[opt_ident]: for <pat> in <head> <body>`
301                 ExprKind::ForLoop(ref pat, ref head, ref body, opt_label) => {
302                     return self.lower_expr_for(e, pat, head, body, opt_label);
303                 }
304                 ExprKind::MacCall(_) => panic!("{:?} shouldn't exist here", e.span),
305             };
306
307             let hir_id = self.lower_node_id(e.id);
308             self.lower_attrs(hir_id, &e.attrs);
309             hir::Expr { hir_id, kind, span: self.lower_span(e.span) }
310         })
311     }
312
313     fn lower_unop(&mut self, u: UnOp) -> hir::UnOp {
314         match u {
315             UnOp::Deref => hir::UnOp::Deref,
316             UnOp::Not => hir::UnOp::Not,
317             UnOp::Neg => hir::UnOp::Neg,
318         }
319     }
320
321     fn lower_binop(&mut self, b: BinOp) -> hir::BinOp {
322         Spanned {
323             node: match b.node {
324                 BinOpKind::Add => hir::BinOpKind::Add,
325                 BinOpKind::Sub => hir::BinOpKind::Sub,
326                 BinOpKind::Mul => hir::BinOpKind::Mul,
327                 BinOpKind::Div => hir::BinOpKind::Div,
328                 BinOpKind::Rem => hir::BinOpKind::Rem,
329                 BinOpKind::And => hir::BinOpKind::And,
330                 BinOpKind::Or => hir::BinOpKind::Or,
331                 BinOpKind::BitXor => hir::BinOpKind::BitXor,
332                 BinOpKind::BitAnd => hir::BinOpKind::BitAnd,
333                 BinOpKind::BitOr => hir::BinOpKind::BitOr,
334                 BinOpKind::Shl => hir::BinOpKind::Shl,
335                 BinOpKind::Shr => hir::BinOpKind::Shr,
336                 BinOpKind::Eq => hir::BinOpKind::Eq,
337                 BinOpKind::Lt => hir::BinOpKind::Lt,
338                 BinOpKind::Le => hir::BinOpKind::Le,
339                 BinOpKind::Ne => hir::BinOpKind::Ne,
340                 BinOpKind::Ge => hir::BinOpKind::Ge,
341                 BinOpKind::Gt => hir::BinOpKind::Gt,
342             },
343             span: self.lower_span(b.span),
344         }
345     }
346
347     fn lower_legacy_const_generics(
348         &mut self,
349         mut f: Expr,
350         args: Vec<AstP<Expr>>,
351         legacy_args_idx: &[usize],
352     ) -> hir::ExprKind<'hir> {
353         let ExprKind::Path(None, ref mut path) = f.kind else {
354             unreachable!();
355         };
356
357         // Split the arguments into const generics and normal arguments
358         let mut real_args = vec![];
359         let mut generic_args = vec![];
360         for (idx, arg) in args.into_iter().enumerate() {
361             if legacy_args_idx.contains(&idx) {
362                 let parent_def_id = self.current_hir_id_owner;
363                 let node_id = self.next_node_id();
364
365                 // Add a definition for the in-band const def.
366                 self.create_def(parent_def_id, node_id, DefPathData::AnonConst);
367
368                 let anon_const = AnonConst { id: node_id, value: arg };
369                 generic_args.push(AngleBracketedArg::Arg(GenericArg::Const(anon_const)));
370             } else {
371                 real_args.push(arg);
372             }
373         }
374
375         // Add generic args to the last element of the path.
376         let last_segment = path.segments.last_mut().unwrap();
377         assert!(last_segment.args.is_none());
378         last_segment.args = Some(AstP(GenericArgs::AngleBracketed(AngleBracketedArgs {
379             span: DUMMY_SP,
380             args: generic_args,
381         })));
382
383         // Now lower everything as normal.
384         let f = self.lower_expr(&f);
385         hir::ExprKind::Call(f, self.lower_exprs(&real_args))
386     }
387
388     fn lower_expr_if(
389         &mut self,
390         cond: &Expr,
391         then: &Block,
392         else_opt: Option<&Expr>,
393     ) -> hir::ExprKind<'hir> {
394         let lowered_cond = self.lower_expr(cond);
395         let new_cond = self.manage_let_cond(lowered_cond);
396         let then_expr = self.lower_block_expr(then);
397         if let Some(rslt) = else_opt {
398             hir::ExprKind::If(new_cond, self.arena.alloc(then_expr), Some(self.lower_expr(rslt)))
399         } else {
400             hir::ExprKind::If(new_cond, self.arena.alloc(then_expr), None)
401         }
402     }
403
404     // If `cond` kind is `let`, returns `let`. Otherwise, wraps and returns `cond`
405     // in a temporary block.
406     fn manage_let_cond(&mut self, cond: &'hir hir::Expr<'hir>) -> &'hir hir::Expr<'hir> {
407         fn has_let_expr<'hir>(expr: &'hir hir::Expr<'hir>) -> bool {
408             match expr.kind {
409                 hir::ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs),
410                 hir::ExprKind::Let(..) => true,
411                 _ => false,
412             }
413         }
414         if has_let_expr(cond) {
415             cond
416         } else {
417             let reason = DesugaringKind::CondTemporary;
418             let span_block = self.mark_span_with_reason(reason, cond.span, None);
419             self.expr_drop_temps(span_block, cond, AttrVec::new())
420         }
421     }
422
423     // We desugar: `'label: while $cond $body` into:
424     //
425     // ```
426     // 'label: loop {
427     //   if { let _t = $cond; _t } {
428     //     $body
429     //   }
430     //   else {
431     //     break;
432     //   }
433     // }
434     // ```
435     //
436     // Wrap in a construct equivalent to `{ let _t = $cond; _t }`
437     // to preserve drop semantics since `while $cond { ... }` does not
438     // let temporaries live outside of `cond`.
439     fn lower_expr_while_in_loop_scope(
440         &mut self,
441         span: Span,
442         cond: &Expr,
443         body: &Block,
444         opt_label: Option<Label>,
445     ) -> hir::ExprKind<'hir> {
446         let lowered_cond = self.with_loop_condition_scope(|t| t.lower_expr(cond));
447         let new_cond = self.manage_let_cond(lowered_cond);
448         let then = self.lower_block_expr(body);
449         let expr_break = self.expr_break(span, ThinVec::new());
450         let stmt_break = self.stmt_expr(span, expr_break);
451         let else_blk = self.block_all(span, arena_vec![self; stmt_break], None);
452         let else_expr = self.arena.alloc(self.expr_block(else_blk, ThinVec::new()));
453         let if_kind = hir::ExprKind::If(new_cond, self.arena.alloc(then), Some(else_expr));
454         let if_expr = self.expr(span, if_kind, ThinVec::new());
455         let block = self.block_expr(self.arena.alloc(if_expr));
456         let span = self.lower_span(span.with_hi(cond.span.hi()));
457         let opt_label = self.lower_label(opt_label);
458         hir::ExprKind::Loop(block, opt_label, hir::LoopSource::While, span)
459     }
460
461     /// Desugar `try { <stmts>; <expr> }` into `{ <stmts>; ::std::ops::Try::from_output(<expr>) }`,
462     /// `try { <stmts>; }` into `{ <stmts>; ::std::ops::Try::from_output(()) }`
463     /// and save the block id to use it as a break target for desugaring of the `?` operator.
