]> git.lizzy.rs Git - rust.git/blob - clippy_lints/src/use_self.rs
Fixed potential mistakes with nesting. Added tests.
[rust.git] / clippy_lints / src / use_self.rs
1 use crate::utils::span_lint_and_sugg;
2 use if_chain::if_chain;
3 use rustc::hir::def::{CtorKind, Def};
4 use rustc::hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
5 use rustc::hir::*;
6 use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
7 use rustc::ty;
8 use rustc::{declare_tool_lint, lint_array};
9 use rustc_errors::Applicability;
10 use syntax_pos::symbol::keywords::SelfUpper;
11
12 /// **What it does:** Checks for unnecessary repetition of structure name when a
13 /// replacement with `Self` is applicable.
14 ///
15 /// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
16 /// name
17 /// feels inconsistent.
18 ///
19 /// **Known problems:**
20 /// - False positive when using associated types (#2843)
21 /// - False positives in some situations when using generics (#3410)
22 ///
23 /// **Example:**
24 /// ```rust
25 /// struct Foo {}
26 /// impl Foo {
27 ///     fn new() -> Foo {
28 ///         Foo {}
29 ///     }
30 /// }
31 /// ```
32 /// could be
33 /// ```rust
34 /// struct Foo {}
35 /// impl Foo {
36 ///     fn new() -> Self {
37 ///         Self {}
38 ///     }
39 /// }
40 /// ```
41 declare_clippy_lint! {
42     pub USE_SELF,
43     pedantic,
44     "Unnecessary structure name repetition whereas `Self` is applicable"
45 }
46
47 #[derive(Copy, Clone, Default)]
48 pub struct UseSelf;
49
50 impl LintPass for UseSelf {
51     fn get_lints(&self) -> LintArray {
52         lint_array!(USE_SELF)
53     }
54 }
55
56 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
57
58 fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path) {
59     // path segments only include actual path, no methods or fields
60     let last_path_span = path.segments.last().expect(SEGMENTS_MSG).ident.span;
61     // `to()` doesn't shorten span, so we shorten it with `until(..)`
62     // and then include it with `to(..)`
63     let span = path.span.until(last_path_span).to(last_path_span);
64
65     span_lint_and_sugg(
66         cx,
67         USE_SELF,
68         span,
69         "unnecessary structure name repetition",
70         "use the applicable keyword",
71         "Self".to_owned(),
72         Applicability::MachineApplicable,
73     );
74 }
75
76 struct TraitImplTyVisitor<'a, 'tcx: 'a> {
77     item_type: ty::Ty<'tcx>,
78     cx: &'a LateContext<'a, 'tcx>,
79     trait_type_walker: ty::walk::TypeWalker<'tcx>,
80     impl_type_walker: ty::walk::TypeWalker<'tcx>,
81 }
82
83 impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
84     fn visit_ty(&mut self, t: &'tcx Ty) {
85         let trait_ty = self.trait_type_walker.next();
86         let impl_ty = self.impl_type_walker.next();
87
88         if let TyKind::Path(QPath::Resolved(_, path)) = &t.node {
89             // The implementation and trait types don't match which means that
90             // the concrete type was specified by the implementation
91             if impl_ty != trait_ty {
92                 if let Some(impl_ty) = impl_ty {
93                     if self.item_type == impl_ty {
94                         let is_self_ty = if let def::Def::SelfTy(..) = path.def {
95                             true
96                         } else {
97                             false
98                         };
99
100                         if !is_self_ty {
101                             span_use_self_lint(self.cx, path);
102                         }
103                     }
104                 }
105             }
106         }
107
108         walk_ty(self, t)
109     }
110
111     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
112         NestedVisitorMap::None
113     }
114 }
115
116 fn check_trait_method_impl_decl<'a, 'tcx: 'a>(
117     cx: &'a LateContext<'a, 'tcx>,
118     item_type: ty::Ty<'tcx>,
119     impl_item: &ImplItem,
120     impl_decl: &'tcx FnDecl,
121     impl_trait_ref: &ty::TraitRef<'_>,
122 ) {
123     let trait_method = cx
124         .tcx
125         .associated_items(impl_trait_ref.def_id)
126         .find(|assoc_item| {
127             assoc_item.kind == ty::AssociatedKind::Method
128                 && cx
129                     .tcx
130                     .hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
131         })
132         .expect("impl method matches a trait method");
133
134     let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
135     let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
136
137     let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.id);
138     let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
139     let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
140
141     let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
142         Some(&**ty)
143     } else {
144         None
145     };
146
147     // `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
148     // `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
149     // that declaration.  We use `impl_decl_ty` to see if the type was declared as `Self`
150     // and use `impl_ty` to check its concrete type.
