]> git.lizzy.rs Git - rust.git/blob - clippy_lints/src/arithmetic.rs
Auto merge of #4879 - matthiaskrgr:rustup_23, r=flip1995
[rust.git] / clippy_lints / src / arithmetic.rs
1 use crate::consts::constant_simple;
2 use crate::utils::span_lint;
3 use rustc::hir;
4 use rustc::impl_lint_pass;
5 use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass};
6 use rustc_session::declare_tool_lint;
7 use syntax::source_map::Span;
8
9 declare_clippy_lint! {
10     /// **What it does:** Checks for plain integer arithmetic.
11     ///
12     /// **Why is this bad?** This is only checked against overflow in debug builds.
13     /// In some applications one wants explicitly checked, wrapping or saturating
14     /// arithmetic.
15     ///
16     /// **Known problems:** None.
17     ///
18     /// **Example:**
19     /// ```rust
20     /// # let a = 0;
21     /// a + 1;
22     /// ```
23     pub INTEGER_ARITHMETIC,
24     restriction,
25     "any integer arithmetic statement"
26 }
27
28 declare_clippy_lint! {
29     /// **What it does:** Checks for float arithmetic.
30     ///
31     /// **Why is this bad?** For some embedded systems or kernel development, it
32     /// can be useful to rule out floating-point numbers.
33     ///
34     /// **Known problems:** None.
35     ///
36     /// **Example:**
37     /// ```rust
38     /// # let a = 0.0;
39     /// a + 1.0;
40     /// ```
41     pub FLOAT_ARITHMETIC,
42     restriction,
43     "any floating-point arithmetic statement"
44 }
45
46 #[derive(Copy, Clone, Default)]
47 pub struct Arithmetic {
48     expr_span: Option<Span>,
49     /// This field is used to check whether expressions are constants, such as in enum discriminants
50     /// and consts
51     const_span: Option<Span>,
52 }
53
54 impl_lint_pass!(Arithmetic => [INTEGER_ARITHMETIC, FLOAT_ARITHMETIC]);
55
56 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Arithmetic {
57     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
58         if self.expr_span.is_some() {
59             return;
60         }
61
62         if let Some(span) = self.const_span {
63             if span.contains(expr.span) {
64                 return;
65             }
66         }
67         match &expr.kind {
68             hir::ExprKind::Binary(op, l, r) | hir::ExprKind::AssignOp(op, l, r) => {
69                 match op.node {
70                     hir::BinOpKind::And
71                     | hir::BinOpKind::Or
72                     | hir::BinOpKind::BitAnd
73                     | hir::BinOpKind::BitOr
74                     | hir::BinOpKind::BitXor
75                     | hir::BinOpKind::Shl
76                     | hir::BinOpKind::Shr
77                     | hir::BinOpKind::Eq
78                     | hir::BinOpKind::Lt
79                     | hir::BinOpKind::Le
80                     | hir::BinOpKind::Ne
81                     | hir::BinOpKind::Ge
82                     | hir::BinOpKind::Gt => return,
83                     _ => (),
84                 }
85                 let (l_ty, r_ty) = (cx.tables.expr_ty(l), cx.tables.expr_ty(r));
86                 if l_ty.is_integral() && r_ty.is_integral() {
87                     span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
88                     self.expr_span = Some(expr.span);
89                 } else if l_ty.is_floating_point() && r_ty.is_floating_point() {
90                     span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
91                     self.expr_span = Some(expr.span);
92                 }
93             },
94             hir::ExprKind::Unary(hir::UnOp::UnNeg, arg) => {
95                 let ty = cx.tables.expr_ty(arg);
96                 if constant_simple(cx, cx.tables, expr).is_none() {
97                     if ty.is_integral() {
98                         span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
99                         self.expr_span = Some(expr.span);
100                     } else if ty.is_floating_point() {
101                         span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
102                         self.expr_span = Some(expr.span);
103                     }
104                 }
105             },
106             _ => (),
107         }
108     }
109
110     fn check_expr_post(&mut self, _: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
111         if Some(expr.span) == self.expr_span {
112             self.expr_span = None;
113         }
114     }
115
116     fn check_body(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body) {
117         let body_owner = cx.tcx.hir().body_owner(body.id());
118
119         match cx.tcx.hir().body_owner_kind(body_owner) {
120             hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => {
121                 let body_span = cx.tcx.hir().span(body_owner);
122
123                 if let Some(span) = self.const_span {
124                     if span.contains(body_span) {
125                         return;
126                     }
127                 }
128                 self.const_span = Some(body_span);
129             },
130             hir::BodyOwnerKind::Fn | hir::BodyOwnerKind::Closure => (),
131         }
132     }
133
134     fn check_body_post(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body) {
135         let body_owner = cx.tcx.hir().body_owner(body.id());
136         let body_span = cx.tcx.hir().span(body_owner);
137
138         if let Some(span) = self.const_span {
139             if span.contains(body_span) {
140                 return;
141             }
142         }
143         self.const_span = None;
144     }
145 }