464     fn lower_expr_try_block(&mut self, body: &Block) -> hir::ExprKind<'hir> {
465         self.with_catch_scope(body.id, |this| {
466             let mut block = this.lower_block_noalloc(body, true);
467
468             // Final expression of the block (if present) or `()` with span at the end of block
469             let (try_span, tail_expr) = if let Some(expr) = block.expr.take() {
470                 (
471                     this.mark_span_with_reason(
472                         DesugaringKind::TryBlock,
473                         expr.span,
474                         this.allow_try_trait.clone(),
475                     ),
476                     expr,
477                 )
478             } else {
479                 let try_span = this.mark_span_with_reason(
480                     DesugaringKind::TryBlock,
481                     this.tcx.sess.source_map().end_point(body.span),
482                     this.allow_try_trait.clone(),
483                 );
484
485                 (try_span, this.expr_unit(try_span))
486             };
487
488             let ok_wrapped_span =
489                 this.mark_span_with_reason(DesugaringKind::TryBlock, tail_expr.span, None);
490
491             // `::std::ops::Try::from_output($tail_expr)`
492             block.expr = Some(this.wrap_in_try_constructor(
493                 hir::LangItem::TryTraitFromOutput,
494                 try_span,
495                 tail_expr,
496                 ok_wrapped_span,
497             ));
498
499             hir::ExprKind::Block(this.arena.alloc(block), None)
500         })
501     }
502
503     fn wrap_in_try_constructor(
504         &mut self,
505         lang_item: hir::LangItem,
506         method_span: Span,
507         expr: &'hir hir::Expr<'hir>,
508         overall_span: Span,
509     ) -> &'hir hir::Expr<'hir> {
510         let constructor = self.arena.alloc(self.expr_lang_item_path(
511             method_span,
512             lang_item,
513             ThinVec::new(),
514             None,
515         ));
516         self.expr_call(overall_span, constructor, std::slice::from_ref(expr))
517     }
518
519     fn lower_arm(&mut self, arm: &Arm) -> hir::Arm<'hir> {
520         let pat = self.lower_pat(&arm.pat);
521         let guard = arm.guard.as_ref().map(|cond| {
522             if let ExprKind::Let(ref pat, ref scrutinee, span) = cond.kind {
523                 hir::Guard::IfLet(self.arena.alloc(hir::Let {
524                     hir_id: self.next_id(),
525                     span: self.lower_span(span),
526                     pat: self.lower_pat(pat),
527                     ty: None,
528                     init: self.lower_expr(scrutinee),
529                 }))
530             } else {
531                 hir::Guard::If(self.lower_expr(cond))
532             }
533         });
534         let hir_id = self.next_id();
535         self.lower_attrs(hir_id, &arm.attrs);
536         hir::Arm {
537             hir_id,
538             pat,
539             guard,
540             body: self.lower_expr(&arm.body),
541             span: self.lower_span(arm.span),
542         }
543     }
544
545     /// Lower an `async` construct to a generator that is then wrapped so it implements `Future`.
546     ///
547     /// This results in:
548     ///
549     /// ```text
550     /// std::future::from_generator(static move? |_task_context| -> <ret_ty> {
551     ///     <body>
552     /// })
553     /// ```
554     pub(super) fn make_async_expr(
555         &mut self,
556         capture_clause: CaptureBy,
557         closure_node_id: NodeId,
558         ret_ty: Option<AstP<Ty>>,
559         span: Span,
560         async_gen_kind: hir::AsyncGeneratorKind,
561         body: impl FnOnce(&mut Self) -> hir::Expr<'hir>,
562     ) -> hir::ExprKind<'hir> {
563         let output = match ret_ty {
564             Some(ty) => hir::FnRetTy::Return(
565                 self.lower_ty(&ty, ImplTraitContext::Disallowed(ImplTraitPosition::AsyncBlock)),
566             ),
567             None => hir::FnRetTy::DefaultReturn(self.lower_span(span)),
568         };
569
570         // Resume argument type. We let the compiler infer this to simplify the lowering. It is
571         // fully constrained by `future::from_generator`.
572         let input_ty = hir::Ty {
573             hir_id: self.next_id(),
574             kind: hir::TyKind::Infer,
575             span: self.lower_span(span),
576         };
577
578         // The closure/generator `FnDecl` takes a single (resume) argument of type `input_ty`.
579         let fn_decl = self.arena.alloc(hir::FnDecl {
580             inputs: arena_vec![self; input_ty],
581             output,
582             c_variadic: false,
583             implicit_self: hir::ImplicitSelfKind::None,
584         });
585
586         // Lower the argument pattern/ident. The ident is used again in the `.await` lowering.
587         let (pat, task_context_hid) = self.pat_ident_binding_mode(
588             span,
589             Ident::with_dummy_span(sym::_task_context),
590             hir::BindingAnnotation::Mutable,
591         );
592         let param = hir::Param {
593             hir_id: self.next_id(),
594             pat,
595             ty_span: self.lower_span(span),
596             span: self.lower_span(span),
597         };
598         let params = arena_vec![self; param];
599
600         let body = self.lower_body(move |this| {
601             this.generator_kind = Some(hir::GeneratorKind::Async(async_gen_kind));
602
603             let old_ctx = this.task_context;
604             this.task_context = Some(task_context_hid);
605             let res = body(this);
606             this.task_context = old_ctx;
607             (params, res)
608         });
609
610         // `static |_task_context| -> <ret_ty> { body }`:
611         let generator_kind = hir::ExprKind::Closure {
612             binder: &hir::ClosureBinder::Default,
613             capture_clause,
614             bound_generic_params: &[],
615             fn_decl,
616             body,
617             fn_decl_span: self.lower_span(span),
618             movability: Some(hir::Movability::Static),
619         };
620         let generator = hir::Expr {
621             hir_id: self.lower_node_id(closure_node_id),
622             kind: generator_kind,
623             span: self.lower_span(span),
624         };
625
626         // `future::from_generator`:
627         let unstable_span =
628             self.mark_span_with_reason(DesugaringKind::Async, span, self.allow_gen_future.clone());
629         let gen_future = self.expr_lang_item_path(
630             unstable_span,
631             hir::LangItem::FromGenerator,
632             ThinVec::new(),
633             None,
634         );
635
636         // `future::from_generator(generator)`:
637         hir::ExprKind::Call(self.arena.alloc(gen_future), arena_vec![self; generator])
638     }
639
640     /// Desugar `<expr>.await` into:
641     /// ```ignore (pseudo-rust)
642     /// match ::std::future::IntoFuture::into_future(<expr>) {
643     ///     mut __awaitee => loop {
644     ///         match unsafe { ::std::future::Future::poll(
645     ///             <::std::pin::Pin>::new_unchecked(&mut __awaitee),
646     ///             ::std::future::get_context(task_context),
647     ///         ) } {
648     ///             ::std::task::Poll::Ready(result) => break result,
649     ///             ::std::task::Poll::Pending => {}
650     ///         }
651     ///         task_context = yield ();
652     ///     }
653     /// }
654     /// ```
655     fn lower_expr_await(&mut self, dot_await_span: Span, expr: &Expr) -> hir::ExprKind<'hir> {
656         let full_span = expr.span.to(dot_await_span);
657         match self.generator_kind {
658             Some(hir::GeneratorKind::Async(_)) => {}
659             Some(hir::GeneratorKind::Gen) | None => {
660                 let mut err = struct_span_err!(
661                     self.tcx.sess,
662                     dot_await_span,
663                     E0728,
664                     "`await` is only allowed inside `async` functions and blocks"
665                 );
666                 err.span_label(dot_await_span, "only allowed inside `async` functions and blocks");
667                 if let Some(item_sp) = self.current_item {
668                     err.span_label(item_sp, "this is not `async`");
669                 }
670                 err.emit();
671             }
672         }
673         let span = self.mark_span_with_reason(DesugaringKind::Await, dot_await_span, None);
674         let gen_future_span = self.mark_span_with_reason(
675             DesugaringKind::Await,
676             full_span,
677             self.allow_gen_future.clone(),
678         );
679         let expr = self.lower_expr_mut(expr);
680         let expr_hir_id = expr.hir_id;
681
682         // Note that the name of this binding must not be changed to something else because
683         // debuggers and debugger extensions expect it to be called `__awaitee`. They use
684         // this name to identify what is being awaited by a suspended async functions.
685         let awaitee_ident = Ident::with_dummy_span(sym::__awaitee);
686         let (awaitee_pat, awaitee_pat_hid) =
687             self.pat_ident_binding_mode(span, awaitee_ident, hir::BindingAnnotation::Mutable);
688
689         let task_context_ident = Ident::with_dummy_span(sym::_task_context);
690
691         // unsafe {
692         //     ::std::future::Future::poll(
693         //         ::std::pin::Pin::new_unchecked(&mut __awaitee),
694         //         ::std::future::get_context(task_context),
695         //     )
696         // }
697         let poll_expr = {
698             let awaitee = self.expr_ident(span, awaitee_ident, awaitee_pat_hid);
699             let ref_mut_awaitee = self.expr_mut_addr_of(span, awaitee);
700             let task_context = if let Some(task_context_hid) = self.task_context {
701                 self.expr_ident_mut(span, task_context_ident, task_context_hid)
702             } else {
703                 // Use of `await` outside of an async context, we cannot use `task_context` here.
