]> git.lizzy.rs Git - rust.git/blob - clippy_lints/src/use_self.rs
Simplify `clippy` fix.
[rust.git] / clippy_lints / src / use_self.rs
1 use clippy_utils::diagnostics::span_lint_and_sugg;
2 use clippy_utils::ty::same_type_and_consts;
3 use clippy_utils::{meets_msrv, msrvs};
4 use if_chain::if_chain;
5 use rustc_data_structures::fx::FxHashSet;
6 use rustc_errors::Applicability;
7 use rustc_hir::{
8     self as hir,
9     def::{CtorOf, DefKind, Res},
10     def_id::LocalDefId,
11     intravisit::{walk_inf, walk_ty, Visitor},
12     Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Pat, PatKind, Path, QPath,
13     TyKind,
14 };
15 use rustc_lint::{LateContext, LateLintPass};
16 use rustc_semver::RustcVersion;
17 use rustc_session::{declare_tool_lint, impl_lint_pass};
18 use rustc_span::Span;
19 use rustc_typeck::hir_ty_to_ty;
20
21 declare_clippy_lint! {
22     /// ### What it does
23     /// Checks for unnecessary repetition of structure name when a
24     /// replacement with `Self` is applicable.
25     ///
26     /// ### Why is this bad?
27     /// Unnecessary repetition. Mixed use of `Self` and struct
28     /// name
29     /// feels inconsistent.
30     ///
31     /// ### Known problems
32     /// - Unaddressed false negative in fn bodies of trait implementations
33     /// - False positive with associated types in traits (#4140)
34     ///
35     /// ### Example
36     /// ```rust
37     /// struct Foo;
38     /// impl Foo {
39     ///     fn new() -> Foo {
40     ///         Foo {}
41     ///     }
42     /// }
43     /// ```
44     /// could be
45     /// ```rust
46     /// struct Foo;
47     /// impl Foo {
48     ///     fn new() -> Self {
49     ///         Self {}
50     ///     }
51     /// }
52     /// ```
53     #[clippy::version = "pre 1.29.0"]
54     pub USE_SELF,
55     nursery,
56     "unnecessary structure name repetition whereas `Self` is applicable"
57 }
58
59 #[derive(Default)]
60 pub struct UseSelf {
61     msrv: Option<RustcVersion>,
62     stack: Vec<StackItem>,
63 }
64
65 impl UseSelf {
66     #[must_use]
67     pub fn new(msrv: Option<RustcVersion>) -> Self {
68         Self {
69             msrv,
70             ..Self::default()
71         }
72     }
73 }
74
75 #[derive(Debug)]
76 enum StackItem {
77     Check {
78         impl_id: LocalDefId,
79         in_body: u32,
80         types_to_skip: FxHashSet<HirId>,
81     },
82     NoCheck,
83 }
84
85 impl_lint_pass!(UseSelf => [USE_SELF]);
86
87 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
88
89 impl<'tcx> LateLintPass<'tcx> for UseSelf {
90     fn check_item(&mut self, _cx: &LateContext<'_>, item: &Item<'_>) {
91         if matches!(item.kind, ItemKind::OpaqueTy(_)) {
92             // skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
93             return;
94         }
95         // We push the self types of `impl`s on a stack here. Only the top type on the stack is
96         // relevant for linting, since this is the self type of the `impl` we're currently in. To
97         // avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
98         // we're in an `impl` or nested item, that we don't want to lint
99         let stack_item = if_chain! {
100             if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind;
101             if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind;
102             let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
103             if parameters.as_ref().map_or(true, |params| {
104                 !params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
105             });
106             then {
107                 StackItem::Check {
108                     impl_id: item.def_id,
109                     in_body: 0,
110                     types_to_skip: std::iter::once(self_ty.hir_id).collect(),
111                 }
112             } else {
113                 StackItem::NoCheck
114             }
115         };
116         self.stack.push(stack_item);
117     }
118
119     fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
120         if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
121             self.stack.pop();
122         }
123     }
124
125     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
126         // We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
127         // declaration. The collection of those types is all this method implementation does.
128         if_chain! {
129             if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
130             if let Some(&mut StackItem::Check {
131                 impl_id,
132                 ref mut types_to_skip,
133                 ..
134             }) = self.stack.last_mut();
135             if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id);
136             then {
137                 // `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
138                 // `Self`.
139                 let self_ty = impl_trait_ref.self_ty();
140
141                 // `trait_method_sig` is the signature of the function, how it is declared in the
142                 // trait, not in the impl of the trait.
143                 let trait_method = cx
144                     .tcx
145                     .associated_item(impl_item.def_id)
146                     .trait_item_def_id
147                     .expect("impl method matches a trait method");
148                 let trait_method_sig = cx.tcx.fn_sig(trait_method);
149                 let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
150
151                 // `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
152                 // implementation of the trait.
153                 let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
154                     Some(&**ty)
155                 } else {
156                     None
157                 };
158                 let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
159
160                 // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
161                 //
162                 // `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
163                 // trait declaration. This is used to check if `Self` was used in the trait
164                 // declaration.