151     for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
152         impl_method_sig
153             .inputs_and_output
154             .iter()
155             .zip(trait_method_sig.inputs_and_output),
156     ) {
157         let mut visitor = TraitImplTyVisitor {
158             cx,
159             item_type,
160             trait_type_walker: trait_ty.walk(),
161             impl_type_walker: impl_ty.walk(),
162         };
163
164         visitor.visit_ty(&impl_decl_ty);
165     }
166 }
167
168 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
169     fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item) {
170         if in_external_macro(cx.sess(), item.span) {
171             return;
172         }
173         if_chain! {
174             if let ItemKind::Impl(.., ref item_type, ref refs) = item.node;
175             if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.node;
176             then {
177                 let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
178                 let should_check = if let Some(ref params) = *parameters {
179                     !params.parenthesized && !params.args.iter().any(|arg| match arg {
180                         GenericArg::Lifetime(_) => true,
181                         GenericArg::Type(_) => false,
182                     })
183                 } else {
184                     true
185                 };
186
187                 if should_check {
188                     let visitor = &mut UseSelfVisitor {
189                         item_path,
190                         cx,
191                     };
192                     let impl_def_id = cx.tcx.hir().local_def_id(item.id);
193                     let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
194
195                     if let Some(impl_trait_ref) = impl_trait_ref {
196                         for impl_item_ref in refs {
197                             let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
198                             if let ImplItemKind::Method(MethodSig{ decl: impl_decl, .. }, impl_body_id)
199                                     = &impl_item.node {
200                                 let item_type = cx.tcx.type_of(impl_def_id);
201                                 check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
202
203                                 let body = cx.tcx.hir().body(*impl_body_id);
204                                 visitor.visit_body(body);
205                             } else {
206                                 visitor.visit_impl_item(impl_item);
207                             }
208                         }
209                     } else {
210                         for impl_item_ref in refs {
211                             let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
212                             visitor.visit_impl_item(impl_item);
213                         }
214                     }
215                 }
216             }
217         }
218     }
219 }
220
221 struct UseSelfVisitor<'a, 'tcx: 'a> {
222     item_path: &'a Path,
223     cx: &'a LateContext<'a, 'tcx>,
224 }
225
226 impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
227     fn visit_path(&mut self, path: &'tcx Path, _id: HirId) {
228         if path.segments.last().expect(SEGMENTS_MSG).ident.name != SelfUpper.name() {
229             if self.item_path.def == path.def {
230                 span_use_self_lint(self.cx, path);
231             } else if let Def::StructCtor(ctor_did, CtorKind::Fn) = path.def {
232                 if self.item_path.def.opt_def_id() == self.cx.tcx.parent_def_id(ctor_did) {
233                     span_use_self_lint(self.cx, path);
234                 }
235             }
236         }
237         walk_path(self, path);
238     }
239
240     fn visit_item(&mut self, item: &'tcx Item) {
241         match item.node {
242             ItemKind::Use(..)
243             | ItemKind::Static(..)
244             | ItemKind::Enum(..)
245             | ItemKind::Struct(..)
246             | ItemKind::Union(..)
247             | ItemKind::Impl(..) => {
248                 // Don't check statements that shadow `Self` or where `Self` can't be used
249             },
250             _ => walk_item(self, item),
251         }
252     }
253
254     fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
255         NestedVisitorMap::All(&self.cx.tcx.hir())
256     }
257 }