704                 self.expr_err(span)
705             };
706             let new_unchecked = self.expr_call_lang_item_fn_mut(
707                 span,
708                 hir::LangItem::PinNewUnchecked,
709                 arena_vec![self; ref_mut_awaitee],
710                 Some(expr_hir_id),
711             );
712             let get_context = self.expr_call_lang_item_fn_mut(
713                 gen_future_span,
714                 hir::LangItem::GetContext,
715                 arena_vec![self; task_context],
716                 Some(expr_hir_id),
717             );
718             let call = self.expr_call_lang_item_fn(
719                 span,
720                 hir::LangItem::FuturePoll,
721                 arena_vec![self; new_unchecked, get_context],
722                 Some(expr_hir_id),
723             );
724             self.arena.alloc(self.expr_unsafe(call))
725         };
726
727         // `::std::task::Poll::Ready(result) => break result`
728         let loop_node_id = self.next_node_id();
729         let loop_hir_id = self.lower_node_id(loop_node_id);
730         let ready_arm = {
731             let x_ident = Ident::with_dummy_span(sym::result);
732             let (x_pat, x_pat_hid) = self.pat_ident(gen_future_span, x_ident);
733             let x_expr = self.expr_ident(gen_future_span, x_ident, x_pat_hid);
734             let ready_field = self.single_pat_field(gen_future_span, x_pat);
735             let ready_pat = self.pat_lang_item_variant(
736                 span,
737                 hir::LangItem::PollReady,
738                 ready_field,
739                 Some(expr_hir_id),
740             );
741             let break_x = self.with_loop_scope(loop_node_id, move |this| {
742                 let expr_break =
743                     hir::ExprKind::Break(this.lower_loop_destination(None), Some(x_expr));
744                 this.arena.alloc(this.expr(gen_future_span, expr_break, ThinVec::new()))
745             });
746             self.arm(ready_pat, break_x)
747         };
748
749         // `::std::task::Poll::Pending => {}`
750         let pending_arm = {
751             let pending_pat = self.pat_lang_item_variant(
752                 span,
753                 hir::LangItem::PollPending,
754                 &[],
755                 Some(expr_hir_id),
756             );
757             let empty_block = self.expr_block_empty(span);
758             self.arm(pending_pat, empty_block)
759         };
760
761         let inner_match_stmt = {
762             let match_expr = self.expr_match(
763                 span,
764                 poll_expr,
765                 arena_vec![self; ready_arm, pending_arm],
766                 hir::MatchSource::AwaitDesugar,
767             );
768             self.stmt_expr(span, match_expr)
769         };
770
771         // task_context = yield ();
772         let yield_stmt = {
773             let unit = self.expr_unit(span);
774             let yield_expr = self.expr(
775                 span,
776                 hir::ExprKind::Yield(unit, hir::YieldSource::Await { expr: Some(expr_hir_id) }),
777                 ThinVec::new(),
778             );
779             let yield_expr = self.arena.alloc(yield_expr);
780
781             if let Some(task_context_hid) = self.task_context {
782                 let lhs = self.expr_ident(span, task_context_ident, task_context_hid);
783                 let assign = self.expr(
784                     span,
785                     hir::ExprKind::Assign(lhs, yield_expr, self.lower_span(span)),
786                     AttrVec::new(),
787                 );
788                 self.stmt_expr(span, assign)
789             } else {
790                 // Use of `await` outside of an async context. Return `yield_expr` so that we can
791                 // proceed with type checking.
792                 self.stmt(span, hir::StmtKind::Semi(yield_expr))
793             }
794         };
795
796         let loop_block = self.block_all(span, arena_vec![self; inner_match_stmt, yield_stmt], None);
797
798         // loop { .. }
799         let loop_expr = self.arena.alloc(hir::Expr {
800             hir_id: loop_hir_id,
801             kind: hir::ExprKind::Loop(
802                 loop_block,
803                 None,
804                 hir::LoopSource::Loop,
805                 self.lower_span(span),
806             ),
807             span: self.lower_span(span),
808         });
809
810         // mut __awaitee => loop { ... }
811         let awaitee_arm = self.arm(awaitee_pat, loop_expr);
812
813         // `match ::std::future::IntoFuture::into_future(<expr>) { ... }`
814         let into_future_span = self.mark_span_with_reason(
815             DesugaringKind::Await,
816             dot_await_span,
817             self.allow_into_future.clone(),
818         );
819         let into_future_expr = self.expr_call_lang_item_fn(
820             into_future_span,
821             hir::LangItem::IntoFutureIntoFuture,
822             arena_vec![self; expr],
823             Some(expr_hir_id),
824         );
825
826         // match <into_future_expr> {
827         //     mut __awaitee => loop { .. }
828         // }
829         hir::ExprKind::Match(
830             into_future_expr,
831             arena_vec![self; awaitee_arm],
832             hir::MatchSource::AwaitDesugar,
833         )
834     }
835
836     fn lower_expr_closure(
837         &mut self,
838         binder: &ClosureBinder,
839         capture_clause: CaptureBy,
840         closure_id: NodeId,
841         movability: Movability,
842         decl: &FnDecl,
843         body: &Expr,
844         fn_decl_span: Span,
845     ) -> hir::ExprKind<'hir> {
846         let (binder_clause, generic_params) = self.lower_closure_binder(binder);
847
848         let (body_id, generator_option) = self.with_new_scopes(move |this| {
849             let prev = this.current_item;
850             this.current_item = Some(fn_decl_span);
851             let mut generator_kind = None;
852             let body_id = this.lower_fn_body(decl, |this| {
853                 let e = this.lower_expr_mut(body);
854                 generator_kind = this.generator_kind;
855                 e
856             });
857             let generator_option =
858                 this.generator_movability_for_fn(&decl, fn_decl_span, generator_kind, movability);
859             this.current_item = prev;
860             (body_id, generator_option)
861         });
862
863         self.with_lifetime_binder(closure_id, generic_params, |this, bound_generic_params| {
864             // Lower outside new scope to preserve `is_in_loop_condition`.
865             let fn_decl = this.lower_fn_decl(decl, None, FnDeclKind::Closure, None);
866
867             hir::ExprKind::Closure {
868                 binder: binder_clause,
869                 capture_clause,
870                 bound_generic_params,
871                 fn_decl,
872                 body: body_id,
873                 fn_decl_span: this.lower_span(fn_decl_span),
874                 movability: generator_option,
875             }
876         })
877     }
878
879     fn generator_movability_for_fn(
880         &mut self,
881         decl: &FnDecl,
882         fn_decl_span: Span,
883         generator_kind: Option<hir::GeneratorKind>,
884         movability: Movability,
885     ) -> Option<hir::Movability> {
886         match generator_kind {
887             Some(hir::GeneratorKind::Gen) => {
888                 if decl.inputs.len() > 1 {
889                     struct_span_err!(
890                         self.tcx.sess,
891                         fn_decl_span,
892                         E0628,
893                         "too many parameters for a generator (expected 0 or 1 parameters)"
894                     )
895                     .emit();
896                 }
897                 Some(movability)
898             }
899             Some(hir::GeneratorKind::Async(_)) => {
900                 panic!("non-`async` closure body turned `async` during lowering");
901             }
902             None => {
903                 if movability == Movability::Static {
904                     struct_span_err!(
905                         self.tcx.sess,
906                         fn_decl_span,
907                         E0697,
908                         "closures cannot be static"
909                     )
910                     .emit();
911                 }
912                 None
913             }
914         }
915     }
916
917     fn lower_closure_binder<'c>(
918         &mut self,
919         binder: &'c ClosureBinder,
920     ) -> (&'hir hir::ClosureBinder, &'c [GenericParam]) {
921         let (binder, params) = match binder {
922             ClosureBinder::NotPresent => (hir::ClosureBinder::Default, &[][..]),
923             &ClosureBinder::For { span, ref generic_params } => {
924                 let span = self.lower_span(span);
925                 (hir::ClosureBinder::For { span }, &**generic_params)
926             }
927         };
928
929         (self.arena.alloc(binder), params)
930     }
931
932     fn lower_expr_async_closure(
933         &mut self,
934         binder: &ClosureBinder,
935         capture_clause: CaptureBy,
936         closure_id: NodeId,
937         inner_closure_id: NodeId,
938         decl: &FnDecl,
939         body: &Expr,
940         fn_decl_span: Span,
941     ) -> hir::ExprKind<'hir> {
942         if let &ClosureBinder::For { span, .. } = binder {
943             self.tcx.sess.span_err(
944                 span,
945                 "`for<...>` binders on `async` closures are not currently supported",
946             );
947         }
948
949         let (binder_clause, generic_params) = self.lower_closure_binder(binder);
950
951         let outer_decl =
952             FnDecl { inputs: decl.inputs.clone(), output: FnRetTy::Default(fn_decl_span) };
953
954         let body = self.with_new_scopes(|this| {
955             // FIXME(cramertj): allow `async` non-`move` closures with arguments.
