]> git.lizzy.rs Git - rust.git/blob - clippy_lints/src/use_self.rs
Auto merge of #3684 - g-bartoszek:sugg-snippet-modifications, r=phansch
[rust.git] / clippy_lints / src / use_self.rs
1 use crate::utils::span_lint_and_sugg;
2 use if_chain::if_chain;
3 use rustc::hir::def::{CtorKind, Def};
4 use rustc::hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
5 use rustc::hir::*;
6 use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
7 use rustc::ty;
8 use rustc::{declare_tool_lint, lint_array};
9 use rustc_errors::Applicability;
10 use syntax_pos::symbol::keywords::SelfUpper;
11
12 /// **What it does:** Checks for unnecessary repetition of structure name when a
13 /// replacement with `Self` is applicable.
14 ///
15 /// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
16 /// name
17 /// feels inconsistent.
18 ///
19 /// **Known problems:**
20 /// - False positive when using associated types (#2843)
21 /// - False positives in some situations when using generics (#3410)
22 ///
23 /// **Example:**
24 /// ```rust
25 /// struct Foo {}
26 /// impl Foo {
27 ///     fn new() -> Foo {
28 ///         Foo {}
29 ///     }
30 /// }
31 /// ```
32 /// could be
33 /// ```rust
34 /// struct Foo {}
35 /// impl Foo {
36 ///     fn new() -> Self {
37 ///         Self {}
38 ///     }
39 /// }
40 /// ```
41 declare_clippy_lint! {
42     pub USE_SELF,
43     pedantic,
44     "Unnecessary structure name repetition whereas `Self` is applicable"
45 }
46
47 #[derive(Copy, Clone, Default)]
48 pub struct UseSelf;
49
50 impl LintPass for UseSelf {
51     fn get_lints(&self) -> LintArray {
52         lint_array!(USE_SELF)
53     }
54 }
55
56 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
57
58 fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) {
59     // path segments only include actual path, no methods or fields
60     let last_path_span = path.segments.last().expect(SEGMENTS_MSG).ident.span;
61     // only take path up to the end of last_path_span
62     let span = path.span.with_hi(last_path_span.hi());
63
64     span_lint_and_sugg(
65         cx,
66         USE_SELF,
67         span,
68         "unnecessary structure name repetition",
69         "use the applicable keyword",
70         "Self".to_owned(),
71         Applicability::MachineApplicable,
72     );
73 }
74
75 struct TraitImplTyVisitor<'a, 'tcx: 'a> {
76     item_type: ty::Ty<'tcx>,
77     cx: &'a LateContext<'a, 'tcx>,
78     trait_type_walker: ty::walk::TypeWalker<'tcx>,
79     impl_type_walker: ty::walk::TypeWalker<'tcx>,
80 }
81
82 impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
83     fn visit_ty(&mut self, t: &'tcx Ty) {
84         let trait_ty = self.trait_type_walker.next();
85         let impl_ty = self.impl_type_walker.next();
86
87         if let TyKind::Path(QPath::Resolved(_, path)) = &t.node {
88             // The implementation and trait types don't match which means that
89             // the concrete type was specified by the implementation
90             if impl_ty != trait_ty {
91                 if let Some(impl_ty) = impl_ty {
92                     if self.item_type == impl_ty {
93                         let is_self_ty = if let def::Def::SelfTy(..) = path.def {
94                             true
95                         } else {
96                             false
97                         };
98
99                         if !is_self_ty {
100                             span_use_self_lint(self.cx, path);
101                         }
102                     }
103                 }
104             }
105         }
106
107         walk_ty(self, t)
108     }
109
110     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
111         NestedVisitorMap::None
112     }
113 }
114
115 fn check_trait_method_impl_decl<'a, 'tcx: 'a>(
116     cx: &'a LateContext<'a, 'tcx>,
117     item_type: ty::Ty<'tcx>,
118     impl_item: &ImplItem,
119     impl_decl: &'tcx FnDecl,
120     impl_trait_ref: &ty::TraitRef<'_>,
121 ) {
122     let trait_method = cx
123         .tcx
124         .associated_items(impl_trait_ref.def_id)
125         .find(|assoc_item| {
126             assoc_item.kind == ty::AssociatedKind::Method
127                 && cx
128                     .tcx
129                     .hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
130         })
131         .expect("impl method matches a trait method");
132
133     let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
134     let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
135
136     let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id);
137     let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
138     let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
139
140     let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
141         Some(&**ty)
142     } else {
143         None
144     };
145
146     // `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
147     // `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
148     // that declaration.  We use `impl_decl_ty` to see if the type was declared as `Self`
149     // and use `impl_ty` to check its concrete type.
150     for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
151         impl_method_sig
152             .inputs_and_output
153             .iter()
154             .zip(trait_method_sig.inputs_and_output),
155     ) {
156         let mut visitor = TraitImplTyVisitor {
157             cx,
158             item_type,
159             trait_type_walker: trait_ty.walk(),
160             impl_type_walker: impl_ty.walk(),
161         };
162
163         visitor.visit_ty(&impl_decl_ty);
164     }
165 }
166
167 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
168     fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
169         if in_external_macro(cx.sess(), item.span) {
170             return;
171         }
172         if_chain! {
173             if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
174             if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
175             then {
176                 let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
177                 let should_check = if let Some(ref params) = *parameters {
178                     !params.parenthesized && !params.args.iter().any(|arg| match arg {
179                         GenericArg::Lifetime(_) => true,
180                         GenericArg::Type(_) => false,
181                     })
182                 } else {
183                     true
184                 };
185
186                 if should_check {
187                     let visitor = &mut UseSelfVisitor {
188                         item_path,
189                         cx,
190                     };
191                     let impl_def_id = cx.tcx.hir().local_def_id(item.id);
192                     let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
193
194                     if let Some(impl_trait_ref) = impl_trait_ref {
195                         for impl_item_ref in refs {
196                             let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
197                             if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
198                                     = &impl_item.node {
199                                 let item_type = cx.tcx.type_of(impl_def_id);
200                                 check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
201
202                                 let body = cx.tcx.hir().body(*impl_body_id);
203                                 visitor.visit_body(body);
204                             } else {
205                                 visitor.visit_impl_item(impl_item);
206                             }
207                         }
208                     } else {
209                         for impl_item_ref in refs {
210                             let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
211                             visitor.visit_impl_item(impl_item);
212                         }
213                     }
214                 }
215             }
216         }
217     }
218 }
219
220 struct UseSelfVisitor<'a, 'tcx: 'a> {
221     item_path: &'a Path,
222     cx: &'a LateContext<'a, 'tcx>,
223 }
224
225 impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
226     fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
227         if path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() {
228             if self.item_path.def == path.def {
229                 span_use_self_lint(self.cx, path);
230             } else if let Def::StructCtor(ctor_did, CtorKind::Fn) = path.def {
231                 if self.item_path.def.opt_def_id() == self.cx.tcx.parent_def_id(ctor_did) {
232                     span_use_self_lint(self.cx, path);
233                 }
234             }
235         }
236         walk_path(self, path);
237     }
238
239     fn visit_item(&mut self, item: &'tcx Item) {
240         match item.node {
241             ItemKind::Use(..)
242             | ItemKind::Static(..)
243             | ItemKind::Enum(..)
244             | ItemKind::Struct(..)
245             | ItemKind::Union(..)
246             | ItemKind::Impl(..) => {
247                 // Don't check statements that shadow `Self` or where `Self` can't be used
248             },
249             _ => walk_item(self, item),
250         }
251     }
252
253     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
254         NestedVisitorMap::All(&self.cx.tcx.hir())
255     }
256 }