165                 //
166                 // If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
167                 // to `Self`), we want to skip linting that type and all subtypes of it. This
168                 // avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
169                 // for u8`, when the trait always uses `Vec<u8>`.
170                 //
171                 // See also https://github.com/rust-lang/rust-clippy/issues/2894.
172                 for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
173                     if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) {
174                         let mut visitor = SkipTyCollector::default();
175                         visitor.visit_ty(impl_hir_ty);
176                         types_to_skip.extend(visitor.types_to_skip);
177                     }
178                 }
179             }
180         }
181     }
182
183     fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
184         // `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
185         // we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
186         // However the `node_type()` method can *only* be called in bodies.
187         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
188             *in_body = in_body.saturating_add(1);
189         }
190     }
191
192     fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
193         if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
194             *in_body = in_body.saturating_sub(1);
195         }
196     }
197
198     fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
199         if_chain! {
200             if !hir_ty.span.from_expansion();
201             if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS);
202             if let Some(&StackItem::Check {
203                 impl_id,
204                 in_body,
205                 ref types_to_skip,
206             }) = self.stack.last();
207             if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
208             if !matches!(path.res, Res::SelfTy { .. } | Res::Def(DefKind::TyParam, _));
209             if !types_to_skip.contains(&hir_ty.hir_id);
210             let ty = if in_body > 0 {
211                 cx.typeck_results().node_type(hir_ty.hir_id)
212             } else {
213                 hir_ty_to_ty(cx.tcx, hir_ty)
214             };
215             if same_type_and_consts(ty, cx.tcx.type_of(impl_id));
216             let hir = cx.tcx.hir();
217             // prevents false positive on `#[derive(serde::Deserialize)]`
218             if !hir.span(hir.get_parent_node(hir_ty.hir_id)).in_derive_expansion();
219             then {
220                 span_lint(cx, hir_ty.span);
221             }
222         }
223     }
224
225     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
226         if_chain! {
227             if !expr.span.from_expansion();
228             if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS);
229             if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
230             if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id);
231             then {} else { return; }
232         }
233         match expr.kind {
234             ExprKind::Struct(QPath::Resolved(_, path), ..) => match path.res {
235                 Res::SelfTy { .. } => (),
236                 Res::Def(DefKind::Variant, _) => lint_path_to_variant(cx, path),
237                 _ => span_lint(cx, path.span),
238             },
239             // tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`)
240             ExprKind::Call(fun, _) => {
241                 if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
242                     if let Res::Def(DefKind::Ctor(ctor_of, _), ..) = path.res {
243                         match ctor_of {
244                             CtorOf::Variant => lint_path_to_variant(cx, path),
245                             CtorOf::Struct => span_lint(cx, path.span),
246                         }
247                     }
248                 }
249             },
250             // unit enum variants (`Enum::A`)
251             ExprKind::Path(QPath::Resolved(_, path)) => lint_path_to_variant(cx, path),
252             _ => (),
253         }
254     }
255
256     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &Pat<'_>) {
257         if_chain! {
258             if !pat.span.from_expansion();
259             if meets_msrv(self.msrv, msrvs::TYPE_ALIAS_ENUM_VARIANTS);
260             if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
261             // get the path from the pattern
262             if let PatKind::Path(QPath::Resolved(_, path))
263                  | PatKind::TupleStruct(QPath::Resolved(_, path), _, _)
264                  | PatKind::Struct(QPath::Resolved(_, path), _, _) = pat.kind;
265             if cx.typeck_results().pat_ty(pat) == cx.tcx.type_of(impl_id);
266             then {
267                 match path.res {
268                     Res::Def(DefKind::Ctor(ctor_of, _), ..) => match ctor_of {
269                             CtorOf::Variant => lint_path_to_variant(cx, path),
270                             CtorOf::Struct => span_lint(cx, path.span),
271                     },
272                     Res::Def(DefKind::Variant, ..) => lint_path_to_variant(cx, path),
273                     Res::Def(DefKind::Struct, ..) => span_lint(cx, path.span),
274                     _ => ()
275                 }
276             }
277         }
278     }
279
280     extract_msrv_attr!(LateContext);
281 }
282
283 #[derive(Default)]
284 struct SkipTyCollector {
285     types_to_skip: Vec<HirId>,
286 }
287
288 impl<'tcx> Visitor<'tcx> for SkipTyCollector {
289     fn visit_infer(&mut self, inf: &hir::InferArg) {
290         self.types_to_skip.push(inf.hir_id);
291
292         walk_inf(self, inf);
293     }
294     fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
295         self.types_to_skip.push(hir_ty.hir_id);
296
297         walk_ty(self, hir_ty);
298     }
299 }
300
301 fn span_lint(cx: &LateContext<'_>, span: Span) {
302     span_lint_and_sugg(
303         cx,
304         USE_SELF,
305         span,
306         "unnecessary structure name repetition",
307         "use the applicable keyword",
308         "Self".to_owned(),
309         Applicability::MachineApplicable,
310     );
311 }
312
313 fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
314     if let [.., self_seg, _variant] = path.segments {
315         let span = path
316             .span
317             .with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
318         span_lint(cx, span);
319     }
320 }