956             if capture_clause == CaptureBy::Ref && !decl.inputs.is_empty() {
957                 struct_span_err!(
958                     this.tcx.sess,
959                     fn_decl_span,
960                     E0708,
961                     "`async` non-`move` closures with parameters are not currently supported",
962                 )
963                 .help(
964                     "consider using `let` statements to manually capture \
965                     variables by reference before entering an `async move` closure",
966                 )
967                 .emit();
968             }
969
970             // Transform `async |x: u8| -> X { ... }` into
971             // `|x: u8| future_from_generator(|| -> X { ... })`.
972             let body_id = this.lower_fn_body(&outer_decl, |this| {
973                 let async_ret_ty =
974                     if let FnRetTy::Ty(ty) = &decl.output { Some(ty.clone()) } else { None };
975                 let async_body = this.make_async_expr(
976                     capture_clause,
977                     inner_closure_id,
978                     async_ret_ty,
979                     body.span,
980                     hir::AsyncGeneratorKind::Closure,
981                     |this| this.with_new_scopes(|this| this.lower_expr_mut(body)),
982                 );
983                 this.expr(fn_decl_span, async_body, ThinVec::new())
984             });
985             body_id
986         });
987
988         self.with_lifetime_binder(closure_id, generic_params, |this, bound_generic_params| {
989             // We need to lower the declaration outside the new scope, because we
990             // have to conserve the state of being inside a loop condition for the
991             // closure argument types.
992             let fn_decl = this.lower_fn_decl(&outer_decl, None, FnDeclKind::Closure, None);
993
994             hir::ExprKind::Closure {
995                 binder: binder_clause,
996                 capture_clause,
997                 bound_generic_params,
998                 fn_decl,
999                 body,
1000                 fn_decl_span: this.lower_span(fn_decl_span),
1001                 movability: None,
1002             }
1003         })
1004     }
1005
1006     /// Destructure the LHS of complex assignments.
1007     /// For instance, lower `(a, b) = t` to `{ let (lhs1, lhs2) = t; a = lhs1; b = lhs2; }`.
1008     fn lower_expr_assign(
1009         &mut self,
1010         lhs: &Expr,
1011         rhs: &Expr,
1012         eq_sign_span: Span,
1013         whole_span: Span,
1014     ) -> hir::ExprKind<'hir> {
1015         // Return early in case of an ordinary assignment.
1016         fn is_ordinary(lower_ctx: &mut LoweringContext<'_, '_>, lhs: &Expr) -> bool {
1017             match &lhs.kind {
1018                 ExprKind::Array(..)
1019                 | ExprKind::Struct(..)
1020                 | ExprKind::Tup(..)
1021                 | ExprKind::Underscore => false,
1022                 // Check for tuple struct constructor.
1023                 ExprKind::Call(callee, ..) => lower_ctx.extract_tuple_struct_path(callee).is_none(),
1024                 ExprKind::Paren(e) => {
1025                     match e.kind {
1026                         // We special-case `(..)` for consistency with patterns.
1027                         ExprKind::Range(None, None, RangeLimits::HalfOpen) => false,
1028                         _ => is_ordinary(lower_ctx, e),
1029                     }
1030                 }
1031                 _ => true,
1032             }
1033         }
1034         if is_ordinary(self, lhs) {
1035             return hir::ExprKind::Assign(
1036                 self.lower_expr(lhs),
1037                 self.lower_expr(rhs),
1038                 self.lower_span(eq_sign_span),
1039             );
1040         }
1041
1042         let mut assignments = vec![];
1043
1044         // The LHS becomes a pattern: `(lhs1, lhs2)`.
1045         let pat = self.destructure_assign(lhs, eq_sign_span, &mut assignments);
1046         let rhs = self.lower_expr(rhs);
1047
1048         // Introduce a `let` for destructuring: `let (lhs1, lhs2) = t`.
1049         let destructure_let = self.stmt_let_pat(
1050             None,
1051             whole_span,
1052             Some(rhs),
1053             pat,
1054             hir::LocalSource::AssignDesugar(self.lower_span(eq_sign_span)),
1055         );
1056
1057         // `a = lhs1; b = lhs2;`.
1058         let stmts = self
1059             .arena
1060             .alloc_from_iter(std::iter::once(destructure_let).chain(assignments.into_iter()));
1061
1062         // Wrap everything in a block.
1063         hir::ExprKind::Block(&self.block_all(whole_span, stmts, None), None)
1064     }
1065
1066     /// If the given expression is a path to a tuple struct, returns that path.
1067     /// It is not a complete check, but just tries to reject most paths early
1068     /// if they are not tuple structs.
1069     /// Type checking will take care of the full validation later.
1070     fn extract_tuple_struct_path<'a>(
1071         &mut self,
1072         expr: &'a Expr,
1073     ) -> Option<(&'a Option<QSelf>, &'a Path)> {
1074         if let ExprKind::Path(qself, path) = &expr.kind {
1075             // Does the path resolve to something disallowed in a tuple struct/variant pattern?
1076             if let Some(partial_res) = self.resolver.get_partial_res(expr.id) {
1077                 if partial_res.unresolved_segments() == 0
1078                     && !partial_res.base_res().expected_in_tuple_struct_pat()
1079                 {
1080                     return None;
1081                 }
1082             }
1083             return Some((qself, path));
1084         }
1085         None
1086     }
1087
1088     /// If the given expression is a path to a unit struct, returns that path.
1089     /// It is not a complete check, but just tries to reject most paths early
1090     /// if they are not unit structs.
1091     /// Type checking will take care of the full validation later.
1092     fn extract_unit_struct_path<'a>(
1093         &mut self,
1094         expr: &'a Expr,
1095     ) -> Option<(&'a Option<QSelf>, &'a Path)> {
1096         if let ExprKind::Path(qself, path) = &expr.kind {
1097             // Does the path resolve to something disallowed in a unit struct/variant pattern?
1098             if let Some(partial_res) = self.resolver.get_partial_res(expr.id) {
1099                 if partial_res.unresolved_segments() == 0
1100                     && !partial_res.base_res().expected_in_unit_struct_pat()
1101                 {
1102                     return None;
1103                 }
1104             }
1105             return Some((qself, path));
1106         }
1107         None
1108     }
1109
1110     /// Convert the LHS of a destructuring assignment to a pattern.
1111     /// Each sub-assignment is recorded in `assignments`.
1112     fn destructure_assign(
1113         &mut self,
1114         lhs: &Expr,
1115         eq_sign_span: Span,
1116         assignments: &mut Vec<hir::Stmt<'hir>>,
1117     ) -> &'hir hir::Pat<'hir> {
1118         self.arena.alloc(self.destructure_assign_mut(lhs, eq_sign_span, assignments))
1119     }
1120
1121     fn destructure_assign_mut(
1122         &mut self,
1123         lhs: &Expr,
1124         eq_sign_span: Span,
1125         assignments: &mut Vec<hir::Stmt<'hir>>,
1126     ) -> hir::Pat<'hir> {
1127         match &lhs.kind {
1128             // Underscore pattern.
1129             ExprKind::Underscore => {
1130                 return self.pat_without_dbm(lhs.span, hir::PatKind::Wild);
1131             }
1132             // Slice patterns.
1133             ExprKind::Array(elements) => {
1134                 let (pats, rest) =
1135                     self.destructure_sequence(elements, "slice", eq_sign_span, assignments);
1136                 let slice_pat = if let Some((i, span)) = rest {
1137                     let (before, after) = pats.split_at(i);
1138                     hir::PatKind::Slice(
1139                         before,
1140                         Some(self.arena.alloc(self.pat_without_dbm(span, hir::PatKind::Wild))),
1141                         after,
1142                     )
1143                 } else {
1144                     hir::PatKind::Slice(pats, None, &[])
1145                 };
1146                 return self.pat_without_dbm(lhs.span, slice_pat);
1147             }
1148             // Tuple structs.
1149             ExprKind::Call(callee, args) => {
1150                 if let Some((qself, path)) = self.extract_tuple_struct_path(callee) {
1151                     let (pats, rest) = self.destructure_sequence(
1152                         args,
1153                         "tuple struct or variant",
1154                         eq_sign_span,
1155                         assignments,
1156                     );
1157                     let qpath = self.lower_qpath(
1158                         callee.id,
1159                         qself,
1160                         path,
1161                         ParamMode::Optional,
1162                         ImplTraitContext::Disallowed(ImplTraitPosition::Path),
1163                     );
1164                     // Destructure like a tuple struct.
1165                     let tuple_struct_pat =
1166                         hir::PatKind::TupleStruct(qpath, pats, rest.map(|r| r.0));
1167                     return self.pat_without_dbm(lhs.span, tuple_struct_pat);
1168                 }
1169             }
1170             // Unit structs and enum variants.
1171             ExprKind::Path(..) => {
1172                 if let Some((qself, path)) = self.extract_unit_struct_path(lhs) {
1173                     let qpath = self.lower_qpath(
1174                         lhs.id,
1175                         qself,
1176                         path,
1177                         ParamMode::Optional,
1178                         ImplTraitContext::Disallowed(ImplTraitPosition::Path),
1179                     );
1180                     // Destructure like a unit struct.
1181                     let unit_struct_pat = hir::PatKind::Path(qpath);
1182                     return self.pat_without_dbm(lhs.span, unit_struct_pat);
1183                 }
1184             }
1185             // Structs.
1186             ExprKind::Struct(se) => {
1187                 let field_pats = self.arena.alloc_from_iter(se.fields.iter().map(|f| {
1188                     let pat = self.destructure_assign(&f.expr, eq_sign_span, assignments);
1189                     hir::PatField {
1190                         hir_id: self.next_id(),
1191                         ident: self.lower_ident(f.ident),
1192                         pat,
1193                         is_shorthand: f.is_shorthand,
1194                         span: self.lower_span(f.span),
1195                     }
1196                 }));
1197                 let qpath = self.lower_qpath(
1198                     lhs.id,
1199                     &se.qself,
1200                     &se.path,
1201                     ParamMode::Optional,
1202                     ImplTraitContext::Disallowed(ImplTraitPosition::Path),
1203                 );
1204                 let fields_omitted = match &se.rest {
1205                     StructRest::Base(e) => {
1206                         self.tcx
1207                             .sess
1208                             .struct_span_err(
1209                                 e.span,
1210                                 "functional record updates are not allowed in destructuring \
1211                                     assignments",
1212                             )
1213                             .span_suggestion(
1214                                 e.span,
1215                                 "consider removing the trailing pattern",
1216                                 "",
1217                                 rustc_errors::Applicability::MachineApplicable,
1218                             )
1219                             .emit();
1220                         true
1221                     }
1222                     StructRest::Rest(_) => true,
1223                     StructRest::None => false,
1224                 };
1225                 let struct_pat = hir::PatKind::Struct(qpath, field_pats, fields_omitted);
1226                 return self.pat_without_dbm(lhs.span, struct_pat);
1227             }
1228             // Tuples.
1229             ExprKind::Tup(elements) => {
1230                 let (pats, rest) =
1231                     self.destructure_sequence(elements, "tuple", eq_sign_span, assignments);
1232                 let tuple_pat = hir::PatKind::Tuple(pats, rest.map(|r| r.0));
1233                 return self.pat_without_dbm(lhs.span, tuple_pat);
1234             }
1235             ExprKind::Paren(e) => {
1236                 // We special-case `(..)` for consistency with patterns.
1237                 if let ExprKind::Range(None, None, RangeLimits::HalfOpen) = e.kind {
1238                     let tuple_pat = hir::PatKind::Tuple(&[], Some(0));
1239                     return self.pat_without_dbm(lhs.span, tuple_pat);
1240                 } else {
1241                     return self.destructure_assign_mut(e, eq_sign_span, assignments);
1242                 }
1243             }
1244             _ => {}
1245         }
1246         // Treat all other cases as normal lvalue.
1247         let ident = Ident::new(sym::lhs, self.lower_span(lhs.span));
1248         let (pat, binding) = self.pat_ident_mut(lhs.span, ident);
1249         let ident = self.expr_ident(lhs.span, ident, binding);
1250         let assign =
1251             hir::ExprKind::Assign(self.lower_expr(lhs), ident, self.lower_span(eq_sign_span));
1252         let expr = self.expr(lhs.span, assign, ThinVec::new());
1253         assignments.push(self.stmt_expr(lhs.span, expr));
1254         pat
1255     }
1256
1257     /// Destructure a sequence of expressions occurring on the LHS of an assignment.
1258     /// Such a sequence occurs in a tuple (struct)/slice.
1259     /// Return a sequence of corresponding patterns, and the index and the span of `..` if it
1260     /// exists.
1261     /// Each sub-assignment is recorded in `assignments`.
1262     fn destructure_sequence(
1263         &mut self,
1264         elements: &[AstP<Expr>],
1265         ctx: &str,
1266         eq_sign_span: Span,
1267         assignments: &mut Vec<hir::Stmt<'hir>>,
1268     ) -> (&'hir [hir::Pat<'hir>], Option<(usize, Span)>) {
1269         let mut rest = None;
1270         let elements =
1271             self.arena.alloc_from_iter(elements.iter().enumerate().filter_map(|(i, e)| {
1272                 // Check for `..` pattern.
1273                 if let ExprKind::Range(None, None, RangeLimits::HalfOpen) = e.kind {
1274                     if let Some((_, prev_span)) = rest {
1275                         self.ban_extra_rest_pat(e.span, prev_span, ctx);
1276                     } else {
1277                         rest = Some((i, e.span));
1278                     }
1279                     None
1280                 } else {
1281                     Some(self.destructure_assign_mut(e, eq_sign_span, assignments))
1282                 }
1283             }));
1284         (elements, rest)
1285     }
1286
1287     /// Desugar `<start>..=<end>` into `std::ops::RangeInclusive::new(<start>, <end>)`.
1288     fn lower_expr_range_closed(&mut self, span: Span, e1: &Expr, e2: &Expr) -> hir::ExprKind<'hir> {
1289         let e1 = self.lower_expr_mut(e1);
1290         let e2 = self.lower_expr_mut(e2);
1291         let fn_path =
1292             hir::QPath::LangItem(hir::LangItem::RangeInclusiveNew, self.lower_span(span), None);
1293         let fn_expr =
1294             self.arena.alloc(self.expr(span, hir::ExprKind::Path(fn_path), ThinVec::new()));
1295         hir::ExprKind::Call(fn_expr, arena_vec![self; e1, e2])
1296     }
1297
1298     fn lower_expr_range(
1299         &mut self,
1300         span: Span,
1301         e1: Option<&Expr>,
1302         e2: Option<&Expr>,
1303         lims: RangeLimits,
1304     ) -> hir::ExprKind<'hir> {
1305         use rustc_ast::RangeLimits::*;
1306
1307         let lang_item = match (e1, e2, lims) {
1308             (None, None, HalfOpen) => hir::LangItem::RangeFull,
1309             (Some(..), None, HalfOpen) => hir::LangItem::RangeFrom,
1310             (None, Some(..), HalfOpen) => hir::LangItem::RangeTo,
1311             (Some(..), Some(..), HalfOpen) => hir::LangItem::Range,
1312             (None, Some(..), Closed) => hir::LangItem::RangeToInclusive,
1313             (Some(..), Some(..), Closed) => unreachable!(),
1314             (_, None, Closed) => self.diagnostic().span_fatal(span, "inclusive range with no end"),
1315         };
1316
1317         let fields = self.arena.alloc_from_iter(
1318             e1.iter().map(|e| (sym::start, e)).chain(e2.iter().map(|e| (sym::end, e))).map(
1319                 |(s, e)| {
1320                     let expr = self.lower_expr(&e);
1321                     let ident = Ident::new(s, self.lower_span(e.span));
1322                     self.expr_field(ident, expr, e.span)
1323                 },
1324             ),
1325         );
1326
1327         hir::ExprKind::Struct(
1328             self.arena.alloc(hir::QPath::LangItem(lang_item, self.lower_span(span), None)),
1329             fields,
1330             None,
1331         )
1332     }
1333
1334     fn lower_label(&self, opt_label: Option<Label>) -> Option<Label> {
1335         let label = opt_label?;
1336         Some(Label { ident: self.lower_ident(label.ident) })
1337     }
1338
1339     fn lower_loop_destination(&mut self, destination: Option<(NodeId, Label)>) -> hir::Destination {
1340         let target_id = match destination {
1341             Some((id, _)) => {
1342                 if let Some(loop_id) = self.resolver.get_label_res(id) {
1343                     Ok(self.lower_node_id(loop_id))
1344                 } else {
1345                     Err(hir::LoopIdError::UnresolvedLabel)
1346                 }
1347             }
1348             None => self
1349                 .loop_scope
1350                 .map(|id| Ok(self.lower_node_id(id)))
1351                 .unwrap_or(Err(hir::LoopIdError::OutsideLoopScope)),
1352         };
1353         let label = self.lower_label(destination.map(|(_, label)| label));
1354         hir::Destination { label, target_id }
1355     }
1356
1357     fn lower_jump_destination(&mut self, id: NodeId, opt_label: Option<Label>) -> hir::Destination {
1358         if self.is_in_loop_condition && opt_label.is_none() {
1359             hir::Destination {
1360                 label: None,
1361                 target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition),
1362             }
1363         } else {
1364             self.lower_loop_destination(opt_label.map(|label| (id, label)))
1365         }
1366     }
1367
1368     fn with_catch_scope<T>(&mut self, catch_id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
1369         let old_scope = self.catch_scope.replace(catch_id);
1370         let result = f(self);
1371         self.catch_scope = old_scope;
1372         result
1373     }
1374
1375     fn with_loop_scope<T>(&mut self, loop_id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
1376         // We're no longer in the base loop's condition; we're in another loop.
1377         let was_in_loop_condition = self.is_in_loop_condition;
1378         self.is_in_loop_condition = false;
1379
1380         let old_scope = self.loop_scope.replace(loop_id);
1381         let result = f(self);
1382         self.loop_scope = old_scope;
1383
1384         self.is_in_loop_condition = was_in_loop_condition;
1385
1386         result
1387     }
1388
1389     fn with_loop_condition_scope<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
1390         let was_in_loop_condition = self.is_in_loop_condition;
1391         self.is_in_loop_condition = true;
1392
1393         let result = f(self);
1394
1395         self.is_in_loop_condition = was_in_loop_condition;
1396
1397         result
1398     }
1399
1400     fn lower_expr_field(&mut self, f: &ExprField) -> hir::ExprField<'hir> {
1401         hir::ExprField {
1402             hir_id: self.next_id(),
1403             ident: self.lower_ident(f.ident),
1404             expr: self.lower_expr(&f.expr),
1405             span: self.lower_span(f.span),
1406             is_shorthand: f.is_shorthand,
1407         }
1408     }
1409
1410     fn lower_expr_yield(&mut self, span: Span, opt_expr: Option<&Expr>) -> hir::ExprKind<'hir> {
1411         match self.generator_kind {
1412             Some(hir::GeneratorKind::Gen) => {}
1413             Some(hir::GeneratorKind::Async(_)) => {
1414                 struct_span_err!(
1415                     self.tcx.sess,
1416                     span,
1417                     E0727,
1418                     "`async` generators are not yet supported"
1419                 )
1420                 .emit();
1421             }
1422             None => self.generator_kind = Some(hir::GeneratorKind::Gen),
1423         }
1424
1425         let expr =
1426             opt_expr.as_ref().map(|x| self.lower_expr(x)).unwrap_or_else(|| self.expr_unit(span));
1427
1428         hir::ExprKind::Yield(expr, hir::YieldSource::Yield)
1429     }
1430
1431     /// Desugar `ExprForLoop` from: `[opt_ident]: for <pat> in <head> <body>` into:
1432     /// ```ignore (pseudo-rust)
1433     /// {
1434     ///     let result = match IntoIterator::into_iter(<head>) {
1435     ///         mut iter => {
1436     ///             [opt_ident]: loop {
1437     ///                 match Iterator::next(&mut iter) {
1438     ///                     None => break,
1439     ///                     Some(<pat>) => <body>,
1440     ///                 };
1441     ///             }
1442     ///         }
1443     ///     };
1444     ///     result
1445     /// }
1446     /// ```
1447     fn lower_expr_for(
1448         &mut self,
1449         e: &Expr,
1450         pat: &Pat,
1451         head: &Expr,
1452         body: &Block,
1453         opt_label: Option<Label>,
1454     ) -> hir::Expr<'hir> {
1455         let head = self.lower_expr_mut(head);
1456         let pat = self.lower_pat(pat);
1457         let for_span =
1458             self.mark_span_with_reason(DesugaringKind::ForLoop, self.lower_span(e.span), None);
1459         let head_span = self.mark_span_with_reason(DesugaringKind::ForLoop, head.span, None);
1460         let pat_span = self.mark_span_with_reason(DesugaringKind::ForLoop, pat.span, None);
1461
1462         // `None => break`
1463         let none_arm = {
1464             let break_expr =
1465                 self.with_loop_scope(e.id, |this| this.expr_break_alloc(for_span, ThinVec::new()));
1466             let pat = self.pat_none(for_span);
1467             self.arm(pat, break_expr)
1468         };
1469
1470         // Some(<pat>) => <body>,
1471         let some_arm = {
1472             let some_pat = self.pat_some(pat_span, pat);
1473             let body_block = self.with_loop_scope(e.id, |this| this.lower_block(body, false));
1474             let body_expr = self.arena.alloc(self.expr_block(body_block, ThinVec::new()));
1475             self.arm(some_pat, body_expr)
1476         };
1477
1478         // `mut iter`
1479         let iter = Ident::with_dummy_span(sym::iter);
1480         let (iter_pat, iter_pat_nid) =
1481             self.pat_ident_binding_mode(head_span, iter, hir::BindingAnnotation::Mutable);
1482
1483         // `match Iterator::next(&mut iter) { ... }`
1484         let match_expr = {
1485             let iter = self.expr_ident(head_span, iter, iter_pat_nid);
1486             let ref_mut_iter = self.expr_mut_addr_of(head_span, iter);
1487             let next_expr = self.expr_call_lang_item_fn(
1488                 head_span,
1489                 hir::LangItem::IteratorNext,
1490                 arena_vec![self; ref_mut_iter],
1491                 None,
1492             );
1493             let arms = arena_vec![self; none_arm, some_arm];
1494
1495             self.expr_match(head_span, next_expr, arms, hir::MatchSource::ForLoopDesugar)
1496         };
1497         let match_stmt = self.stmt_expr(for_span, match_expr);
1498
1499         let loop_block = self.block_all(for_span, arena_vec![self; match_stmt], None);
1500
1501         // `[opt_ident]: loop { ... }`
1502         let kind = hir::ExprKind::Loop(
1503             loop_block,
1504             self.lower_label(opt_label),
1505             hir::LoopSource::ForLoop,
1506             self.lower_span(for_span.with_hi(head.span.hi())),
1507         );
1508         let loop_expr =
1509             self.arena.alloc(hir::Expr { hir_id: self.lower_node_id(e.id), kind, span: for_span });
1510
1511         // `mut iter => { ... }`
1512         let iter_arm = self.arm(iter_pat, loop_expr);
1513
1514         // `match ::std::iter::IntoIterator::into_iter(<head>) { ... }`
1515         let into_iter_expr = {
1516             self.expr_call_lang_item_fn(
1517                 head_span,
1518                 hir::LangItem::IntoIterIntoIter,
1519                 arena_vec![self; head],
1520                 None,
1521             )
1522         };
1523
1524         let match_expr = self.arena.alloc(self.expr_match(
1525             for_span,
1526             into_iter_expr,
1527             arena_vec![self; iter_arm],
1528             hir::MatchSource::ForLoopDesugar,
1529         ));
1530
1531         let attrs: Vec<_> = e.attrs.iter().map(|a| self.lower_attr(a)).collect();
1532
1533         // This is effectively `{ let _result = ...; _result }`.
1534         // The construct was introduced in #21984 and is necessary to make sure that
1535         // temporaries in the `head` expression are dropped and do not leak to the
1536         // surrounding scope of the `match` since the `match` is not a terminating scope.
1537         //
1538         // Also, add the attributes to the outer returned expr node.
1539         self.expr_drop_temps_mut(for_span, match_expr, attrs.into())
1540     }
1541
1542     /// Desugar `ExprKind::Try` from: `<expr>?` into:
1543     /// ```ignore (pseudo-rust)
1544     /// match Try::branch(<expr>) {
1545     ///     ControlFlow::Continue(val) => #[allow(unreachable_code)] val,,
1546     ///     ControlFlow::Break(residual) =>
1547     ///         #[allow(unreachable_code)]
1548     ///         // If there is an enclosing `try {...}`:
1549     ///         break 'catch_target Try::from_residual(residual),
1550     ///         // Otherwise:
1551     ///         return Try::from_residual(residual),
1552     /// }
1553     /// ```
1554     fn lower_expr_try(&mut self, span: Span, sub_expr: &Expr) -> hir::ExprKind<'hir> {
1555         let unstable_span = self.mark_span_with_reason(
1556             DesugaringKind::QuestionMark,
1557             span,
1558             self.allow_try_trait.clone(),
1559         );
1560         let try_span = self.tcx.sess.source_map().end_point(span);
1561         let try_span = self.mark_span_with_reason(
1562             DesugaringKind::QuestionMark,
1563             try_span,
1564             self.allow_try_trait.clone(),
1565         );
1566
1567         // `Try::branch(<expr>)`
1568         let scrutinee = {
1569             // expand <expr>
1570             let sub_expr = self.lower_expr_mut(sub_expr);
1571
1572             self.expr_call_lang_item_fn(
1573                 unstable_span,
1574                 hir::LangItem::TryTraitBranch,
1575                 arena_vec![self; sub_expr],
1576                 None,
1577             )
1578         };
1579
1580         // `#[allow(unreachable_code)]`
1581         let attr = {
1582             // `allow(unreachable_code)`
1583             let allow = {
1584                 let allow_ident = Ident::new(sym::allow, self.lower_span(span));
1585                 let uc_ident = Ident::new(sym::unreachable_code, self.lower_span(span));
1586                 let uc_nested = attr::mk_nested_word_item(uc_ident);
1587                 attr::mk_list_item(allow_ident, vec![uc_nested])
1588             };
1589             attr::mk_attr_outer(allow)
1590         };
1591         let attrs = vec![attr];
1592
1593         // `ControlFlow::Continue(val) => #[allow(unreachable_code)] val,`
1594         let continue_arm = {
1595             let val_ident = Ident::with_dummy_span(sym::val);
1596             let (val_pat, val_pat_nid) = self.pat_ident(span, val_ident);
1597             let val_expr = self.arena.alloc(self.expr_ident_with_attrs(
1598                 span,
1599                 val_ident,
1600                 val_pat_nid,
1601                 ThinVec::from(attrs.clone()),
1602             ));
1603             let continue_pat = self.pat_cf_continue(unstable_span, val_pat);
1604             self.arm(continue_pat, val_expr)
1605         };
1606
1607         // `ControlFlow::Break(residual) =>
1608         //     #[allow(unreachable_code)]
1609         //     return Try::from_residual(residual),`
1610         let break_arm = {
1611             let residual_ident = Ident::with_dummy_span(sym::residual);
1612             let (residual_local, residual_local_nid) = self.pat_ident(try_span, residual_ident);
1613             let residual_expr = self.expr_ident_mut(try_span, residual_ident, residual_local_nid);
1614             let from_residual_expr = self.wrap_in_try_constructor(
1615                 hir::LangItem::TryTraitFromResidual,
1616                 try_span,
1617                 self.arena.alloc(residual_expr),
1618                 unstable_span,
1619             );
1620             let thin_attrs = ThinVec::from(attrs);
1621             let ret_expr = if let Some(catch_node) = self.catch_scope {
1622                 let target_id = Ok(self.lower_node_id(catch_node));
1623                 self.arena.alloc(self.expr(
1624                     try_span,
1625                     hir::ExprKind::Break(
1626                         hir::Destination { label: None, target_id },
1627                         Some(from_residual_expr),
1628                     ),
1629                     thin_attrs,
1630                 ))
1631             } else {
1632                 self.arena.alloc(self.expr(
1633                     try_span,
1634                     hir::ExprKind::Ret(Some(from_residual_expr)),
1635                     thin_attrs,
1636                 ))
1637             };
1638
1639             let break_pat = self.pat_cf_break(try_span, residual_local);
1640             self.arm(break_pat, ret_expr)
1641         };
1642
1643         hir::ExprKind::Match(
1644             scrutinee,
1645             arena_vec![self; break_arm, continue_arm],
1646             hir::MatchSource::TryDesugar,
1647         )
1648     }
1649
1650     /// Desugar `ExprKind::Yeet` from: `do yeet <expr>` into:
1651     /// ```rust
1652     /// // If there is an enclosing `try {...}`:
1653     /// break 'catch_target FromResidual::from_residual(Yeet(residual)),
1654     /// // Otherwise:
1655     /// return FromResidual::from_residual(Yeet(residual)),
1656     /// ```
1657     /// But to simplify this, there's a `from_yeet` lang item function which
1658     /// handles the combined `FromResidual::from_residual(Yeet(residual))`.
1659     fn lower_expr_yeet(&mut self, span: Span, sub_expr: Option<&Expr>) -> hir::ExprKind<'hir> {
1660         // The expression (if present) or `()` otherwise.
1661         let (yeeted_span, yeeted_expr) = if let Some(sub_expr) = sub_expr {
1662             (sub_expr.span, self.lower_expr(sub_expr))
1663         } else {
1664             (self.mark_span_with_reason(DesugaringKind::YeetExpr, span, None), self.expr_unit(span))
1665         };
1666
1667         let unstable_span = self.mark_span_with_reason(
1668             DesugaringKind::YeetExpr,
1669             span,
1670             self.allow_try_trait.clone(),
1671         );
1672
1673         let from_yeet_expr = self.wrap_in_try_constructor(
1674             hir::LangItem::TryTraitFromYeet,
1675             unstable_span,
1676             yeeted_expr,
1677             yeeted_span,
1678         );
1679
1680         if let Some(catch_node) = self.catch_scope {
1681             let target_id = Ok(self.lower_node_id(catch_node));
1682             hir::ExprKind::Break(hir::Destination { label: None, target_id }, Some(from_yeet_expr))
1683         } else {
1684             hir::ExprKind::Ret(Some(from_yeet_expr))
1685         }
1686     }
1687
1688     // =========================================================================
1689     // Helper methods for building HIR.
1690     // =========================================================================
1691
1692     /// Wrap the given `expr` in a terminating scope using `hir::ExprKind::DropTemps`.
1693     ///
1694     /// In terms of drop order, it has the same effect as wrapping `expr` in
1695     /// `{ let _t = $expr; _t }` but should provide better compile-time performance.
1696     ///
1697     /// The drop order can be important in e.g. `if expr { .. }`.
1698     pub(super) fn expr_drop_temps(
1699         &mut self,
1700         span: Span,
1701         expr: &'hir hir::Expr<'hir>,
1702         attrs: AttrVec,
1703     ) -> &'hir hir::Expr<'hir> {
1704         self.arena.alloc(self.expr_drop_temps_mut(span, expr, attrs))
1705     }
1706
1707     pub(super) fn expr_drop_temps_mut(
1708         &mut self,
1709         span: Span,
1710         expr: &'hir hir::Expr<'hir>,
1711         attrs: AttrVec,
1712     ) -> hir::Expr<'hir> {
1713         self.expr(span, hir::ExprKind::DropTemps(expr), attrs)
1714     }
1715
1716     fn expr_match(
1717         &mut self,
1718         span: Span,
1719         arg: &'hir hir::Expr<'hir>,
1720         arms: &'hir [hir::Arm<'hir>],
1721         source: hir::MatchSource,
1722     ) -> hir::Expr<'hir> {
1723         self.expr(span, hir::ExprKind::Match(arg, arms, source), ThinVec::new())
1724     }
1725
1726     fn expr_break(&mut self, span: Span, attrs: AttrVec) -> hir::Expr<'hir> {
1727         let expr_break = hir::ExprKind::Break(self.lower_loop_destination(None), None);
1728         self.expr(span, expr_break, attrs)
1729     }
1730
1731     fn expr_break_alloc(&mut self, span: Span, attrs: AttrVec) -> &'hir hir::Expr<'hir> {
1732         let expr_break = self.expr_break(span, attrs);
1733         self.arena.alloc(expr_break)
1734     }
1735
1736     fn expr_mut_addr_of(&mut self, span: Span, e: &'hir hir::Expr<'hir>) -> hir::Expr<'hir> {
1737         self.expr(
1738             span,
1739             hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Mut, e),
1740             ThinVec::new(),
1741         )
1742     }
1743
1744     fn expr_unit(&mut self, sp: Span) -> &'hir hir::Expr<'hir> {
1745         self.arena.alloc(self.expr(sp, hir::ExprKind::Tup(&[]), ThinVec::new()))
1746     }
1747
1748     fn expr_call_mut(
1749         &mut self,
1750         span: Span,
1751         e: &'hir hir::Expr<'hir>,
1752         args: &'hir [hir::Expr<'hir>],
1753     ) -> hir::Expr<'hir> {
1754         self.expr(span, hir::ExprKind::Call(e, args), ThinVec::new())
1755     }
1756
1757     fn expr_call(
1758         &mut self,
1759         span: Span,
1760         e: &'hir hir::Expr<'hir>,
1761         args: &'hir [hir::Expr<'hir>],
1762     ) -> &'hir hir::Expr<'hir> {
1763         self.arena.alloc(self.expr_call_mut(span, e, args))
1764     }
1765
1766     fn expr_call_lang_item_fn_mut(
1767         &mut self,
1768         span: Span,
1769         lang_item: hir::LangItem,
1770         args: &'hir [hir::Expr<'hir>],
1771         hir_id: Option<hir::HirId>,
1772     ) -> hir::Expr<'hir> {
1773         let path =
1774             self.arena.alloc(self.expr_lang_item_path(span, lang_item, ThinVec::new(), hir_id));
1775         self.expr_call_mut(span, path, args)
1776     }
1777
1778     fn expr_call_lang_item_fn(
1779         &mut self,
1780         span: Span,
1781         lang_item: hir::LangItem,
1782         args: &'hir [hir::Expr<'hir>],
1783         hir_id: Option<hir::HirId>,
1784     ) -> &'hir hir::Expr<'hir> {
1785         self.arena.alloc(self.expr_call_lang_item_fn_mut(span, lang_item, args, hir_id))
1786     }
1787
1788     fn expr_lang_item_path(
1789         &mut self,
1790         span: Span,
1791         lang_item: hir::LangItem,
1792         attrs: AttrVec,
1793         hir_id: Option<hir::HirId>,
1794     ) -> hir::Expr<'hir> {
1795         self.expr(
1796             span,
1797             hir::ExprKind::Path(hir::QPath::LangItem(lang_item, self.lower_span(span), hir_id)),
1798             attrs,
1799         )
1800     }
1801
1802     pub(super) fn expr_ident(
1803         &mut self,
1804         sp: Span,
1805         ident: Ident,
1806         binding: hir::HirId,
1807     ) -> &'hir hir::Expr<'hir> {
1808         self.arena.alloc(self.expr_ident_mut(sp, ident, binding))
1809     }
1810
1811     pub(super) fn expr_ident_mut(
1812         &mut self,
1813         sp: Span,
1814         ident: Ident,
1815         binding: hir::HirId,
1816     ) -> hir::Expr<'hir> {
1817         self.expr_ident_with_attrs(sp, ident, binding, ThinVec::new())
1818     }
1819
1820     fn expr_ident_with_attrs(
1821         &mut self,
1822         span: Span,
1823         ident: Ident,
1824         binding: hir::HirId,
1825         attrs: AttrVec,
1826     ) -> hir::Expr<'hir> {
1827         let expr_path = hir::ExprKind::Path(hir::QPath::Resolved(
1828             None,
1829             self.arena.alloc(hir::Path {
1830                 span: self.lower_span(span),
1831                 res: Res::Local(binding),
1832                 segments: arena_vec![self; hir::PathSegment::from_ident(ident)],
1833             }),
1834         ));
1835
1836         self.expr(span, expr_path, attrs)
1837     }
1838
1839     fn expr_unsafe(&mut self, expr: &'hir hir::Expr<'hir>) -> hir::Expr<'hir> {
1840         let hir_id = self.next_id();
1841         let span = expr.span;
1842         self.expr(
1843             span,
1844             hir::ExprKind::Block(
1845                 self.arena.alloc(hir::Block {
1846                     stmts: &[],
1847                     expr: Some(expr),
1848                     hir_id,
1849                     rules: hir::BlockCheckMode::UnsafeBlock(hir::UnsafeSource::CompilerGenerated),
1850                     span: self.lower_span(span),
1851                     targeted_by_break: false,
1852                 }),
1853                 None,
1854             ),
1855             ThinVec::new(),
1856         )
1857     }
1858
1859     fn expr_block_empty(&mut self, span: Span) -> &'hir hir::Expr<'hir> {
1860         let blk = self.block_all(span, &[], None);
1861         let expr = self.expr_block(blk, ThinVec::new());
1862         self.arena.alloc(expr)
1863     }
1864
1865     pub(super) fn expr_block(
1866         &mut self,
1867         b: &'hir hir::Block<'hir>,
1868         attrs: AttrVec,
1869     ) -> hir::Expr<'hir> {
1870         self.expr(b.span, hir::ExprKind::Block(b, None), attrs)
1871     }
1872
1873     pub(super) fn expr(
1874         &mut self,
1875         span: Span,
1876         kind: hir::ExprKind<'hir>,
1877         attrs: AttrVec,
1878     ) -> hir::Expr<'hir> {
1879         let hir_id = self.next_id();
1880         self.lower_attrs(hir_id, &attrs);
1881         hir::Expr { hir_id, kind, span: self.lower_span(span) }
1882     }
1883
1884     fn expr_field(
1885         &mut self,
1886         ident: Ident,
1887         expr: &'hir hir::Expr<'hir>,
1888         span: Span,
1889     ) -> hir::ExprField<'hir> {
1890         hir::ExprField {
1891             hir_id: self.next_id(),
1892             ident,
1893             span: self.lower_span(span),
1894             expr,
1895             is_shorthand: false,
1896         }
1897     }
1898
1899     fn arm(&mut self, pat: &'hir hir::Pat<'hir>, expr: &'hir hir::Expr<'hir>) -> hir::Arm<'hir> {
1900         hir::Arm {
1901             hir_id: self.next_id(),
1902             pat,
1903             guard: None,
1904             span: self.lower_span(expr.span),
1905             body: expr,
1906         }
1907     }
1908 }